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Abstract
Results are presented from a theoretical and experimental investigation of the frequency
transfer uncertainty (FTU) in long-distance comparisons of frequency standards. The FTU can
be an important component of the total uncertainty in such comparisons. The use of the Allan
deviation in characterizing the FTU is analysed theoretically and it is shown that for certain
noise types the Allan deviation is biased high. A potentially more accurate first difference
statistic that can be used in certain situations is also discussed. In addition, an experimental
determination of the noise types and levels in common transfer techniques is presented. It is
shown that FTUs approaching 1 part in 1016 at 30 days are possible with current transfer
methods. Finally, a method is presented for estimating the FTU in calibrating International
Atomic Time (TAI) with a primary frequency standard.

S Online supplementary data available from stacks.iop.org/Met/47/552/mmedia

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent reductions in the frequency uncertainty of primary
frequency standards through the use of caesium fountains
have resulted in the uncertainty introduced by the frequency
transfer process becoming a significant component of the total
uncertainty of long-distance comparisons. This also includes
the calibration of International Atomic Time (TAI) [1–3] with a
primary standard. Remote standards are commonly compared
using time links such as GPS common view (GPS CV),
GPS carrier phase (GPS CP) and two-way satellite time and
frequency transfer (TWSTFT). Surprisingly, there has not
yet been a thorough investigation of how to characterize
the frequency uncertainty introduced by the transfer process.
Magnitudes and types of noise processes involved need to be
determined as well as the best way to quantify the introduced
frequency uncertainty. With the development of new ultra-
stable optical frequency standards the transfer process is
becoming even more important.

Two basic approaches are used to determine the noise
introduced by a long-distance time or frequency transfer
∗ US government work, not subject to US copyright.

process. In situations where quiet clocks, such as hydrogen
masers, are used the transfer noise is quite often larger than
the clock noise at time intervals less than ∼5 days. Also the
transfer noise processes are usually of a different type than the
clock noise. In such cases the transfer noise can be determined
independently of the clock noise at short time intervals. In
general, the transfer noise at time intervals longer than ∼5 days
can only be determined if there are two or more independent
transfer processes available. In this case the clock noise can be
eliminated by performing a double difference (clock A minus
clock B compared by method 1 minus method 2) resulting in
a time series made up of just the transfer noises from the two
transfer methods. Once the transfer noise processes have been
isolated, appropriate statistical techniques can be employed to
characterize the frequency uncertainty that is introduced.

This paper presents the results of both theoretical and
experimental investigations of frequency transfer uncertainty
(FTU). In section 2 a theoretical analysis is carried out to
determine the analytical expressions for the FTU, expressed
in terms of the Allan deviation, for white phase noise
(WPN), flicker phase noise (FPN) and white frequency
(random walk phase) noise, which are noise types commonly
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involved in frequency transfer [4]. For WPN and white
frequency noise (WFN) the analysis is based on the law
of propagation of uncertainties [5] applied to an average
frequency calculated for a specific time interval, and use of
the appropriate autocorrelation functions [6, 7]. In the case of
FPN the autocorrelation functions are determined by spectral
analysis [8]. It is shown that the Allan deviation is biased
high for WPN and FPN, but corrections can be made. The
Allan deviation is unbiased only for WFN. The approach
using the Allan deviation is necessary when only one transfer
process is available and consequently the transfer noise must be
quantified in the presence of clock frequency offsets and clock
noise. Though the standard deviation is used in section 2 as a
theoretical tool to obtain the true FTU, it is not appropriate to
use the standard deviation in real world situations where only
one transfer process is available. Here clock noise processes
such as flicker frequency and random walk frequency will make
the value of the standard deviation dependent on the length of
the data set. The Allan deviation, with proper corrections, must
be used.

In section 3 a first difference statistic introduced in [1]
that can be used when two independent transfer processes are
available is reviewed and expanded upon. In this situation
the standard deviation (calculated as a function of averaging
time τ ) could be used, but as discussed in section 3 the first
difference statistic, σft(A, τ), is a better tool.

In section 4 typical noise types and noise levels in real
long-distance time (frequency) transfer links are examined in
detail. Section 5 considers the FTU for calibrations of TAI.

2. Theory

2.1. Definitions

The instantaneous output voltage of a precision oscillator
[9, 10] can be expressed as

V (t) = (V0 + ε(t)) sin(2πν0t + φ(t)),

where V0 is the nominal peak voltage amplitude, ε(t) is the
deviation from the nominal amplitude, ν0 is the nominal
frequency and φ(t) is the phase deviation from the nominal
phase 2πν0t . The frequency instability of a precision oscillator
is defined in terms of the instantaneous, normalized frequency
deviation, y(t), as follows:

y(t) = ν(t) − ν0

ν0
= φ̇(t)

2πν0
,

where ν(t) is the instantaneous frequency (time derivative of
the phase divided by 2π) and

φ̇(t) = dφ(t)

dt
.

The phase instability, defined in terms of the phase deviation
φ(t), can also be expressed in units of time, as

x(t) = φ(t)

2πν0
.

With these definitions, the instantaneous, fractional frequency
deviation is

y(t) = dx(t)

dt
.

In particular we define the mean fractional frequency deviation
over the time interval τ as

ȳ(t) = x(t) − x(t − τ)

τ
. (1)

2.2. FTU in terms of the Allan deviation

Two different methods are used to obtain the uncertainty of
(1) in terms of the Allan deviation. The first is based on the
law of propagation of uncertainty using appropriate models
of stochastic processes and the second is based on spectral
analysis. We prefer to use a mathematical model when it is
available, but for FPN there is no simple mathematical model
available. For this case, a semi-empirical model has been used.

2.2.1. Law of propagation of uncertainty. Considering the
relation between phase and frequency expressed in (1), it is
possible to apply the law of propagation of uncertainty [5] to
ȳ(t), and we obtain

u2
ȳ(t) = u2

x(t) + u2
x(t−τ) − 2u(x(t),x(t−τ))

τ 2
, (2)

where u2
ȳ(t) is the variance (squared uncertainty) of ȳ(t). uȳ(t)

is the FTU if the noise process under consideration originates
in the frequency transfer procedure being used. To calculate
(2) we have to know the variance, u2

x(t), and covariance,
u(x(τ),x(t−τ)), in terms of the phase (time) measurements.

The covariance term [6] for a random process X(t) is
defined as

u(X(t1),X(t2)) = Cov(X(t1), X(t2))

= E([X(t1) − E(X(t1))][X(t2) − E(X(t2))]) (3)

but in the literature [7] it often refers to the autocorrelation
function given by

RX(t1, t2) = E(X(t1)X(t2)), (4)

where t1 and t2 are arbitrary sampling times and the functional
E(·) is the expectation value.

Functions (3) and (4) are identical for zero mean frequency
processes, which is the case for all the noise processes
considered in this investigation. The autocorrelation function
indicates to what extent the process is correlated with
itself at two different times. If the process is stationary
the autocorrelation functions (4) depend only on the time
difference τ = t2 − t1. Thus, RX reduces to a function of
just the time difference variable τ , that is,

RX(τ) = E(X(t)X(t − τ)), (5)

where t1 is now denoted as just t and t2 is (t − τ). Stationarity
assures us that the expectation value is not dependent on t . For
almost all stationary data, the average values computed over an
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ensemble at time t1 will equal the corresponding average values
computed over a time history record (the ergodic theorem).

However, the autocorrelation function RX can also be
obtained by the inverse Fourier transform of the spectral
density Sy(f ) [11, 12],

RX(τ) =
∫ ∞

0

(
Sy(f )

(2πf )2

)
cos(2πf τ) df. (6)

In many situations the stochastic processes are not stationary
and the integral from zero to infinity in (6) is not convergent.
To avoid this problem we considered the limited frequency
range [12] fl < f < fh where fl is the lowest frequency
and may be taken to be much smaller than the reciprocal
of the longest time of interest and fh is the high-frequency
necessary for convergence of the integral. We call 2πfl = ε

and 2πfh = ω. In practice, the random fluctuations can often
be represented by the sum of five noise processes assumed to
be independent [9, 13], as

Sy(f ) =
2∑

α=−2

hαf α 0 < f < fh, (7)

where hα is a constant and α is an integer. Corresponding to
different values of α we have different noises: for α = −2
we have random walk frequency noise (RWFN); for α = −1
flicker frequency noise (FFN); for α = 0 WFN; for α = 1 FPN
and for α = 2 WPN. From relations (6) and (7) we obtain

RX(τ) =
2∑

α=−2

∫ ωτ

ετ

hαuα−2

(2π)α+1
τ 1−α cos(u) du =

2∑
α=−2

Rα(τ),

(8)

where u = 2πf τ and the expression is different for each noise
denoted with α = −2, −1, 0, 1, 2.

However, relation (8) is very divergent, so we introduce a
less divergent function called I (τ ) [8]:

I (τ ) =
2∑

α=−2

∫ ωτ

ετ

hαuα−2

(2π)α+1
τ 1−α(1 − cos(u)) du =

2∑
α=−2

Iα(τ ).

(9)

This function takes on different expressions for each different
noise type (different values of α).

To obtain the variance and covariance terms in (2) we
must know the stochastic processes used to model the noise
types [14, 15]. This is easily done for WPN and WFN. To
obtain the frequency uncertainty for FPN we will use the
method in section 2.2.2.

2.2.2. Spectral analysis. The uncertainty of (1) can be
expressed using the link between autocorrelation functions and
spectral density functions using the inverse Fourier transform
[11, 12]. The uncertainty is obtained using equation (5) and
incorporating the decomposition presented in (8) and (9):

u2
ȳ(t) = E

((
x(t) − x(t − τ)

τ

)2
)

= 2

τ 2
[RX(0) − RX(τ)]

= 2

τ 2
[Rα(0) − Rα(τ)] = 2Iα(τ )

τ 2
, (10)

where Iα(τ ) = Rα(0) − Rα(τ). In this expression we use
the function Iα(τ ) because it is a less divergent function than
Rα(τ) as explained in [8]; here some divergent terms in Rα(τ)

are reduced because of the difference with Rα(0). Also the
expression for the Allan variance can be obtained using the
function Iα(τ ):

σ 2
y (τ0) = 4Iα(τ0) − Iα(2τ0)

τ 2
0

. (11)

Dividing (10) with (11) we obtain a relation for the squared
frequency uncertainty in terms of the Allan variance:

u2
ȳ(t) = 2Iα(τ )/τ 2

(4Iα(τ0) − Iα(2τ0))/τ
2
0

σ 2
y (τ0), (12)

τ0 is the time interval where the Allan variance is known (from,
for example, an experimental measurement). Equation (12)
provides the relation between the FTU and Allan variance for
every value of τ , using the theoretical outcome reported in (10).

Using relation (12) we can evaluate the FTU for all
different noise types (it is possible to find related expressions
of Iα(τ ) in [8]) but as explained above we use relation (12) to
obtain the FTU for FPN. The FTU for the WFN and the WPN
will be analysed using the stochastic process approach.

2.3. FTU in terms of the Allan deviation

Following the methods presented in the previous sections we
obtain expressions for the frequency uncertainty in a time
transfer link in terms of the Allan deviation for WPN, WFN
and FPN. Note below that only for WFN is the FTU equal to
the Allan deviation, σy(τ ). For WPN and FPN the FTU is
smaller than σy(τ ).

2.3.1. White phase noise. WPN can be modelled as random
independent numbers fitting a Gaussian distribution, X(t) ∼
N(0, σ 2), where σ 2 is the variance and the mean is equal to
zero. The covariance in the case of WPN is equal to zero
and the relationship between the Allan variance, calculated for
the relative frequency differences, σ 2

y (τ0) and σ 2 is given by
the relation σ 2 = σ 2

y (τ0)τ
2
0 /3. This relation can be obtained

using the definition of the Allan variance and by following the
method shown in [16, 17].

Applying (2), the frequency uncertainty is given by

u2
ȳ(t) = σ 2 + σ 2

τ 2
= 2

σ 2

τ 2
= 2

3

σ 2
y (τ0)τ

2
0

τ 2
. (13)

where τ0 is the time interval between measurements and
τ = τ0, 2τ0, 3τ0, . . . as typically used in the Allan variance.
In (13) we use τ0 and τ to distinguish the behaviour of the Allan
variance from the behaviour of the FTU. Considering that the
Allan variance cannot distinguish the clock contribution from
the time transfer contribution for τ > 10 days, the FTU can be
obtained from (13) with only one value of the Allan variance
at τ0.

Assuming τ0 = τ and assuming the knowledge of the
Allan variance for a long period we obtain

u2
ȳ(τ ) = 2

3σ 2
y (τ ), (14)
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where uy(τ) is the FTU. Thus we see that for WPN the Allan
deviation alone would give a value for the FTU that is about
22% too high. Note that (14) gives the FTU only in the region
of τ where transfer noise dominates.

2.3.2. White frequency (random walk phase) noise. To
model WFN we use a Brownian motion (or Wiener process)
approach [6, 14, 18]. The Wiener process indicated by W(t)

is defined as a Gaussian Markov process with independent
increments whose basic parameters are the drift µ and the
diffusion coefficient σ [6, 14, 18]. Considering the definition
of the Wiener process, given by the solution of the stochastic
differential equation

dXt = µ dt + σ dW(t), (15)

the solution, considering W(0) = 0, of (15) [12] can be
written as

Xt = µt + σW(t). (16)

At any instant the standard Wiener process is described by a
Gaussian distribution

Xt ∼ N(µt, σ 2t).

where σ has the dimension T1/2. In particular we have that the
variance of this process is Var(Xt) = σ 2t and the covariance
is Cov(Xt , Xs) = σ 2 min(t, s). The diffusion coefficient
σ 2 is linked to the Allan variance [16, 17] by the relation
σ 2 = σ 2

y (τ0)τ0. Therefore, using the values for the variance
and the covariance of WFN, the frequency uncertainty in the
case of µ = 0 and applying (2) is

u2
ȳ(t) = σ 2t + (t − τ)σ 2 − 2(t − τ)σ 2

τ 2
= σ 2

τ
= σ 2

y (τ0)τ0

τ
.

(17)

In this case for τ0 = τ we have

u2
ȳ(τ ) = σ 2

y (τ ). (18)

Thus we see that for white frequency (random walk phase)
transfer noise the Allan deviation is the FTU. Again (18) gives
the FTU only for the region of τ dominated by transfer noise.

2.3.3. Flicker phase noise. To obtain the FTU for FPN we
use relation (12). For FPN the function Iα(τ ) is given in [8] as

I1(τ ) = h1

2π

∫ ωnτ

ετ

1 − cos(u)

u
du

= h1

(2π)2
(γ + ln(ωnτ) − Ci(ωnτ)),

(19)

where the dependence on ωn is given by the divergence
at infinity of the cosine integral function [19], for
which a standard expansion is Ci(x) = γ + ln(x) −∫ x

0 (1 − cos(u))/u du, and γ is Euler’s constant equal to
0.577 21. This expression is not divergent at zero so we can

consider the integral limit 0 instead of ετ . In this case the
squared frequency uncertainty is

u2
ȳ(t) = 2(γ + ln(ωnτ) − Ci(ωnτ))

3γ + 3 ln(ωnτ0) − ln(2) − 4Ci(ωnτ0) + Ci(2ωnτ0)

×τ 2
0

τ 2
σ 2

y (τ0). (20)

In the case of τ0 = τ the result is

u2
ȳ(t) = 2(γ + ln(ωnτ) − Ci(ωnτ))

3γ + 3 ln(ωnτ) − ln(2) − 4Ci(ωnτ) + Ci(2ωnτ)

×σ 2
y (τ ). (21)

In this case the frequency uncertainty depends on ωn, which is
related to the measurement bandwidth. In general the product
ωnτ is not considered in the analytical relations of [20] because,
if ωnτ � 1, a more simplified relation can be obtained. In our
case relation (20) would be approximated by the relation

u2
ȳ(τ ) = 2

3

σ 2
y (τ0)τ

2
0

τ 2
,

which is equal to (13) obtained for WPN. In relations (20) and
(21) for FPN we cannot assume ωnτ � 1 and (13) would not
be correct. To obtain a value for ωn different methods must be
used. Using the analytical expression for the Allan variance
in the case of FPN [8, 10] an approximate result is obtained.
Using the Nyquist frequency and the sampling theorem an
analytical expression, confirmed from the approximated one,
is obtained where ωn = π/τ0. In the case of real flicker phase
transfer noise processes where τ0 = 1 day the value for ωnτ0

is equal to π . In this case the term presented in (21)

2(γ + ln(ωnτ0) − Ci(ωnτ0))

3γ + 3 ln(ωnτ0) − ln(2) − 4Ci(ωnτ0) + Ci(2ωnτ0)

has a value of 0.79. Thus for FPN, for this case, we obtain

u2
ȳ(τ )

∼= 0.79σ 2
y (τ ). (22)

Again (22) gives the FTU only for the region of τ dominated
by transfer noise.

2.3.4. Examples of calculations of the FTU from simulated and
real data. Examples of calculations comparing the true fre-
quency uncertainty from the standard deviation to that obtained
with (14), (18) and (22) are shown in the supplementary data
available at stacks.iop.org/Met/47/552/mmedia.

3. FTU from a first difference statistic

In 1998 a first difference statistic was briefly introduced to
quantify the FTU in a time series [1]. Here we will consider
it in more detail. For noise types where the mean frequency is
zero (white phase, flicker phase and white frequency), this first
difference statistic is statistically equivalent to the fractional
frequency uncertainties calculated by the standard deviations
in section 2. When two independent transfer techniques are
available between the same two frequency sources one can take
the difference of the two time series (one from each transfer
technique) and obtain a new time series that removes the clock
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Figure 1. Illustration of how σft(A, τ), FTU, is calculated from a
double difference data set. x̄ is the average phase over the interval A.

noises and frequency offset and just contains the combined
noise of the two transfer techniques. We refer to this as a
double difference. The first difference statistic of [1] can be
used to calculate the FTU from double differenced time series
data and is a very useful tool in helping to determine the noise
level and noise type of frequency transfer instabilities at long
time intervals. This first difference statistic, called σft(A, τ)

here, is defined by the following relation, and its calculation is
illustrated in figure 1:

σ 2
ft(A, τ) = 〈(x̄t+τ − x̄t )

2〉
τ 2

= 1

τ 2n

n∑
i=1

(x̄i+τ − x̄i )
2, (23)

where x̄i is the average of a double difference of phase
(time difference) values obtained with two different transfer
techniques over interval A at epoch i and τ is the interval
between epoch i and i+τ . σft(A, τ) is just the root mean square
(RMS) frequency of the time series at interval τ . σft(A, τ) can
be used in a meaningful way only in situations where there is
no clock frequency offset or clock noise. As was shown in
section 2, an uncorrected Allan deviation calculation on the
same time series is biased approximately 12% to 22% high for
FPN and WPN, respectively.

σft(A, τ) is the true frequency transfer error even in the
presence of a non-zero mean. Any value of (xi+τ −xi)/τ = yi

that is not zero constitutes a real frequency error introduced
by the transfer systems. In the absence of known biases (a
bias would be a non-zero average slope in the time series
or equivalently a non-zero mean frequency), the frequency
transfer error obtained with σft(A, τ) is the FTU. The standard
deviation (calculated as a function of τ) would not see this
bias. In principle, a known bias could be measured and
corrected for, in which case the FTU would be the RMS
deviation about the bias (this would be equivalent to the
standard deviation in section 2). An example of a bias might
be part of an annual cycle in transfer delay that could have a
nearly linear component over an interval of several months.
Another example might be an ageing mechanism in one of

the components of a transfer system that could look like a
linear (or nearly linear) change in delay over a period of time.
If biases are present that are poorly understood (and hence
uncorrectable) then the frequency transfer error of σft(A, τ)

should be considered the FTU.
The Allan deviation could be used on a double difference

data set, but there are several advantages to using σft(A, τ)

rather than the Allan deviation to calculate the FTU. First
of all σft(A, τ) is unbiased for transfer noises, whereas the
Allan deviation alone is approximately 12% to 22% too large
for FPN and WPN, and is correct only for WFN, as shown
is section 2. This difference can be understood because the
Allan deviation is a good estimator for frequency instability
in time transfer or clock data, but it is not always a good
estimator for the frequency uncertainty. Also, the confidence
limits are better for σft(A, τ) than for the Allan deviation.
Expressions for the confidence limits of σft(A, τ) are presented
in the supplementary data. In addition, σft(A, τ), being a first
difference statistic, will be sensitive to slow time delay changes
in the transfer systems that look like a frequency offset and are
real errors. The Allan deviation, being a second difference,
will not see these errors. The Allan deviation by itself is a
convenient tool to use, but bias corrections must be made for
accurate results. The main disadvantage with σft(A, τ) is that
it cannot be used in situations were only one time transfer
technique is available. Here, the time series between two
clocks contains clock frequency offset and clock noise. In
such cases (14), (18) and (22), which use the Allan deviation,
should be used.

A comparison has been made between σft(A, τ) and the
FTU calculated from (14) and (22) using simulated data in
a manner similar to section 1A in the supplementary data.
Simulated time series of WPN and FPN data containing 1×105

data points were generated and analysed. For WPN the results
for σft(A, τ) and the FTU calculated from (14) are essentially
identical, with differences less than 0.1% at all values of τ

from τ0 to 25 000τ0. A similar procedure was carried out for
FPN and the results agreed to within a few per cent.

4. Experimental observations of the FTU for
different transfer techniques

In sections 4 and 5 we will examine different techniques for
determining the type and magnitude of the noise processes
that cause FTU in several real time links. Figure 2 shows
the time deviation, TDEV, of UTC(NIST) − UTC(USNO)

for two different links over a two year period in 2005 and
2006. NIST is the National Institute of Standards and
Technology in Boulder, CO, USA, and USNO is the US
Naval Observatory in Washington, DC, USA. One link is a
direct, relatively short baseline, GPS CV link, shown as (blue)
diamonds, using multi-channel receivers and the International
GNSS Service (IGS) ionosphere models. The other is an
indirect TWSTFT link via PTB (Physikalisch-Technische
Bundesanstalt in Braunschweig, Germany), shown as (red)
circles. The two-way links from the NIST to PTB and PTB
to USNO were both at Ku-band using the communications
satellite Intelsat 707. There is currently no direct two-way
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Figure 2. Time deviation plots of UTC(NIST) − UTC(USNO) as
observed with GPS CV (blue) diamonds and TWSTFT via PTB
(red) circles. The solid dots are for the double difference TWSTFT
minus common view.

link between NIST and USNO. All data are for 1 day averages.
Since the clocks are maser ensembles at both ends (and hence
very quiet) the TDEVs at τ less than about 3 days are dominated
by transfer noise, and hence both the GPS CV and TWSTFT
links show transfer noise, which is flicker phase in nature at
a level of about 300 ps. It is certain that this is transfer noise
since it is much too large and of the wrong noise type to be
clock noise (the clock noise is flicker frequency for τ in the
range of 1 to 3 days). At τ values larger than about 3 days the
TDEV shows clock noise. The GPS CV and TWSTFT curves
are not identical because both time series have some missing
data that is not the same for the two links. The decrease in the
TDEV for the GPS CV and TWSTFT data for τ larger than
100 days occurs because both UTC(NIST) and UTC(USNO)
are steered to UTC, Coordinated Universal Time. These data
represent an example where the transfer noise can be observed
at short time intervals when quiet clocks are being used.

When the time series for TWSTFT and GPS CV are
differenced (now a double difference) the long-term clock
noise is removed and TDEV, shown as (black) dots in figure 2,
is much lower at τ greater than 5 days. The TWSTFT–GPS
CV TDEV curve represents the combined transfer noise of
TWSTFT and GPS CV (assuming TWSTFT and GPS CV are
independent and largely uncorrelated) and it is roughly flicker
in nature at a level of about 400 ps essentially for all τ values.
The small bump near 150 days in the TWSTFT–GPS CV curve
is probably an indication of an annual cycle in the time delay
of one or both transfer systems.

Data such as the double difference in figure 2 can be used
to calculate the FTU. Figure 3 shows the combined FTU of
TWSTFT and GPS CV as calculated from σft(A = 1 d, τ )

for NIST–PTB links using the double difference of TWSTFT
minus GPS CV, over the two year interval (730 days) covering
the years 2005 and 2006 (upper (blue) curve with solid dots).
From TDEV data (not shown) it is clear that the FTU in figure 3
for NIST–PTB is dominated at small τ by the noise in common
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different frequency transfer methods over links for NIST–PTB,
NIST–USNO and NIST–CH. Data are shown for double differences.
The transfer methods are GPS CV (CV above), GPS CP (CP above)
and TWSTFT (TW above). Linear log/log slopes are indicated by
the solid lines. All data are for a two year interval in 2005 and 2006,
except for the NIST–CH data which are for a 184 day interval
in 2006.

view. The value of TDEV at 1 day for TWSTFT between NIST
and PTB is about 150 ps (with masers at both ends) while
for common view the TDEV at 1 day is about 500 ps. The
NIST–USNO plot (middle (red) curve with hollow triangles)
is for TWSTFT minus GPS CV and comes from the same
time series data as used for figure 2. Again this is for the two
year period of 2005 and 2006. σft(A = 1 d, τ ) is about 30%
lower here than for the NIST–PTB link. The noise for NIST–
USNO is lower primarily because of the better (shorter) GPS
CV link. The NIST–CH plot (lower (black) curve with solid
diamonds) is for TWSTFT minus GPS CP between NIST and
the Swiss Federal Office of Metrology, METAS, and is from
data supplied by Christine Hackman [21]. The NIST–CH data
are for an interval of only 184 days in 2006. This link exhibits
the lowest noise mainly because carrier phase is more stable
than code-based common view. Note that the slopes for the
three curves are all nearly the same, reflecting the fact that
all the link instabilities are close to flicker phase in nature, as
indicated by the double difference curve in figure 2. Though it
is not obvious from the curves in figure 3, a σft(A, τ) curve for
FPN noise is not a straight line on a log/log plot. See section
4A in the supplementary data for more details.

The TWSTFT links NIST–PTB and NIST–CH are very
similar, and therefore the lower (black) curve in figure 3
indicates that the upper (blue) curve is dominated by GPS CV
at all values of τ . Therefore, one can conclude that the FTU for
transatlantic GPS CV is about 1×10−14 at 1 day and 7×10−16

at 30 days. The τ dependence is about τ−0.78, indicating that
the instabilities are FPN in nature. The FTU for the combined
TWSTFT and GPS CV transfer techniques in the NIST–USNO
link is about 30% smaller and has a similar dependence on τ .
However, because the GPS CV and TWSTFT have similar
levels, it is difficult to draw any definite conclusions about the
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individual techniques. The combined noise of TWSTFT and
GPS CP gives the lowest FTU of about 2.5×10−15 at 1 day and
just less than 2 × 10−16 at 30 days. The τ dependence is about
τ−0.79, which is similar to that of the other two curves. Some
other TWSTFT and GPS CP links have shown a somewhat less
steep τ dependence [21]. TDEV values at 1 day (not shown)
for the GPS CP and TWSTFT data in the lower curve are nearly
the same (with GPS CP being slightly smaller), again making it
difficult to draw any definite conclusions about the individual
techniques. However, as shown in [3] it is not necessary to
fully characterize the individual techniques in order to make
definitive statements about a comparison uncertainty. If the
noise processes in the two transfer techniques are independent
(uncorrelated), the uncertainty of an unweighted average of the
frequency differences obtained from each transfer technique
individually will be one half of the calculated σft(A, τ) at the
appropriate τ interval. Under the best of circumstances, using
currently available frequency transfer techniques, it would take
well over 300 days to reach FTUs approaching 1 × 10−17.

5. Estimating FTU when only one transfer path is
available

If only one transfer path is available the task of determining
the FTU at long time intervals becomes more difficult. An
example of this is reporting the results of a Cs fountain primary
frequency standard into TAI. TAI is a ‘paper’ time scale and
does not physically exist in a single location. Although many
different transfer techniques are used to transfer clock data
through a complex network for use in TAI, there is, in effect,
only one transfer path linking any particular laboratory to TAI.
In this type of situation the transfer noise level and noise type
must be estimated because they are largely obscured by clock
noise. In some cases the clock noise is sufficiently small at
short time intervals that TDEV can be used to directly observe
the transfer noise at small τ values, as in figure 2. However,
this does not give much information about the noise level and
noise type at longer averaging times. Closure measurements
provide some information, but they do not identify the noise
characteristics between a specific pair of stations, and they may
not include certain site-dependent instabilities [22].

5.1. Frequency transfer into TAI

In 2005 the Bureau International des Poids et Mesures, BIPM,
began publishing in Circular T [23] the type A uncertainties,
uA(k)i , of UTC − UTC(k) for each laboratory k reporting
clock data into TAI [22]. This prompted the Consultative
Committee for Time and Frequency (CCTF) Working Group
on Primary Frequency Standards to re-examine the expression
used to calculate the FTU of a primary frequency standard
reporting into TAI. Another motivating factor was evidence
that time transfer instabilities had been decreasing with the
use of improved time transfer techniques. Figure 4 shows
TDEV plots from a comparison between the post-processed
maser ensemble AT1E at NIST and TAI for two different
periods. The upper (blue) curve with dots covers a 1.5 year
period from November 1999 to May 2001. The TDEV values
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TDEVT171TAI.GRF

NIST(AT1E) - TAI

November 1999 to May 2001

August 2005 to February 2007

Figure 4. Time deviation for a comparison between the maser
ensemble, AT1E, at NIST and TAI over an 18 month period around
the year 2000, (blue) dots, and a similar period around the year
2006, (red) triangles. The decrease in TDEV at small values of τ is
due to improved time/frequency transfer.

for τ in the range of 5 to 20 days represent transfer noise
because they are too high to be clock noise, and the noise
type is not WFN or FFN, as would be expected for clock
noise. The lower (red) curve with triangles also shows TDEV
for a 1.5 year interval around 2006. Over the 6 year period
from 2000 to 2006 the transfer noise at τ = 5 days has been
reduced by about a factor of 3 through the increased use of
multi-channel GPS CV receivers, IGS measured ionosphere
delay corrections, P3 (a two-frequency, P code technique) and
improved TWSTFT. (As of 2010 there has been no additional
decrease.) The TDEV values at τ = 5 and 10 days for the
lower curve still represent time transfer noise. Though clock
noise makes it difficult to identify the transfer noise type,
the fact that TDEV decreases between τ = 5 and τ = 10
days indicates that there is some WPN present. In contrast,
the data of figures 2 and 3 would suggest that instabilities in
the most common transfer techniques are mostly FPN, even
beyond 100 days. Transfer noise into TAI is obviously a unique
situation because of the complex way TAI is calculated, and
the large number of stations and great variety of equipment
involved [22]. Therefore, it is not surprising that the noise
characteristics might be different. This clearly is an area that
needs further investigation.

Figure 5 shows Allan deviation plots from the same time
series data that were used for figure 4. The improvement
by a factor of 3 at small τ values is also clear here. The
straight (black) line illustrates the old formula (see (24) in
the following subsection) used to calculate the FTU, ul/TAI,
for primary frequency standards. The Allan deviation and
expressions (14), (18) and (22) of section 2 must be used here
to estimate FTU because these are data between two clocks.
For τ in the range of 5 to 10 days the transfer noise appears to
be a combination of WPN and FPN. Thus the Allan deviation
in figure 5 must be decreased by about 17% to obtain the FTU.
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Figure 5. Allan deviation for a comparison between the maser
ensemble, AT1E, at NIST and TAI over an 18 month period around
the year 2000, (blue) dots, and a similar period around the year
2006, (red) triangles. The decrease in Allan deviation at small
values of τ is due to improved time/frequency transfer. The straight
(black) line with no data points represents the FTU from the old
formula used by the BIPM.

As can be seen in figure 5, the old formula, based on single-
channel GPS CV time transfer, was a reasonably good estimate
of FTU around the year 2000. However, by 2006 it was clear
that a new expression for FTU was needed. Furthermore, the
values of uA(k) now published in Circular T are available.
These values are estimated for each laboratory and eliminate a
problem with the old formula in that the same expression was
used for all laboratories reporting primary standards. Differing
uA(k) values in Circular T make it clear that the transfer
uncertainty is not always the same for each laboratory (a
number of different transfer techniques are in use).

5.2. New frequency transfer equation

Equation (24) is the expression used by the BIPM until
September 2006 to calculate the fractional FTU, ul/TAI,
introduced by the time transfer process when reporting
a primary frequency standard measurement to TAI (black
straight line in figure 5).

ul/TAI = 3 × 10−14

τ/day
(In other words ul/TAI = FTU). (24)

The same expression was used for all labs and the 1/τ
dependence is that expected for WPN. In September 2006 a
new expression was adopted at the recommendation of the
CCTF Working Group on Primary Frequency Standards. This
expression is

ul/TAI =
(√

uA(k)2
1 + uA(k)2

2

τ0

)/(
τ

τ0

)x

. (25)

Here uA(k)i is the type A uncertainty (in seconds) of UTC −
UTC(k) for station k at epoch i as reported in Circular T. τ0 =
4.32×105 s (5 days) and is the data interval of UTC−UTC(k)

in Circular T. τ = t2 − t1 and is the report interval for the
primary frequency standard. The value of the exponent x is
currently 0.9. A value of x less than 1 was chosen to more
accurately reflect the fact that there is a significant component
of FPN in the time transfer instabilities. In this situation the
FTU beyond about 10 days can only be estimated based on
data such as those shown in figures 2 and 3.

Equation (25) as currently used to estimate the FTU for
primary frequency standards should be considered a work
in progress and may very well have to be modified in the
future. These modifications may involve the introduction
of a bias term and changes in the value of x as more
is learned about the instabilities in time/frequency transfer
techniques.

6. Conclusions

Theoretical techniques for characterizing FTU have been
developed in terms of the Allan deviation for situations where
clock frequency offsets and noise are present. Here, the
transfer noise can be isolated at short time intervals if quiet
clocks are available. The Allan deviation at short time intervals
is an accurate measure of the FTU only for white frequency
(random walk phase) noise. For WPN and FPN the Allan
deviation is biased high, but correction factors have been
calculated. A first difference statistic has also been discussed
which should be used when no clock offset and noise are
present, as when a double difference can be performed. Much
has been learned in this investigation about the noise levels
and noise types of frequency transfer using GPS CV, GPS CP
and TWSTFT. The best transfer techniques are TWSTFT and
GPS CP, which exhibit FTUs close to 1 × 10−16 at 30 days.
However, improved frequency transfer is needed for future
frequency standards that could have uncertainties in the low
10−17 range.

There is still much to be learned about the level and type
of noise in frequency transfer. It is not clear what the balance
is between WPN and FPN and to what extent different transfer
techniques are correlated. Is there an annual cycle present
and how large is it? To answer many of these questions a
third independent transfer method is needed. Unfortunately,
there is no immediate prospect for a practical and economical
technique, with sufficient stability, to appear in the near future.
TWSTFT over optical fibres offers considerable promise, but
dedicated fibres covering long (intercontinental) distances are
very expensive.
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Appendix 

1A  Simulation results (Supplement to Section 2) 

To verify the theoretical analysis in Section 2 we calculate ( )τyu from the standard deviation of 

frequency as a function of τ from simulated phase noise data and compare it to the results for 

( )τyu obtained using the Allan deviation in (14), (18) and (22).  We use two different methods to 

simulate the time deviation time series.  The first is based on the use of stochastic processes and 

the second on the use of fractional differences.  Details can be found in [1A - 3A]. 

The process starts with simulated phase data, from which the frequency data as a function of τ 

are obtained using (1).  The standard deviation of the frequency at each τ is calculated to obtain 

the uncertainty.   

Three different cases are considered: 

1. white phase noise with a typical Allan deviation equal to ( ) 15107 −×=τσ y  at 1 day. 

2. white frequency noise with a typical Allan deviation equal to  at 1 day. ( ) 16104 −×=τσ y

3. flicker phase noise with a typical Allan deviation equal to ( ) 15105.7 −×=τσ y  at τ0 = 1 

day with 
sn 864000

π
τ
πω == . 

The results for cases 1, 2 and 3 are shown in Figures 1A, 2A and 3A.  For all three cases very 

good agreement is obtained between the frequency uncertainties obtained directly from the 

standard deviations, grey lines, and the uncertainties using the expressions based on the Allan 

deviations, dashed black lines.  

2A  Analysis using real data (Supplement to Section 2) 

Real experimental data is generally not made up of pure, individual noise processes, as in the 

previous analysis on simulated data, so it is useful to analyze some real data.  In this section we 

compare the results for the calculation of the FTU using the standard deviation on two real data 

sets to that obtained from the equations in Section 2.3 which are functions of the Allan deviation.  

One data set contains WFN and the other has a combination of WPN and FPN.  Clean WFN is 

 1



not readily found in transfer processes over an extended period of time, so we will use data from 

a commercial cesium frequency standard measured with respect to UTC(NIST) for a good 

approximation of WFN.  UTC(NIST) is generated from a maser ensemble so the noise is 

dominated by the caesium standard.  For this analysis the frequency offset is removed.  For white 

and flicker phase noise we use the TWSTFT − GPS common view double difference for NIST − 

PTB data.  NIST is the National Institute of Standards and Technology in Boulder Colorado, 

USA, and PTB is the Physikalisch-Technische Bundesanstalt in Braunschweig Germany. 

2.1A  White frequency noise 

Here we compare the true frequency uncertainty (standard deviation) with the result obtained 

from (18) by using cesium clock data with respect to the UTC(NIST) time scale (frequency 

offset removed).  The white frequency data set for the caesium standard consists of 100 days of 

data with an interval of 12 minutes.  As expected the Allan deviation of this data shows white 

frequency noise with  at τ0 = 12 minutes and a τ-1/2 time interval dependence.  

In Figure 4A we show, as grey stars, the true frequency uncertainty of this data obtained from the 

standard deviation, and compare it to the frequency uncertainty calculated from (18) shown as 

the black line.  The frequency uncertainty obtained from the Allan deviation using (18) agrees 

very well with the true uncertainty. 

( ) 131046.2 −×=τσ y

 

2.2A  White and flicker phase noise 

White and flicker phase noise data were obtained from the TWSTFT minus GPS CV double 

difference for UTC(NIST) – UTC(PTB) over a 300 day interval with data taken about every two 

hours.  This data is shown in Figure 5A.  In Figure 6A we show the modified Allan deviation for 

the NIST – PTB data to illustrate the different noise components.  In this case it is clear from the 

modified Allan deviation that the data are white phase noise out to about 1 day (slope is about  

τ-3/2) and flicker phase noise for larger τ as indicated by the slope of τ-1.  As shown in Section 4, 

a Time Deviation (TDEV) plot could also have been used to resolve the two noise types. 

To evaluate the frequency uncertainties from (14) and (22) we have to determine the levels of 

the two noise types individually.  This can be done from the data in Figure 6A using the intercepts 

of the two noise types at 7200 s.  The white phase noise has an Allan deviation of 

 2



( ) 13
, 107.3 −×=τσ WPNy  for τ0 =7200 s, and the flicker phase noise has an Allan deviation of about 

 for τ0 =7200 s.  In this case the uncertainty is given by the combination of 

these two noise types considered independently as shown in the following relation with the ωn 

parameter equal to 

( ) 13
, 102.1 −×=τσ FPNy

sn 72000

π
τ
πω == . 

  ( ) ( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ += τστστ

2
,

2
,

2

3
279.0 WPNyFPNyyu     (A1) 

Figure 7A shows as grey stars the true frequency uncertainty as a function of τ for the 

experimental data in Figure 5A as obtained from the standard deviation.  The contribution of the 

white phase noise alone from (14) is shown as the dashed grey line and the flicker phase noise 

from (22) is shown as the dotted black line.  Both of the noise types combined in (23) are shown 

as the black solid line.  The agreement between the true FTU of the experimental data and that 

calculated from the combination of (14) and (22) is very good.  

 

3A  Confidence limits of σft(A,τ) (Supplement to Section 3) 

Here we will consider the confidence intervals for σft(A,τ).  To calculate the confidence 

intervals we will follow the same method which has been used for the calculation of the 

confidence interval for the Allan deviation [4A-6A].  In particular we know that for the Allan 

variance [4A] the ratio 

( )
( )

ν
τσ

τσ

,

,ˆ
2

2

A

A
U

ft

ft=         (A2) 

has a chi square distribution with ν degrees of freedom, where ( )τσ ,ˆ 2 Aft  is the estimator related to 

the statistic .  Based on the properties of the chi square distribution and on ( τσ ,2 Aft )

( )( ) ( τστσ ,,ˆ 22 AAE ftft = )  we can estimate the degrees of freedom using the relation: 

 

( )( )
( )( )τσ

τσ
ν

,ˆ
,2

2

22

AVar

A

ft

ft=        (A3) 
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After calculating the degrees of freedom we can obtain the confidence intervals for (23) using: 

( ) ( ) ( )τσντστσν ,ˆ,,ˆ 222 A
a

AA
b ftftft <<      (A4) 

where a and b are the percentiles of the chi square distribution at the confidence level p 

considered (usually the confidence levels are 68 %, 95 % and 99 %).  The problem is to calculate 

the mean and the variance of the first difference statistic (23) in the case of WPN, WFN and FPN.  

Following the method reported in [6A] we can use the following relation  

( )( ) ( )( ) ( ) ⎟
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where k = j – i > 0, M = N – τ and the correlation coefficient  considering ji,ρ
τ

τ ii
i

XX
Z

−
= +  is 

defined by 

( )
( )2,

i

ji
ji ZE

ZZE
=ρ  .      (A6) 

N is the number of the equally spaced samples of ix , which is the average phase over interval A.  

Considering relation (A5), the degrees of freedom following (A2) are: 
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Following the method reported in [6A] it is possible to obtain the expression for the correlation 

coefficients ji,ρ .  Here we report only the final values for the degrees of freedom for WPN, 

WFN, and FPN: 
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where the correlation coefficients are given by the following relations: 
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and Ci(x) is the Cosine integral function, γ is Euler’s constant, and ωn is the bandwidth. This 

para

A  Using TDEV in an expression like (25), (Supplement to Section 5.2) 

k)i, and this can be used 

in 

v
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meter was discussed in Section 2.3.3 . 

 

4

TDEV at τ0 from two low noise clocks can be used to estimate the uA(

an expression like (25) to estimate the frequency transfer uncertainty.  For WPN, using uA(k)i = 

TDEV at τ0, and x = 1 in (25) will give an exact value for the FTU.  The situation is more 

complicated for FPN, as illustrated in Figure 8A.  A time series of simulated flicker phase noise 

was generated with TDEV at τ0 = 1 day equal to 0.24 ns.  This value was used for uA(k)1 and 

uA(k)2 in (25) with x = 0.9.  The FTU using σft(A=1d,τ) was calculated for the time series and is 

shown as (black) dots in Figure 8A.  The solid (red) line overlapping the dots is a best straight line 

fit to this data with a log/log slope of -0.875.  A careful inspection of the dotted curve shows that 

the slope is not constant.  At small τ the slope is approximately -0.7 and increases to about -1 at 

large τ.  The dashed line with (blue) hollow diamonds shows the result from (25).  The overall 

slope from the equation is in good agreement with the fit to the curve with dots, but the FTU level 

from the equation is biased about 25 % low.  The bias between the equation and the data point at 

τ0 = 1 day is only about 15 %, but the slope here is smaller than 0.9.  Therefore, using a TDEV 

alue for uA(k) in an expression such as that in (25) to estimate frequency transfer uncertainty for 

FPM noise is relatively complicated.  The precise bias and exponent will depend on what range of 

τ (relative to τ0) that one is interested in. 
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Figure Captions 

 

Figure 1A. The true fractional frequency uncertainty for simulated WPN as a function of τ 

obtained from the standard deviation is shown as the grey line and the uncertainty obtained from 

(14) using the Allan deviation is shown as the dashed black line. 

Figure 2A.  The true fractional frequency uncertainty for simulated WFN as a function of τ 

obtained from the standard deviation is shown with the gray line and the uncertainty obtained 

from (18) using the Allan deviation is shown with the the dashed black line. 

Figure 3A.  The true fractional frequency uncertainty for simulated FPN as a function of τ 

obtained from the standard deviation is shown with the grey line and the uncertainty obtained 

from (22) using the Allan deviation is shown with the dashed black line. 

Figure 4A. The true fractional frequency uncertainty of WFN from a caesium clock obtained 

with the standard deviation shown as grey stars, compared to the results from (18) shown as the 

solid black line. 

Figure 5A.  Data showing the NIST – PTB link double difference of TWSTFT – GPS CV. 

Figure 6A.  The modified Allan deviation for the NIST – PTB link using TWSTFT minus GPS 
CV data. 

Figure 7A.  The frequency transfer uncertainty (standard deviation) obtained from the NIST – 

PTB data is shown by the grey stars.  The uncertainty obtained from (22) for flicker phase noise 

is shown as the dotted black line, white phase noise from (14) is shown as the dashed grey line 

and both of these combined as the solid black line. 

Figure 8A.  Comparison of frequency transfer uncertainty for simulated flicker phase noise 

calculated from σft(A=1d,τ), (black) dots, and equation (25), (blue) diamonds.  Note that the 

log/log slope for the σft(A=1d,τ) data is not constant as compared to the straight fit line (red). 
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Figure 1A.  The true fractional frequency uncertainty for simulated WPN as a function of τ 

obtained from the standard deviation is shown as the grey line and the uncertainty obtained from 

(14) using the Allan deviation is shown as the dashed black line. 
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Figure 2A.  The true fractional frequency uncertainty for simulated WFN as a function of τ 

obtained from the standard deviation is shown with the gray line and the uncertainty obtained 

from (18) using the Allan deviation is shown with the dashed black line. 
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Figure 3A.  The true fractional frequency uncertainty for simulated FPN as a function of τ 

obtained from the standard deviation is shown with the grey line and the uncertainty obtained 

from (22) using the Allan deviation is shown with the dashed black line. 
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Figure 4A.  The true fractional frequency uncertainty of WFN from a caesium clock obtained 

with the standard deviation, data shown as grey stars, compared to the results from (18) shown as 

the solid black line.  
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Figure 5A.  Data showing the NIST-PTB link double difference of TWSTFT – GPS CV. 
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Figure 6A.  The modified Allan deviation for the NIST-PTB link using TWSTFT minus GPS-
CV data. 
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Figure 7A.  The frequency transfer uncertainty (standard deviation) obtained from the NIST-PTB 

data is shown by the grey stars.  The uncertainty obtained from (22) for flicker phase noise is 

shown as the dotted black line, white phase noise from (14) is shown as the dashed grey line and 

both of these combined as the solid black line. 
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Figure 8A.  Comparison of frequency transfer uncertainty for simulated flicker phase noise 

calculated from σft(A=1d,τ), (black) dots, and equation (25), (blue) diamonds.  Note that the 

log/log slope for the σft(A=1d,τ) data is not constant as compared to the straight fit line (red). 
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