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ABSTRACT 
 
Organofunctionalized montmorillonite clays (MM) have been prepared with 

ammonium cations having a distribution of alkyl chain lengths. Relative to clays 
treated with alkylammonium cations having no distribution of chain lengths, the 
ultimate tensile stress of the epoxy-based composites increased. Also, depending on 
the preparation of the functionalized clays, an increase in the strain-to-failure is also 
noticed. The tensile stress and strain-to-failure of the organofunctionalized clays are 
compared to neat epoxy. The epoxy matrix chosen consists of diglycidyl ether of 
bisphenol A (DGEBA), 1,4-butanediol diglycidyl ether (1,4-BDE) and cured with 
meta-phenylenediamine (m-PDA). All MM composites were prepared using   5 
mass % loading of the organomodified clay. The goal of this research was to 
compare the impact of surface treatment on MM clays that were used in the 
preparation of epoxy-based composites. 
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INTRODUCTION 
 
Organofunctionalized MM clays have been extensively used as fillers in 

polymer composites [1,2]. Known for their cation-exchanging abilities, 
alkylammonium ions have been used for functionalizing MM clays, mainly by the 
replacement of sodium ions. Alkylammonium ions having long chain alkyl groups 
can effectively push apart the adjacent aluminosilicate layers to distances that 
should allow easy access for incoming monomers and curing agents. It has been 
shown that eventual polymerizing/curing that takes place between  separated MM 
layers results in composites that have well-dispersed clay layers [3,4]. 
Improvements in the mechanical properties of well dispersed clay composites can 
thus be expected to occur. 

In this report, we demonstrate that one of the main factors for clay dispersion 
and mechanical property enhancement comes not by using long chain 
alkylammonium ions, but by using a mixed alkylammonium ion system consisting 
of long alkyl chains and short alkyl chains. We also report on the influence of a 
processing step used during the functionaliztion of the MM. Alkylammonium 
treated MM washed with water and with an ethanol/water mixture results in 
differences in dispersion and in the mechanical properties for a few of the samples 
to be discussed. 

 
 
 

EXPERIMENTAL 
 

MM Functionalization/ Epoxy Blending 

 
The starting material was Na+ Cloisite (Southern Clay Products; 92 mequiv/100 

g), which was used with no pre-treatment before organofunctionalization. Cloisite 
10A (Southern Clay Products) was used as a reference organomodified MM. The 
alkylammonium ions of interest are octadecylammonium (C18), hexylammonium 
(C6), propylammonium (C3), and two vendor-supplied alkylammonium salts; 
Maquat (BTMC-85; Mason Chemical Company) and Arquad (DMHTB-80E; Azko 
Nobel) [5]. 

Organomodified MM containing mixtures of protonated alkylamines were 
prepared by mixing a 2/3 : 1/3 molar ratio of C18/C6 and C18/C3 (0.024 mmol, 
total alkylammonium), to aqueous dispersions containing 10 g Na+ Cloisite. C18 
modifed MM was prepared by mixing 0.024 mmol of protonated C18 to a 10 g 
dispersion of Na+ Cloisite. Arquad and Maquat modified MM were prepared by 
mixing aqueous solutions of each salt (0.024 mmol) with 10 g dispersions of Na+ 
Cloisite. 



The exchanged MM were then subjected to Büchner filtration, and washed with 
either warm deionized water  (18 MΩ-cm), or with a 50:50 (v/v) ethanol : warm 
deionized water mixture. Due to the ability of the alkylammoniums to behave as 
surfactants, more foaming was observed during the ethanol-water wash than in 
water alone. Knowing that a large excess amount of alkylammonium was used for 
sodium exchange, the increased solubility of the alkylammoniums in the ethanol-
water mixture results in a significant reduction of excess alkylammoniums in the 
treated clays.  

 
Epoxy Blending/Mechanical Testing 

The organomodifed MM clays were mechanically stirred into a mixture of 
epoxies containing DGEBA and 1,4-BDE for 1 h, at room temperature. The 
blended mixtures were then subjected to degassing at 70 oC for 2 h. After 
degassing, melted m-PDA (70 oC) was blended into the mixture and dog bone 
shaped specimens were prepared using silicone rubber molds. Per dog bone sample, 
the mass percentage of the two epoxies and curing agent are: DGEBA, 67 %; 1,4-
BDE, 20 %; m-PDA, 13 % The curing profile used was 60 oC for 3 h and 121 oC 
for 2 h. 

Each dog bone sample was polished using #1200 and #2400 emery paper. We 
attempted to achieve an average thickness and average width of each dog bone 
section to be approximately (1.55 ± 0.04) mm by (4.05 ± 0.04) mm. To aid in the 
strain-to-failure calculations, two transverse fiducial marks were placed with a 
green permanent marker, 10 mm apart. 

Each specimen was then loaded in tension by the sequential application of step-
strains. Each step-strain was applied at a rate of 85 μm/s and the average 
deformation in the specimen during each step-strain was 85.7 μm.  The delay time 
between the applications of successive step-strains was 10 min.  Images were 
scanned using a movable camera, and automatically saved after every step-strain.  
 
 

RESULTS 
 
All but two of the organomodified MM easily blended into the DGEBA/1,4-

BDE mixture. These two samples were the MM-Maquat and the ethanol-water 
washed MM-C18. Successful blending, by our standards, is described by the 
absence of settled material at the bottom of the epoxy blend after the 2 h degassing 
step. 

After curing, most of the dog bone samples did not have any noticeable 
aggregates in them, except for the two materials described above, plus the water 
washed MM-C18. The water washed MM-C18 blended well during the mixing and 
degassing steps, but had noticeable aggregates in the dog bone samples, which 
occurred during the curing cycle. 

Figure 1 shows the stress-strain curves for several of the composite samples, 
with respect to neat epoxy. According to this figure, the composite having the 
largest tensile stress was the MM-(C18+C3), and the composite having the longest 
strain was Cloisite 10A. The composites having the lowest stress and strain values 
were the ones having only one type of alkylammonium ion, independent of alkyl 
chain length. 



Figure 2 shows the stress-strain curves for several of the water and ethanol-
water washed samples, with respect to neat epoxy.  This figure shows a significant 
improvement in strain for the MM-(C18+C6) samples, based on washing with 
ethanol-water. In contrast to this improvement, the MM-(C18) samples decreased in 
strain (and tensile stress) when washed with the alcoholic mixture. There are no 
significant differences in the MM-(C18+C3) samples (shown) and in the Cloisite 
10A samples (not shown). The expected standard uncertainty has been calculated to 
be 1 % of the values reported for the tensile strength measurements.  
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Stress-Strain Curves for the 5 % Mass Fraction Composites
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Figure 1. Stress-strain Curves for the Water Washed Organomodifed 
MM/epoxy Samples (standard uncertainty ± 1 %). 

 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 

Stress-Strain Curves For The 5 % Mass Fraction Composites
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Figure 2. Stress-strain Curves for Selected Water and Ethanol-water washed 
Organomodifed MM/epoxy Samples (standard uncertainty ± 1 %). 
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