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Abstract
We consider a superconducting phase qubit consisting of a monocrystalline sapphire Josephson
junction with its symmetry axis perpendicular to the junction interfaces. Via the London gauge,
we present a theoretical model of Fe3+ magnetic impurities within the junction that describes
the effect of a low concentration of such impurities on the operation of the qubit. Specifically,
we derive an interaction Hamiltonian expressed in terms of angular momentum states of
magnetic impurities and low-lying oscillator states of a current-biased phase qubit. We discuss
the coupling between the qubit and impurities within the model near resonance. When the
junction is biased at an optimal point for acting as a phase qubit, with a phase difference of π/2
and impurity concentration no greater than 0.05%, we find only a slight decrease in the Q factor
of less than 0.01%.

1. Introduction

Devices based on superconducting materials and tunnel
junctions can interact strongly with their surrounding
electromagnetic environment. For example, quantum bits
(qubits) conceived to leverage the quantum state of a Josephson
junction to provide computational operations [1], couple to
a variety of sources ranging from two-level systems (TLSs)
in surrounding amorphous insulating layers to quasiparticles
in the superconducting electrodes. Mitigation of these
interactions has been a primary concern in qubit design
since they can lead to decoherence of the qubit state. In
particular, spectroscopic studies of phase qubits have revealed
discrete splittings, presumably due to imperfections in the
tunnel junction. While these splittings can be modelled as
separate TLSs that strongly couple to the superconducting
phase qubit [2–6], the microscopic origin of the splittings has
yet to be determined positively. Aside from their contribution
to decoherence, based on predictions by Zagoskin et al [7],
these TLSs can be exploited to construct a quantum memory
device [8]. Also, strong coupling to extraneous TLSs is not
limited to phase qubits, though the mechanisms involved may
differ between devices. For example, in a recent experiment,
Kim et al [9] observed anomalous avoided-level crossings
in the spectrum of a Cooper-pair box (CPB). Interactions of
superconducting flux qubits with extrinsic quantum fluctuators
have also been observed [10, 11].

It is difficult to control the behaviour of TLSs in the
above-mentioned devices due to their inherently random

occurrences within the amorphous constituents, such as barrier
and substrate. Typically, one is left to manipulate the
dimensions of the devices in order to control the number of
TLSs that can interact with the superconductor. Alternatively
one can employ epitaxially grown materials to reduce the
number of TLSs. For example, a phase qubit can be fabricated
using a Josephson junction composed of monocrystalline
sapphire [12, 13]. In addition to significantly reducing the
spectral density and overall number of spurious TLSs [14]
this has the further advantage of allowing one to exert control
over the concentration and type of magnetic impurities in the
barrier by intentionally doping the junction during growth. In
our laboratory we currently are engaged in such experiments.
The focus of the present theoretical discussion is on the effect
of magnetic impurities within specifically monocrystalline
sapphire junctions.

Thus, via artificial means, magnetic impurities can be
introduced into the sapphire crystal barrier that may couple
coherently with the qubit at a specific frequency, either via
nuclear or electronic impurity states, depending on the dopant.
One implementation of this idea originates from the design
of masers constructed from sapphire doped with Fe3+ ions
substituted for Al [15, 16]. At cryogenic temperatures the
Fe3+ ion maintains a zero-field splitting of the electron 3d
states due to the crystal field of the hexagonal sapphire.
The form and strength of coefficients of the corresponding
model spin Hamiltonian, of spin length S = 5/2, have been
well measured [17]. Indeed, there is a pumping frequency
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at 12.038 GHz, associated with |5/2,±3/2〉 to |5/2,±1/2〉
transitions, whose energy is comparable to h̄ω10, the energy
of transition between the |0〉 and |1〉 states of a typical phase
qubit. In a recent experiment [18] involving whispering gallery
modes of a single-crystal HEMEX-grade sapphire, with Fe3+
concentration of a few parts per billion, a high-Q resonance
from the Fe3+ impurities was clearly visible.

Because of the existence of a 12.038 GHz frequency
at zero field, incorporation of Fe3+ impurities into a
monocrystalline sapphire tunnel barrier provides a resonance
between impurity and qubit states that might be leveraged
for quantum memory transfer, in a manner similar to that
described in [7]. However, one first needs to understand the
nature of the interaction of junction magnetic impurity with
low-lying states of the phase qubit, as well as the potential
for degradation of qubit performance by the presence of these
impurities, as measured via the quality factor, or Q, metric. In
this paper we derive a model for this coupling mechanism by
calculating the gauge-invariant shift in phase difference across
the Josephson junction due to the magnetic impurities within
the junction. The shift in phase difference is a consequence
of the interaction between magnetic impurities and tunnelling
Cooper pairs. While other interactions, between impurities and
between impurities and quasiparticles, may play a role, our
focus here is on the basic nature of the interaction between
impurity and qubit, at sufficiently low concentrations that other
types of interactions may be neglected, to first approximation.
From these assumptions, we predict the concentration of
dopant needed to observe the coupling of magnetic impurities
to the phase qubit, and we calculate the resulting Q factor.

2. The model

2.1. Derivation of the model

In the present analysis we develop a model from which we can
study the effect of a low concentration of magnetic impurities
contained within a Josephson junction on the operation of a
phase qubit. We have in mind a cylindrical junction of radius
R and thickness d � R with superconductor interfaces at
planes z = 0 and d , as illustrated in figure 1. We assume
the axis of symmetry of the hexagonal crystal to be orientated
perpendicular to the junction interfaces. The London equations
describing the magnetic induction �B(�r) can be written as

λ2∇2 �B(�r) = �B(�r); z < 0, z > d

∇2 �B(�r) = �V (�r); 0 < z < d,
(1)

where λ is the London penetration depth. Here, �V (�r) =
−μ0∇ × �j(�r) represents a localized source of bound current
within the junction that we may express in the divergenceless
form �j(�r) = ∇ × �M(�r), where μ0 is the permeability of free
space. In our model, the magnetization �M(�r) is the result
of a collection of N magnetic dipole moments �m(n), such
that �M(�r) = ∑N

n=1 �m(n)δ(�r − �rn). For boundary conditions
in (1), we take the z component of magnetic induction and its
derivative in z to be continuous across both junction interfaces,

Figure 1. Illustration of a cylindrical single-crystal Josephson
junction of radius R and thickness d � R. The z direction is normal
to the junction interfaces, which reside at z = 0 and d .

and we assume the magnetic induction must vanish infinitely
far in |z| from the junction.

The differential equation of (1) inside the junction can
be integrated using Green’s theorem [19]. In particular, the
z component of the magnetic induction is

Bz(�r) = − 1

4π

∫

V
d3r ′ Vz(�r ′)

|�r − �r ′| + 1

4π

×
∫

d2ρ ′
[

1

|�r − �r ′|
∂

∂z′ Bz(�r ′) − Bz(�r ′)
∂

∂z′
1

|�r − �r ′|
]

z′=d

− 1

4π

∫

d2ρ ′
[

1

|�r − �r ′|
∂

∂z′ Bz(�r ′)

− Bz(�r ′)
∂

∂z′
1

|�r − �r ′|
]

z′=0

(2)

where V = π R2d is the volume of the junction.
Introducing Fourier transform pairs of the x–y plane of the
form �f (�r) = (1/2π)

∫ �f (�k‖, z)ei�k‖· �ρd2k‖ and �f (�k‖, z) =
(1/2π)

∫ �f (�r)e−i�k‖· �ρ d2ρ, where �r = �ρ+ zẑ and �ρ = x x̂ + y ŷ,
the transformation of (2) yields a Fourier coefficient

Bz(�k‖, z) = − 1

2k‖

∫ d

0
Vz(�k‖, z′)e−k‖ |z−z′ | dz′

+ 1

2

[

Bz(�k‖, d) + 1

k‖
∂

∂z′ Bz(�k‖, z′)
∣
∣
∣
∣
z′=d

]

e−k‖(d−z)

+ 1

2

[

Bz(�k‖, 0) − 1

k‖
∂

∂z′ Bz(�k‖, z′)
∣
∣
∣
∣
z′=0

]

e−k‖ z. (3)

Similarly transforming the differential equation of (1) outside
the junction gives [∂2/∂z2 − γ (k‖)2]Bz(�k‖, z) = 0, with
γ (k‖)2 = k2

‖ + λ−2, which suggests a solution

Bz(�k‖, z) =
{

c1(�k‖)e−γ (k‖)(z−d); z > d

c2(�k‖)eγ (k‖)z; z < 0.
(4)

So substituting (4) into (3), we have

Bz(�k‖, z) = − 1

2k‖

∫ d

0
Vz(�k‖, z′)e−k‖ |z−z′ | dz′

+ 1

2

[

1 − γ (k‖)
k‖

]

[c1(�k‖)e−k‖(d−z) + c2(�k‖)e−k‖ z], (5)
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such that matching the solutions of (4) and (5) at the interfaces
yields

c1(k) = −
{

[k‖ + γ (k‖)]
∫ d

0
Vz(�k‖, z′)ek‖z′

dz′

+ [k‖ − γ (k‖)]
∫ d

0
Vz(�k‖, z′)e−k‖ z′

dz′
}

×
{

[k‖ + γ (k‖)]2ek‖d − [k‖ − γ (k‖)]2e−k‖d

}−1

, (6a)

c2(k) = −
{

[k‖ + γ (k‖)]
∫ d

0
Vz(�k‖, z′)ek‖(d−z′) dz′

+ [k‖ − γ (k‖)]
∫ d

0
Vz(�k‖, z′)e−k‖(d−z′) dz′

}

×
{

[k‖ + γ (k‖)]2ek‖d − [k‖ − γ (k‖)]2e−k‖d

}−1

. (6b)

Therefore, using (6a) and (6b) we see that (5) becomes

Bz(�k‖, z) = − 1

2k‖

∫ d

0
Vz(�k‖, z′)e−k‖ |z−z′ | dz′

− 1

k‖

∫ d

0
Vz(�k‖, z′){{[k2

‖ − γ (k‖)2] cosh k‖(d − z − z′)

+ [k‖ − γ (k‖)]2e−k‖d cosh k‖(z − z ′)}{[k‖ + γ (k‖)]2ek‖d

− [k‖ − γ (k‖)]2e−k‖d}−1} dz′, (7)

which gives the z component of magnetic induction for an
arbitrary source of bound current. In the limit d goes
to infinity, (7) recovers the result of Coffey [20] for the
semi-infinite superconductor. The tangential components of
magnetic induction, continuous and differentiable across the
junction interfaces when λ is not equal to 0, follow in the same
manner.

In the limit of a very thin junction, where d � R and
k‖d � 1, the integrals over z ′ in (7) have dependence on z ′

from Vz(�k‖, z′) alone, and the remaining factor in the second
term of the right side of (7), taken outside the integral in z ′,
becomes

k2
‖ − γ (k‖)2 + [k‖ − γ (k‖)]2e−k‖d

[k‖ + γ (k‖)]2ek‖d − [k‖ − γ (k‖)]2e−k‖d

∼= k‖ − γ (k‖) − 1
2 [k2

‖ − 2k‖γ (k‖) + γ (k‖)2]d
2γ (k‖) + [k2

‖ + γ (k‖)2]d
∼= k‖ − 1

2 [k2
‖ + γ (k‖)2]d

[k2
‖ + γ (k‖)2

]d; k‖d � 1. (8)

In the last step of (8) we discard terms linear in γ (k‖) since they
do not contribute in the physically import limit of λ = 0, and
their absence for small finite values λ � R should not lead to
gross error in approximation. Thus, applying our thin-junction
approximations to (7), noting the subsequent cancellation of
the first term on the right of (7), and transforming back to real
space, we find

Bz( �ρ) ∼= − λ2

2πd

∫

d2k‖
ei�k‖· �ρ

1 + 2λ2k2
‖

∫ d

0
Vz(�k‖, z′) dz′, (9)

which is constant in z and necessarily vanishing in the full
Meissner limit of λ = 0.

Since Vz(�k‖, z) = −iμ0(kx + ky)∂/∂zMz(�k‖, z) −
μ0k2

‖ Mz(�k‖, z), such that over the thickness of the junction
∫

Vz(�k‖, z) dz = −μ0k2
‖
∫

Mz(�k‖, z) dz, we find for a
collection of N impurities that we can write (9) as

Bz( �ρ) ∼= μ0λ
2

4π2d

N∑

n=1

m(n)
z

∫

d2k‖
k2

‖ exp i�k‖ · ( �ρ − �ρn)

1 + 2λ2k2
‖

, (10)

with �ρn = ρn cos φn x̂ +ρn sin φn ŷ. Similar expressions can be
derived for the tangential components of magnetic induction.
Also, the vector potential �A(�r) can be obtained by integrating
�B(�r) = ∇ × �A(�r); inside a very thin junction we find

�A( �ρ) ∼= i
μ0λ

2

4π2d

N∑

n=1

∫

d2k‖
�k|| × �m(n)

1 + 2λ2k2
‖

exp i�k‖ ·( �ρ− �ρn). (11)

Cooper pairs tunnelling through a junction containing
magnetic impurities will experience a shift in phase difference

δ(λ) = −(2e/h̄)

∫
Az dz, integrated over the thickness

of the junction. However, magnetic impurities break the
transverse symmetry of the junction. For simplicity, we assume
tunnelling Cooper pairs most strongly experience the spatial
average of the resultant magnetic field of the impurities1.
Thus, we approximate Az over the cross-sectional area S0 =
π R2 of the junction as Az = (1/S0)

∫
Az( �ρ) dS0. In this

way, utilizing (11), our approximation of the shift in phase
difference is


δ(λ) = 2π
�mi(λ)

�0
, (12a)

�mi(λ) ∼= μ0

2π R
K1

(
R

λ
√

2

)

·
N∑

n=1

I1

(
ρn

λ
√

2

)

× [m(n)
x sin φn − m(n)

y cos φn], (12b)

where �0 = h/2e is the flux quantum, and K1(x) and I1(x)

are modified Bessel functions.

2.2. Phase qubit and magnetic impurity interaction
Hamiltonian

From the resultant shift in phase difference of (12a)
we can ascertain a Hamiltonian of interaction between
individual qubit states and individual magnetic impurity states.
Specifically, consider the Hamiltonian of the current-biased
phase qubit represented by oscillator states and a washboard
potential [21, 22], namely

Hqb = q2

2C
− �0 I0

2π
cos δ − �0 Ibias

2π
δ, (13)

where q is the charge, C is the capacitance, I0 is the junction
critical current, Ibias is the bias current, and δ is the phase. For

δ(λ) � 1, we have cos[δ+
δ(λ)] ∼= [1− 1

2
δ(λ)2] cos δ−
1 Specifically, our approximation is equivalent to neglecting all terms
Az(�k‖, z) except Az (�k‖ = 0, z). Thus, in real space, Az(�r) is effectively
replaced by the average value Az(�r) = (1/4π2)

∫
Az (�r) d2ρ. Or, normalizing

with respect to the cross-sectional area S0 = π R2, we have Az(�r) =
(1/S0)

∫
Az(�r) dS0. These averages are independent of z in the very-thin-

junction limit.
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δ(λ) sin δ, such that substituting δ + 
δ(λ) for δ in (13), and
collecting the new terms that result, we identify the interaction
Hamiltonian as

Hqb−mi = −�0 Ibias

2π

δ(λ) + �0 I0

2π

δ(λ) sin δ

+ �0 I0

4π

δ(λ)2 cos δ. (14)

Introducing quantization of magnetic dipole moments, we
may replace �m(n) with −gμBS(n) in (12b), where g is the
Landé factor, μB is the Bohr magneton, and S(n) is the total
spin operator of the nth ion. The 3d electron states of Fe3+ give
rise to its moment, with spin length S = 5/2 and measured
g = 2.00, as reported in [17]. Substituting (12a) and (12b)
into (14), with δ⊗S(n) denoting the tensor product of operators
δ and S(n), we obtain the expression

Hqb−mi = −
mi(λ)
�0

2π
(Ibias − I0 sin δ)

⊗
N∑

n=1

I1

(
ρn

λ
√

2

)

e−iφn S(n)
z S(n)

y eiφn S(n)
z + 1

2

mi(λ)2

× �0

2π
I0 cos δ ⊗

N∑

m,n=1

I1

(
ρm

λ
√

2

)

I1

(
ρn

λ
√

2

)

× e−iφm S(m)
z S(m)

y eiφm S(m)
z e−iφn S(n)

z S(n)
y eiφn S(n)

z (15)

with coefficient


mi(λ) = gμBμ0

R�0
K1

(
R

λ
√

2

)

, (16)

which describes the interaction of oscillator states with the spin
degrees of freedom of N magnetic impurities.

3. Results and discussion

Estimating the size of terms in (15), we take K1(x) the order
of unity and set π R2 = 10−12 m2 such that 
mi(λ) ∼
10−8. Then, for example, with critical current I0 = 10−5 A,
within the first term of (15) we have an energy contribution

mi(λ)�0 I0/2π ∼ 10−4 μeV (24 kHz) per magnetic impurity.
With respect to a phase qubit immersed in a bath of magnetic
impurities, this contribution corresponds to a total of about
0.1 meV (24 GHz) at 0.05% impurity concentration, i.e.,
multiply by N ∼ 106. Also, the second term of (15) expresses
a non-local interaction between spins, mediated by the state
of the phase qubit, where the ratio of the amplitude of this
term to that of the first is ∼ N
mi(λ) ∼ 10−2. Furthermore,
with regard to phase dependency, by virtue of the second-
order approximation in 
δ(λ) that results in (14), the coupling
of (15) is zero when the phase qubit is precisely biased at
δ = π/2, Ibias = I0.

As mentioned earlier, the pumping transition of Fe3+ at
12 GHz is comparable to h̄ω10 of typical phase qubits. This
suggests near-resonance behaviour may be exhibited between
the qubit and Fe3+ electron states. However, the situation
is somewhat more complicated than the resonance between a
phase qubit and a TLS since the |5/2,±1/2〉 and |5/2,±3/2〉
states are each degenerate Kramers doublets that are slightly
split (and mixed with |5/2,±5/2〉 in the case of |5/2,±1/2〉)

due to the local crystal field, as quantified in [15]. We consider
the effect of hexagonal crystal symmetry on the near-resonance
behaviour of our model a topic for future study.

The contribution of junction magnetic impurities to the
quality factor Q can be approximated by noting that the shift in
phase difference of (12a) implies a tunnelling current I0 sin[δ+

δ(λ)] ∼= I0 sin δ + I0
δ(λ) cos δ − 1

2 I0
δ(λ)2 sin δ. On
average, at very low impurity concentration, particularly near
δ = π/2, the term first order in 
δ(λ) tends to vanish, and,
within the second-order term, we can assume 〈
δ(λ)2 sin δ〉 ∼=
〈
δ(λ)2〉〈sin δ〉. Here, the angle brackets 〈· · ·〉 imply that
we evaluate these terms in the ground state, averaging over
all orientations of the local magnetic moments, and averaging
over an ensemble of spatial distributions of impurities within
the junction. Thus, in this limit of approximation, the critical
current is effectively reduced, i.e., I0 → I0(1−〈
δ(λ)2〉/2). If
Q0 = ωp R0C is the Q factor in the absence of these impurities,
where ωp = √

(2π I0/�0C) is the plasma frequency (most
closely associated with qubit transition frequency ω10) and
R0 is the resistance of the junction, then the Q factor in the
presence of junction magnetic impurities can be approximated,
with the aid of (12a) and (12b), as

Q(λ) ∼= Q0

[

1 − 1

4

(
2π

�0

)2

〈�mi(λ)2〉
]

. (17)

We can estimate the size of 〈�mi(λ)2〉 in the limit of a very
low concentration of Fe3+ impurities by assuming a ground
state consisting of products of independent impurity states,
where S = 5/2 is still a good quantum number and the nth
impurity state |n〉, neglecting crystal-field splitting, is two-fold
degenerate, constructed from local angular momentum states
|5/2,±1/2〉. In this way, we find

〈�mi(λ)2〉 ∼=
(

gμBμ0

2π R

)2

K1(R/λ
√

2)2

×
〈 N∑

n=1

I1(ρn/λ
√

2)2〈n|S(n)
y

2|n〉
〉

sp.avg.

, (18)

subject to a spatial average 〈· · ·〉sp.avg. over the ensemble
of impurity distributions. Now, for any impurity we
have 〈5/2,±1/2|S(n)2

y |5/2,±1/2〉 = 17/4; the two-fold
degeneracy of the impurity state |n〉 introduces an overall
multiplier of 2, i.e., 〈n|S(n)2

y |n〉 = 17/2; and, in performing
the spatial average of (18), we assume magnetic impurities
are uniformly distributed throughout the junction such that
we may replace the sum

∑N
n=1 I1(ρn/λ

√
2)2 by the average

integral (N/S0)
∫ R

0 ρ I1(ρ/λ
√

2)2 dρ, which evaluates to

(N R2/2S0)[I0(R/λ
√

2)2 + I1(R/λ
√

2)2]. Thus, with the
impurity concentration inferred from nmi = N/V , where
V = S0d is the volume of junction, (18) becomes

〈�mi(λ)2〉 ∼= 17

4
nmid

(
gμBμ0

2π

)2

K1(R/λ
√

2)2

× [I0(R/λ
√

2)2 + I1(R/λ
√

2)2], (19)

which applied to (17), is the estimate of the Q factor near
δ = π/2. In the limit λ � R the Bessel functions of (19)

4
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Figure 2. Plot of the Q factor of a qubit biased near δ = π/2, using
the approximations of (17) and (19), as a function of λ/R. The
magnetic impurity concentration of the junction is 0.05% and the
junction thickness is d = 15 Å.

reduce to simple forms such that the Q factor of (17) can be
approximated as

Q(λ) ∼= Q0

[

1 − 17

16
nmid

(
gμBμ0

�0

)2(
λ

R

)2]

;
λ � R. (20)

In figure 2 we plot the Q factor as a function of London
penetration depth, with impurity concentration 0.05% and
junction thickness d = 15 Å. The reduction in Q factor
is less than 0.01% over the range of penetration depths that
are physically meaningful. Again, our approximation of (17)
and (19) assumes non-interacting impurity moments at low
concentration. At higher concentration than 0.05%, where
the average separation between impurities is much less than
100 Å, we expect interactions such as RKKY to play a more
significant role.

4. Conclusion

In summary, we have derived a model of coupling between a
phase qubit and the angular momentum degrees of freedom
of a collection of Fe3+ ions contained within a single-crystal
Josephson junction. The model predicts that coupling exists
only for a non-zero London penetration depth. And when
the phase qubit is fully biased at δ = π/2, Ibias =
I0 the coupling vanishes. Furthermore, predicted qubit-
to-impurity coupling strengths range from ∼24 kHz (for
a single impurity) to ∼24 GHz (for coherent coupling to
106 impurities). Assuming a minimum observable coupling
strength of 50 MHz, we therefore expect an observable
effect to require a strong coherent interaction involving
∼2 × 103 impurities, which corresponds to approximately
0.0001% impurity concentration. From our analysis at these
concentrations, we expect a negligible reduction of the Q
factor of the qubit due to magnetic impurities.

The small effect of the magnetic impurity concentration on
the Q value means that a 0.0001% concentration of magnetic
ions should not alter the potential for adiabatic transfer of
quantum state information between qubit and ion states, if

such is possible. Hence, the possibility of an Fe3+ ion acting
as a memory qubit is not unduly influenced by its location
within the junction, at this concentration. However, if the
impurity concentration is much higher than 0.0001% then we
should expect RKKY interactions, with energies ∼μ2

B/r 3, to
become more important. Thus, under these circumstances,
our model would likely require amendment to account for the
effects of strong correlations. Therefore we anticipate that a
concentration of 0.0001% Fe3+ ions is a good starting point
for experimental investigation since it is above the threshold of
spectroscopic detection and affords near-adiabatic interaction
of ions with qubit, within the regime of applicability of our
model.

Lastly, we should point out that our model is not
intended as a description of, or substitute for, other
models of quantum fluctuators that have been described
in the literature [2–5, 23, 24]. Nor do we envisage our
model as explaining spectroscopic observations of recent
experiments [2, 9–11]. Rather, we have proposed a mechanism
for coupling a phase qubit to magnetic ions intentionally doped
into an otherwise monocrystalline junction, with the purpose of
establishing guidelines for conducting experiments. Our focus
has been on Fe3+ because of the 12 GHz transition observed
in this case. An ancillary result of our analysis, however, is
that our model is applicable to the description of the coupling
of other magnetic impurities (such as Fe2+, Cr3+ and Mn4+,
which might be found naturally within dielectric junctions) to
a qubit, regardless of resonance viability, within the range of
parameter space we have outlined. We hope our work will
stimulate further investigations in this area.
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