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Transport properties of carbon dioxide + ethane and
methane + ethane mixtures in the extended critical region '

S.B. Kiselev “, M.L. Huber

Physical and Chemical Properties Division, National Institute of Standards and Technology, 325 Broadway, Boulder,
CO 80303, USA

Received 3 March 1997; accepted 27 August 1997

Abstract

A practical representation for the transport coefficients of pure fluids and binary mixtures in and beyond the
critical region of liquid-vapor equilibria is presented. The crossover expressions for the thermal conductivity, the
binary diffusion coefficient, the thermal diffusion coefficient, and the thermal diffusion ratio incorporate scaling
laws near the critical point and are transformed to regular background values far away from the critical point. In
the limits of pure components, the crossover expression for the thermal conductivity of binary mixtures is
transformed to the crossover expression for the thermal conductivity of pure fluids. For the calculation of the
regular backgrounds transport properties of pure fluids, we use dense fluid contributions obtained from
independently fitting pure fluid data and a dilute gas contribution from Chapman-Enskog theory. A comparison
is made with thermal conductivity data for pure carbon dioxide, methane, ethane. and carbon dioxide -+ ethane
and methane + ethane mixtures. © 1998 Elsevier Science B.V.

Keywords: Binary mixtures; Carbon dioxide; Critical state: Diffusion coefficient: Ethane; Methane; Thermal conductivity

1. Introduction

It is well known that both the thermodynamic surface and the transport properties of fluids exhibit
singularities at the critical point [1,2]. Asymptotically close to the critical point the singular behavior
of transport coefficients in pure fluids and in binary mixtures can be described in terms of scaling
laws with universal exponents and universal scaling functions [3—7]. On the other hand, far away
from the critical point, the intensity of the critical fluctuations is diminished and the thermodynamic
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Moscow 117917, Russian Federation.
! Contribution of the National Institute of Standards and Technology, not subject to copyright in the United States.

0378-3812,/98 /$19.00 © 1998 Elsevier Science B.V. All rights reserved.
PII S0378-3812(97)00222-7



254 S.B. Kiselev, M.L. Huber / Fluid Phase Equilibria 142 (1998) 253—280

and transport properties of fluids can be described in terms of regular analytical equations. In order to
describe the transport properties of fluids and fluid mixtures in the wide region of temperatures and
densities around the critical point, it is necessary to consider the nonasymptotic critical behavior of
the thermodynamic and transport properties including the crossover to regular classical behavior far
from the critical point. In the last several years, significant progress in the description of the transport
coefficients of binary mixtures in and beyond the critical region has been achieved. The decoupled-
mode calculations by Kiselev and coworkers [8—11], the renormalization group calculations by Folk
and Moser [12—14], and the recent mode-coupling results obtained by Luettmer-Strathmann and
Sengers [15] not only confirm earlier asymptotic predictions, but also extend the description of the
transport properties of binary mixtures into the crossover region. These studies show that in order to
extend this crossover approach for the transport coefficients in binary mixtures to the entire
thermodynamic surface, special attention has to be paid to the equation of state and to the regular
background contributions of the kinetic coefficients.

The present paper provides a practical representation of transport properties of binary mixtures in
and beyond the critical region based on the modern theory of critical phenomena. We calculate the
thermodynamic properties of pure fluids and binary mixtures using a new parametric crossover
equation of state, which incorporates scaling laws asymptotically close to the critical point and
transforms into the regular classical expansion far away from the critical point [16,17]. In evaluating
the crossover expressions for the kinetic coefficients in binary mixtures, we use the decoupled-mode
calculations of Kiselev and Kulikov [8,11]. The correct regular behavior of the transport coefficients
is provided by the redefinition of the correlation length of the order—parameter fluctuations. In the
vicinity of the critical point the crossover expression for the critical enhancement of the transport
coefficients in a binary mixture incorporate the scaling laws and reproduce the asymptotic expressions
obtained earlier by Mistura [4,5]. Far away from the critical point the crossover expressions transform
into their regular background parts.

We proceed as follows. In Section 2, we formulate the crossover equations for the transport
coefficients. In Section 3, we propose corresponding states expressions for calculating the regular
(background) parts of the kinetic coefficients in binary mixtures; a comparison with experimental
thermal conductivity data for pure carbon dioxide, methane and ethane is given in Section 4. In
Section 5, we compare our crossover model with experimental thermal conductivity, thermal and
binary diffusion, and thermodiffusion ratio data for carbon dioxide + ethane and methane + ethane
methane mixtures. In Section 6, we discuss our results.

2. Crossover equations for the transport coefficients

The Onsager expressions for the diffusion current fd and heat current fq in binary mixtures are
[18]

Jo=—aVu—pvr (1)
Jy= —BTVu— 59T+ ul, (2)

where T is the temperature, u =, — u, is the chemical potential of the mixture, and @&, 3 and ¥
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are Onsager kinetic coefficients. Mode-coupling calculations performed by Gorodetskii and Giterman
[3] and Mistura [4,5] show that asymptotically close to the critical point the Onsager kinetic

coefficients diverge as

A kTP (ﬁf) (3)

6mméE\ ) pr
o kgTp ( dx
AB=B—By= — 4
B B Bb 6777]§(8T)P,I,L ( )
kgTp [ 9S
Ay=5—%,= = 5
e 6wn§(aT)p,M ©)

where 7 is the shear viscosity, p the density, x =N, /(N, + N,) the mole fraction of the second
component, S the molar entropy of the mixture, & the equilibrium correlation length, kg Boltzmann’s
constant, and where the subscript ‘b’ denotes the background part of the kinetic coefficients which is
an analytic function of the concentration, temperature and density. The asymptotic equations, Eq.
(3)-Eq. (5), are valid only in an extremely small range of temperatures and densities around the
critical point. In order to describe the behavior of the transport coefficients of binary mixtures in the
entire range of temperatures and densities, including the critical region, the crossover expressions for
the kinetic coefficients &, 3 and 7 have to be used. In the present paper for the calculations of the
transport coefficients in pure components and in binary mixtures we use the decoupled-mode results
obtained by Kiselev and Kulikov [8,11]. In this approach the crossover expressions for the kinetic

coefficients of a binary mixture are written in the form

kgTp [ 0x .
a= | = Qg€+ @ 6
G\ ) 006 B i
. kgTp ( (?x) A -
= sl e O \qgpé )+ L
B — T . (QD ) By (7)
- kgTp [ Ox TS £ krunczsTPCpx 2N~
Y= S (—) a(qD§)+—_—_7—_-‘(2(QD§)+7b (8)
6mnE \ O ) pr\ 0T ) px 6mné
where the crossover functions Q&(qDé ) and (g, £) are given by equations
P 2 ~ 1 QDSA
Qa(qu) = arctan(qu) - ———————;arctan_————_——_——A (9)
” V1+ypdné \/1+)’DCID§

3 (10)

” . 1 qné
Q(qu) == arctan(qD§) - —l—m——;—;;—é arctan m

with

6mn?

M ke Tpan(do+ 0 ')

(11)
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v kBTpQD(¢O+y1 l)
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kxyTp |(0x
e (2] "
6mméa, \ %) pr
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kyTp (9S
- ol (28] ”
67Ny T)pu

In Eq. (6)-Eq. (14), g, =gl is a cutoff wave number first introduced by Perl and Ferrell [19,20],
and ¢, = ¢p(kp&) is the dynamical scaling function

b(z2) = D (2)/(1+2°) (15)

(where 02,(z) =(3/4z)[1 + 2% + (z* — 2z~ Darctan(z)] is the Kawasaki function [21-24]) calculated
at the constant value of the wave number kp, = 0.1¢p. Eq. (6)-Eq. (14) coincide with the correspond-
ing expressions obtained by Kiselev and Kulikov [8,11]; however unlike Refs. [8,11], in the present
work we define the renormalized correlation length as

R 1
E=E&oy exp(— ) (16)
QD§OZ
where
g
€oz= %o Fo (17)

corresponds to the Ornstein—Zernike approximation for the correlation length, &, and I, are the
amplitudes of the asymptotic power laws for the correlation length and reduced isomorphic compress-
ibility ¥ = p(dp/dP)y,, P, p; *, respectively. Asymptotically close to the critical point gp &> 1, the
singular parts of the kinetic coefficients are much larger than the regular (background) parts (y, > 1,
y, > 1, yp = y;p = 1), all crossover functions approach unity, and Eq. (6)-Eq. (8) in the critical limit
reduce to the asymptotic solution given by Eq. (3)-Eq. (5). Far away from the critical point, i.e.,
qDé < 1, the crossover functions tend to zero ({2, = 0; 2 — 0), and all kinetic coefficients approach
their regular parts. Thus with the definition Eq. (16), q,' has the meaning of a statistical average
distance at which the real correlation length becomes e times less then the Ornstein—Zernike
correlation length Eq. (17), and where, as a consequence, the decoupled-mode calculations cannot be
applied anymore.
The thermal conductivity of the mixture A is defined by the equations [18]

- -

J,=0,J,=-AVT (18)
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which according to Eq. (6)—Eq. (8) lead to the following expression for the thermal conductivity of
binary mixtures [8,11]

» Igz kgTpCp , ~ - -
A=F—T—=——"0(qpé) + &, udT0(y) + ¥, (19)
o 67N
where the crossover function _Qa(qu ) appears only in the argument
— ~ kgTp ~
)':Aa/ab:}‘()‘oa(qug)z o My lQa(qu) (20)
6mnéa,
of the function
s *\2
ya+2y1)-()
o(y)= (21)

1+y

Here we have introduced the notation w,= (du/0x)p 7, up=©Ou/T), , and y* = B,/ tré,. In
the limit of pure components (x > 0 or x = 1), & , ~ x(1 —x) — 0 [7,8], the specific heat capacity
Cp,, of a binary mixture is transformed to the isobaric specific heat capacity Cp of the pure
components, and Eq. (19) for the thermal conductivity of the binary mixtures transforms to the
crossover equation for the thermal conductivity of the one-component fluid.

In order to calculate the thermo- and barodiffusivity we represent the diffusion current in the form
[18]

pDp o

D
it Vp (22)

T
where the binary diffusion coefficient is

iy

fd= —pDnﬁx—

o
Dl2 = T My (23)
P

the thermal diffusion coefficient is
T

DT:—;(&MT+B) (24)
and the barodiffusivity is
aP (o
p,- (] (25)
p aP &Ly
The thermodiffusion ratio, from Eqs. (6), (7) and (24), can be represented in the form
D, .
kp= 7= =Turp, K(y) (26)
12
with
K(y)= 2 27
(W)= . )
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3. Regular parts of the transport coefficients

Eq. (6)-Eq. (8) for the kinetic coefficients in a binary mixture contain the shear viscosity and the
regular (background) parts of the kinetic coefficients, as well as thermodynamic quantities. The
viscosity 7 in these equations represents a shear viscosity which is an analytic function of
temperature, density, and concentration. In the present work, unlike the previous works of Kiselev et
al. [9-11], we use for the shear viscosity a simple corresponding-states correlation in the form

—1
1 —x b4

+
n(T,p)  n(T,p)

where the superscripts i = 1,2 denote the components of the mixture. As we will show below in the
critical region at densities 0.35p, < p < 1.65p,, where the crossover functions differ from zero, Eq.
(28) in spite of its simplicity provides a good representation of the shear viscosity of binary mixtures.

There are no experimental data nor any adequate theoretical prediction for the dependencies of the
kinetic coefficients &, 8 and ¥ on temperature, density, and concentration far away from the critical
point where these coefficients tend to their background parts ay, Eb and ¥, respectively. It is known
only that even in the dilute gas limit the binary diffusion coefficient D, the thermal diffusion
coefficient D, and the thermal conductivity of a binary mixture are complex functions of the
temperature, the concentration and molecular mass [25]. The primary concentration dependence of the
coefficients & and f in the dilute gas limit and in dilute solutions is given by ~ x(1 —x) [7,8]. In the
present work, by analogy with the transport properties of one-component fluids [26,27] the back-
ground parts of the kinetic coefficients @ and B are given by

@y(T,p,x) = @y(T,x) + Gy (29)
Bo(T.p.x) = Bo(T. %) + B, (30)

where @(T,x) and B,(T,x) correspond to the dilute gas parts of the kinetic coefficients, and &, and
B., are the excess functions. In general, &, and S depend on the density, composition and
temperature; however in the present work for simplicity we treated them as functions of the density
and composition only, so that

n(T,p,x) = (28)

R-7/6 6 k+1
» p
ol p.2) =1 =) B (s e ) 2 a1

ex “ex k=1

1,1

ex “ex k=1

R-1/6 6 p k+1
Bul 9.2 =41 ~5) = X (Bt ) £ (32)
The form of Eq. (29)-Eq. (32) coincides with the form of corresponding equations employed
carlier by Kiselev et al. [9-11] except that we introduce in Egs. (31) and (32) the composition-depen-
dent coefficient
To/ ZoM i

mix

lo=—"F%— (33)
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critical pressure of the mixture, and the critical compressibility factor Z, = P../R p. T..), used
carlier by Stiel and Thodos [28] in the corresponding states expression for the thermal conductivity of

binary mixtures.
The background contribution of the kinetic coefficients v is given by

BE(T.p.x) /s o
Ha(l WX)"’F” 2o (Yo "}’3/<X>(";'””“

Yo = Ag(T,x) + AP+ T—
l 0 Qb(THO“X) cx k=1 X

In Eq. (29)-Eq. (34), R =18314.51] kmol ' K~ is the universal gas constant, P, is in MPa, 7, s
inK, &, isinkgsm™?, B, isinkgm™" s K™', %, isinWm™' K", and a, B and 7, (k= 1)
are the system-dependent coefficients. The excess function A2 is given by

e Y Lo W A
I [P(l)]2/3 ex RX[PC(Q)]Z/3

CcX C

(35)

1,2) _ (1 [
W =AY

where A% and @ define the excess parts of the thermal conductivity A, in the limits of the pure
components, and the dilute gas parts of the kinetic coefficients are given by [9-11]

~ pDOMliix 1 36
fry = o (1= ) (30)
- . X )

Bo=Ra,y| B, +xB,—In (37)

1—x

By (7. %) (38)

Yo(Tx) = A(T,x) + T ao(T,x)

For the binary diffusion coefficient in the dilute gas limit we use an empirical correlation proposed by
Fuller and Giddings [29] and Fuller et al. [30]

|
M, +M, |3
MM,
12

1.01325 X 10*8T1-“’5{
(39)

Dy= X

P (ZL'1)3 + (Z«Uz)3
(where T is in K, P in MPa, and D, in m? s~ 1), and for the dilute gas part of the thermal

conductivity A,(T,x) we use a simple expression proposed by Wassilijeva [31]

S (=X XA (1)
Mo(Tx) = (1—x)+xA,  x+(1—x)Ay (40)
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with the Lindsay and Bromley [32] modification for A,, and A,

_ Iy 2
L a0 (M, ST+, 7| T+5,
= — - : —_— —
24 n(T,0)\ M, ] T+S5, T+S,
] L2 (41)
3 i
p 1 | n(T0) (M \3T+S, |2 T+S,
= =41+ || =
g nN(T0)\ M, T+S, T+S,

Here, Ay’ (i =1,2) is the thermal conductivity in the dilute gas limit, S, = 1.5T, S, =1.5T% and
S\, =S,S, are Sutherland constants [32], and 7.}’ (i = 1,2) are the normal boiling temperatures of
the pure components. To determine D, and A, for the carbon dioxide + ethane and methane + ethane

mixtures we use the following values of the atomic diffusion volumes and normal boiling tempera-
tures 2 [33]

Loy =26.90, Xyep, =24.42, Lyc,u,=44.88 (42)
70D = 194 7K, TEHO=111.7K, TCHO = 1845K (43)

The correlation length é is given by Eq. (16), where for the bare correlation length &, and the
cutoff parameter ¢, in binary mixtures we use simple linear approximations

&= fé])(l —F ) §(§2)x (44)
1 1 1
q—D:E(l*x)‘Fgg—)x (45)

where superscripts i = 1,2 denote the components of the mixture.

4. Transport coefficients of pure components

The background transport properties for methane, ethane and carbon dioxide are represented as
sums of terms for the temperature dependent dilute gas contributions and terms for the temperature
and density dependent excess contributions. Contributions for critical enhancement are not included in
these background functions. High accuracy representations of the pure fluid background equations are
available [34—-37], however, we have chosen to illustrate the method with equations that can be used
when the data is more limited and high accuracy correlations are not available. The viscosity is found
using

n(p.T) =n(T) + m(p.T) (40)
while the thermal conductivity is given by
ALp.T) = Ao(T) + A (p.T) (47)

* For CO,, T,, have been obtained by the extrapolation of the vapor—liquid saturation curve at the normal atmospheric
pressure P =1 atm.
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Table |

{ennard Jones potential parameters, &, and G ' for pure fluids

Fd e/ ley (K) o (um) £y (nm) gy (om)
Wethane 148.6 0.3758 0.181 0.5554
Fthane 215.7 0.4443 0.190 0.5827
Carbon dioxide 1952 0.3941 0.150 0.5056

[

The dilute gas viscosity is obtained from kinetic theory [38] assuming a Lennard—Jones potential
applies and using the expression

VYMT
(122 2 (4‘8)
where 7 is in Pa s, M is the molecular mass, T is in K, G s a collision integral, and o is the
distance at which the potential energy function is zero, in nm. The collision integral for a Lennard
Jones potential is evaluated using [39]

1o(T) = 26.69167 X 107°

C
0CI(1) = ';é + Cyexp(—Cyt) + Csexp (— Cyt) (49)

where C, = 1.16145, C, = 0.14874, C,=0.52487, C, = 0.77320, C5= 2.16178 and C,=2.43787,
and ¢t = kT /€. The potential energy parameters € and o were obtained from Ref. [33] and are listed
in Table 1. The excess portion of the viscosity is found with an equation of the form found in [40]

(a +_€i_) 0.1
3 T3/2 p

p g Ay
+— -1 ‘/2( +-~+w—) -1 50
2= 1]par 20 3 (50)
where the excess viscosity is in Pa s, the temperature is in K, and the density is in mol 17!, The
coefficients for excess viscosity are from [41] and are given in Table 2. The dilute gas thermal
conductivity is found from kinetic theory using a sum of rotational and transitional contributions
[ 5 15 1 mo(T)*107°
M(T) = | AT CR(T) = SR| + - R| = (51)

where A, is in mW m™" K~', C) is the ideal gas heat capacity in J mol 1K', and n, is in Pa s,

exp

a
nex(p’T) = 1O7exp(a‘ + _._].%_)

P

Table 2

Coefficients for excess viscosity

a, Methane Ethane Carbon dioxide
1 —11.1460 —9.83026 —2.88240
2 442232 274.922 ~2197.33

3 11.9729 12.0085 7.78198
4 —40,000.8 —3900.84 23,144.8

5 0.01285 0.05188 0.54518
6 13.2309 24.1829 ~190.691

7 1873.14 2391.80 16,158.2




262 S.B. Kiselev, M.L. Huber / Fluid Phase Equilibria 142 (1998) 253280

Table 3

Coefficients for ideal gas heat capacity

g; Methane Ethane Carbon dioxide
1 4.0 4.00644 3.50

2 3.00573 1.31139 2.00778

3 1870.00 465.008 960.11

4 1.82529 7.80610 0.97524

5 2180.00 1531.30 1932.0

6 4.07954 7.24643 1.08279

i/ 4170.00 3401.32 3380.2

while the function f, is given as

T,
f1=1.35558587 — 0.113066767 (52)
The ideal gas heat capacities are written as
. 82j+1
CP(T) : 82j+1)\ | T
R =g, T ZgzjeXp( T ) 82j+1 (53)
j=1 exp -l i 1

The coefficients for ideal gas heat capacity are given in Table 3 [41]. The excess thermal conductivity
function is a function of both temperature and density and is given by

2 3 4

Ay(p,T)= i by+ bz(—p—) + (b3 + b4£)(£ + (b5 + b6£)(£) (54)
Pe Pe T'J\ p. T\ pe

where A, is in mW m™' K~!. The excess thermal conductivity is a weak function of temperature,

but a strong function of density. The coefficients for the excess thermal conductivity are given in

Table 4 [41].

If the background transport properties of the pure components are known our crossover model
contains two adjustable parameters: the bare correlation length £§” and the cutoff parameter ¢;). The
parameter £ determines the critical amplitude of the correlation length in the asymptotic critical
region and can be independently determined from light scattering measurements. For pure carbon
dioxide, methane and ethane we adopt the same values for &5 as used by Sengers and Olchowy [27]
and Sengers and Levelt Sengers [42], while the parameters qf, are determined from a fit of the

Table 4

Coefficients for excess thermal conductivity

b; Methane Ethane Carbon dioxide
1 21.30511 16.4265 14.5845

2 11.07070 10.7440 20.9392

3 —5.744289 —6.13841 —14.0533

4 0.140431 0.33633 2.14884

5 1.670839 1.78933 3.75428

6 —0.095669 —0.19234 —0.98048
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crossover Eq. (19) to experimental thermal conductivity data in the critical region [43—45]. The
harameters £§7 and gf, for carbon dioxide, methane and ethane are presented in Table 1. The thermal
conductivity for carbon dioxide, methane and ethane in the critical region are plotted in Figs. 1-3.
percentage deviations of the experimental thermal conductivity from the calculated values beyond the
critical region are shown in Figs. 4-0. Since the crossover equations of state used for the calculation
of all thermodynamic quantities for carbon dioxide [11], methane and ethane [16] do not reproduce the
ideal gas limit at low densities, and may even give unphysical behavior as p - 0, we restrict our
calculations to the fluid regions

p=[025+015(T/T,~ 1] p. (55)
for carbon dioxide, and
p=025p, (56)

for methane and ethane. The percentage deviations of the thermal conductivity are less than 4% over
the entire thermodynamic surface for densities specified by Egs. (55) and (56) and increase up to
8—10% at the boundary.

5, Transport properties of binary mixtures

In order to apply our crossover model to the calculation of the transport properties in binary
mixtures, in addition to the equation of state and expressions for the background transport coefficients
for pure components A (7, p) and n{(T, p), one needs also the coefficients a;, fB; and ¥, in Egs.
(29) and (34) for the backeround coefficients &, 3, and ¥,. The background coefficients &, and B,
not only determine the crossover behavior of the thermal conductivity of a binary mixture in the
critical region as given by Eq. (19)-Eq. (21), but also determine the binary diffusion coefficient D

O,

300

200

A, mW m! K

100

] i i :
4 5 6 7 8 9 10 11 12 13 14 15 16
p,molIJI

Fig, 1 The thermal conductivity of carbon dioxide as a function of the density along isotherms. The symbols indicate
experimental data obtained by Michels et al. [43], and the curves represent values calculated with the crossover model.
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CH,
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1 400 4 1o
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Fig. 2. The thermal conductivity of methane as a function of the temperature along isochores. The symbols indicate
experimental data obtained by Sakonidou [44], and the curves represent values calculated with the crossover model.
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Fig. 6. Percentage deviations of experimental thermal conductivity for ethane of Le Niendre et al. [49,47], of Lenoir et al.
[50], of Prasad and Venart [51], and of Roder [52] from values calculated with the crossover model.

and the thermal diffusion coefficient D, of binary mixtures far away from the critical point (see Egs.
(23) and (24)). We do not have experimental binary diffusion coefficient data for carbon dioxide +
ethane and methane + ethane mixtures, therefore, we found the coefficients «, from fitting the
crossover Eq. (6) together with Egs. (23) and (29) to binary diffusion coefficient data generated with
an empirical correlation for binary fluid mixtures [53]

Dy = (DGn®) " (DYm)" (57)

where x, and x, are the molar fractions of the components, and the dilute-solution binary diffusion
coefficients DY, and DY, are calculated with an empirical modification of the Stokes—Einstein
equation for the diffusion coefficient [54]

Wl

8.5210°°T
p=———T—|140+

n(j)yj?

4
V) (58)

1

Here T is in K, m in Pa s, DS in m? s 1, Vv, and V. in cm® mol™! are the molar volumes of

1

components at their normal boiling temperatures. Here, we use ° [33]

Veo, = 55.024, Vo, = 37.936, Vo gy, = 37.321 (59)

? For CO,, we use the molar volume of liquid carbon dioxide at the triple point.
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5 [ Carbon dioxide + ethane mixiure

The coefficients 3, for carbon dioxide + ethane mixtures have been found from fitting of Eqgs. (7
and (26), at fixed values of the coefficients «, (the «, were found using binary diffusion coefficient
data as described in the previous paragraph), to the experimental thermal diffusion ratio data obtained
py Walther [55]. The thermodynamic properties for carbon dioxide and ethane mixtures were
calculated from the new crossover equation of state obtained recently by Kiselev and Kulikov [11].
The results of comparison with thermal diffusion ratio data for the carbon dioxide and ethane mixture
is shown in Fig. 7. Good agreement between calculated values and experimental data of Walther [55]
for the thermal diffusion ratio is observed. As one can see from Fig. 7, the thermal diffusion ratio
increases in the critical region and reaches a maximum at a density close to the critical density. Along
the critical isotherm (which corresponds to the temperature 7 = 290.854 K at this composition), the
thermal diffusion ratio diverges as p — p..

The coefficients vy, in Eq. (34) for carbon dioxide and ethane mixtures have been found from a fit
of the crossover Eq. (19) (with the found above values of the coefficients e, and B,), to the
experimental thermal conductivity data in the critical region obtained by Mostert [46]. Since the actual
composition at which the thermal conductivity was measured differed from that of the sample upon
filling, as discussed by Luettmer-Strathmann and Sengers [15], we excluded from the calculations
thermal conductivity data apparently corresponding to the two-phase region and, as in our previous
work [11], shifted the temperatures associated with the thermal conductivity data of Mostert [46] by
AT = +0.260 K at x=0.26, AT=—0478 K at x=0.50, AT= —0445 K at x=0.74, and
AT = —0.463 K at x = 0.75. The coefficients «,, 8, and v, for carbon dioxide and ethane mixtures
are presented in Table 5. Experimental and calculated thermal conductivity values for carbon dioxide

60%C0,+40%C,H
ol 290.854 K
1.7 i 205 K
15k A Walther
caloulated
18
1.1 F
N I
0.9
0.7 +
L 300K
051
03+ 305.15K
0 315 K
& / A “‘W
oET e L
: ! 1 1 L L 1 : ! : I
4 6 8 10 12 14 16 18

p, mol Lt

Fig. 7. The thermal diffusion ratio of the carbon dioxide and ethane mixture at the concentration x = 0.4 mole fraction of
ethane along isotherms as a function of the density. The symbols indicate experimental data obtained by Walther [55] at the
temperature 7 = 305.15 K and the curves represent values calculated with the crossover model.
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Table 5

The background kinetic coefficients «, B, and v, used in Egs. (31), (32) and (34) for carbon dioxide +ethane mixture ’

Coefficients S, Coefficients 7y,

Coefficients &,

ag 1.33315%107° B, 2.40238 Y1 —1.17562%x107°
oy —2.34664X107° B, —~7.43324%x107° V2 —5.14420%x 1077
o, —1.43428x107° Be 6.39961 X 107° 75 5.54845%107°
o 1.70776 X X 107° B —1.15818 % 107° s —6.72675%107°
g 1.96473x 1077 Bis 9.40929 % 10~ Yo 2.60059 X 10~°
o —2.44598 1077 Yo 1.74581 x107°

Y10 —1.24763x107°

and ethane mixtures at various concentrations and densities are plotted as a function of temperature in
Fig. 8. Good agreement between experimental data and calculated values is observed.

Another crossover equation for the thermal conductivity for carbon dioxide and ethane mixtures
has recently been proposed by Kiselev and Kulikov [11]. Our crossover model differs from the
corresponding crossover equations used earlier by Kiselev et al. [9-11] in two aspects. Firstly, we
have used the renormalized correlation length Eq. (16), instead of the asymptotic expression
employed by Kiselev et al. [9-11]. With this renormalization, all crossover functions tend to zero far
away from the critical point, and the crossover equations in the critical region are not changed.
Secondly, we have used here the modified expressions for the the shear viscosity and the kinetic
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220 B p=7.494mol.L"
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Fig. 8. The thermal conductivity of the carbon dioxide and ethane mixture at various compositions as a function of the

temperature. The symbols indicate experimental data obtained by Mostert [46] and the curves represent values calculated
with the crossover model.
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coefficients &, B,, and 7, (see Egs. (28), (31), (32) and (34). With the renormalization of the
correlation length as given by Eq. (16) and with improved equations for the shear viscosity and the

inetic coefficients @, By, an

d #,, the crossover model gives better representation of the thermal

conductivity of non-critical isochores far away from the critical point than the earlier equation of
Kiselev and Kulikov [11]. In the critical region, both equations yield essentially identical results.

It is also interesting to cor

mpare the result of our calculations for carbon dioxide and ethane

mixtures with the results obtained by Luettmer-Strathmann and Sengers [15]. Quantitatively our

calcul

ations for the thermal conductivity in carbon dioxide and ethane mixtures and the mode-cou-

pling calculations by Luettmer-Strathmann and Sengers [15] reproduce the experimental thermal
conductivity data with similar accuracy. However, unlike the calculations of Luettmer-Strathmann and

Sengers [15] which represents

data at separate compositions and isochores only,

a fit of their crossover equations to experimental thermal conductivity
our crossover model can be used for the calculation
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Fig. 10. Percentage deviations of experimental thermal conductivity for methane and ethane mixtures of Roder and Friend
[56] from values calculated with the crossover model at various concentrations of ethane.
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Fig. 11. The thermal- and binary-diffusion coefficients of the methane and ethane mixture as a function of temperature along
the critical isochore at the concentration x = 0.2893 mole fraction of ethane. The symbols indicate experimental data
obtained by Ackerson and Hanley [59], dashed and dotted—dashed curves represent the values calculated with the crossover
model. The long-dashed curve corresponds to the one-fluid approximation and the solid curve corresponds to a fit to an

exponential as discussed in Ref. [59].
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Coefficients @,

Coefficients ﬁb

Coefficients ¥,

o 2.63729x107°¢ B, —4.25925x 10" 7 2.14578x107°¢
a, —4.36365x10¢ B> 133671 X 10™? Vs —6.78429 X107 ¢
@ —1.66614Xx107¢ B; 1.68885x 1074 Vs —8.44631x10°°
a3 8.95098 %10~ Bs —1.70441x 1071 Y4 2.97397X 1073
Gig 1.98466x 1077 Bis 5.26569 X 1073 Vs 1.35214x 1073
Big —8.18222x 10 ° Ye —4.48729%x107°
B, —4.83899x 10~ * vq —8.51939x107¢
B, 4468711074 Vs 2.77889X 1073
Biz —1.16963x 10~ * Yo 1.92812x107¢
Bis 1.51993x 1073 Y10 —6.19831x107°

of the transport properties of carbon dioxide and ethane mixtures over the entire thermodynamic
surface from x =0 to x =1 in the range of temperatures and densities bounded by
2
(1 . L
pCX
where T p,x) is a saturated dew—bubble curve temperature at a given p and x. This range
corresponds to the range of temperatures and densities where a good description of the thermody-
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Fig. 12. Percentage deviations of experimental viscosity for methane and ethane mixtures of Diller [61] from values
calculated with Eq. (28) at various concentrations of ethane.
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namic properties of binary mixtures was achieved with the crossover equation of state used for the

calculation of the thermodynamic derivatives in Eq. (19)-Eq. (21).

5.2. Methane + ethane mixture

Unlike the carbon dioxide and ethane mixture, for the methane
experimental thermal diffusion ratio data far away from the critica
coefficients B, and vy, from a fit of our model to the thermal conductivity
Friend [56] at three compositions of ethane. The thermodynamic prop

ethane mixtures were calculated from the new Crossover equation of state obtained recently by
The thermal conductivity for

a function of density in Fig. 9.
lculated values for
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the region specified by Eq. (60) and increase up to 4-5% at th
These thermal conductivity deviations correspond approximately to those fou
[57,58]. However, in contrast to Refs. [57,58], our crossover model not only
conductivity surface within experimental accuracy but also allows the prediction of the binary and
thermal diffusion coefficients in a wide region around the critical locus.
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pinary and thermal diffusion coefficients in the critical region of a 71.07% CH, + 28.93% C,H,
mixture with light scattering experimental data obtained by Ackerson and Hanley [59] is shown in
Fig. 11. As one can see from Fig. 11 the calculated values of the binary diffusion coefficient lie
slightly higher than experimental data. This small shift between the calculated values of the binary
diffusion coefficient and light scattering data obtained by Ackerson and Hanley [59] can be removed
with a corresponding shift of the background coefficient &, which determines the binary diffusion
coefficient of a mixture far away from the critical point (sec Eq. (23)). However, as it was shown by
Anisimov et al. [60]. because of a coupling between two hydrodynamic modes the ‘effective’ binary
diffusion coefficient associated with the light scattering experiment can lie lower than a ‘pure’
diffusion coefficient of a binary mixture. Since we do not have experimental binary diffusion
coefficient data for methane and ethane mixtures far away from the critical point in the present paper
we calculated the background coefficient @q(7, x) with the coefficients a; found above from a fit of
Egs. (36) and (39) to the data generated with Eq. (57). The coefficients «,, 8, and vy, for methane
and ethane mixtures are listed in Table 6. All other coefficients which are not listed in this table equal
zero.

Description of the shear viscosity of binary mixtures was not the aim of the present paper. The
viscosity appears in the crossover functions (2, and {2 only in the definition of the dimensionless
coefficients y,, and y,, (see Eq. (11)~Eq. (14)). Since these coefficients also contain the background

50%CH,+50%C,Hg 50%CH,+50%C,Hg
10 -
1 p=18.527 mol. L 110 p=9.500 mol. L’
r?m 100 Ts,exp= 263.6K 100 Ts,exp= 2621 K
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4.5 -3.5 2.5 -1.5 60 4 -3 -2 -1
90 ( p=10.500 mol. L 75 p=7.445 mol. L
wrm g5 Ts exp= 260.0K 70 Tg=269.2K
XE 80 65 o v
% 75 3 2aléonidou 60 | & Sakonidou
oder v Rod
70 -~ calculated 55t o C;leraied
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logyq (T/Tg-1) logq (T/Tg1 )

Fig. 14. The thermal conductivity of the 50% methane + 50% ethane mixture as a function of the dimensionless deviation of
the temperature from the saturated dew—bubble curve temperature T( p). The symbols indicate experimental data obtained
by Sakonidou [44] (circles) and by Roder and Friend [56] (triangles), and the curves represent values calculated with the
crossover model.
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parts @, and y,, and a cutoff wave number qp (which are treated here as adjustable parameters), an
accurate representation of the shear viscosity of a binary mixture is not crucial for our crossover
model. However, it is interesting to note that even the simple corresponding-state relation (28) used in
this work reproduces experimental shear-viscosity data in binary mixtures with reasonable accuracy,
A comparison of the calculated viscosity for the methane + ethane mixtures with experimental data
obtained by Diller [61] is shown in Fig. 12. The percentage deviations of the experimental viscosity
from the calculated values are less than 5% inside the region specified by Eq. (60) (3 mol
17! < p< 15 mol 17!) and increase up to 15-20% at the high densities p> 16 mol 17" (p=2p,),
where all crossover functions tend to zero.

It is interesting also to compare our crossover model with the new experimental thermal
conductivity data for the methane + ethane mixture obtained recently by Sakonidou [44] in the critical
region. The thermal conductivity values for 50% methane + 50% ethane mixtures at various densities
are plotted as a function of temperature in Fig. 13. A comparison of our calculations with the
experimental thermal conductivity data along four isochores in the logarithmic temperature scale is
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Fig. 15. The thermal conductivity of the 50% carbon dioxide +50% ethane (dashed curve) and 50% methane +50% ethane
(solid curve) mixtures calculated with the crossover model as a function of the dimensionless temperature 7 (top) and of the
rescaled temperature 7 =7 /7, (bottom) along the critical isochore.

shown
Figs.

isocho
isocho
50% 1
[44] us
ity as

curve |
by Sak
the ex
There
mol 1°
experis
conduc
with tl
region

6. Disc

The
near th
order t
paper |
calculad
dioxids
model
restrict
accura
appear
betwee
surface

Our
Onuki
transpc
temper

In the !
behave




le parameters), an
for our crossover
lation (28) used in
isonable accuracy.
experimental data
rimental viscosity
Eq. (60) (3 mol
ol 17" (p=2p).

>rimental thermal
[44] in the critical
t various densities
ulations with the
nperature scale is

zthane + 50% ethane
re 7 (top) and of the

S.B. Kiseler, M.L. Huber / Fluid Phase Equilibria 142 (1998) 253280 275

shown in Fig. 13. Some scatter observed for the thermal conductivity data of Roder and Friend [56] in
Figs. 13 and 14 is due to the fact that these data were obtained along the isotherms rather than
isochores and the density of the experimental points does not exactly correspond to the nominal
isochore density. Since the critical density calculated from the equation of state of Kiselev [16] for
50% methane + 50% ethane mixture is higher than that of Povodyrev et al. [62] (which Sakonidou
[44] used as the critical density), we represent the calculated and the experimental thermal conductiv-
ity as a function of the dimensionless deviation of the temperature from the saturated dew--bubble
curve temperature 7, ( p), but not 7. The experimental values of the saturated temperature obtained
by Sakonidou [44] differ from those calculated with the crossover equation of state [16], therefore, for
the experimental data in Fig. 15 we used the experimental values of 7.( p) obtained in Ref. [44].
There is not an exact experimental value of the saturated dew—bubble curve temperature at p = 7.445
mol 17", therefore we have chosen the value 7, =269.2 + 0.02 K which corresponds to the lowest
experimental temperature at this isochore. Our crossover model reproduces the experimental thermal
conductivity data of Sakonidou [44] for methane and ethane mixtures with an accuracy comparable
with the accuracy achieved for the thermal conductivity of pure methane and ethane in the critical
region (see Figs. 2 and 3).

6. Discussion

The thermodynamic and transport properties of fluids and fluid mixtures exhibit singular behavior
near the critical point and approach their regular background parts far away from the critical point. In
order to describe the transport properties of binary mixtures in and beyond the critical region, in this
paper we used the crossover model developed by Kiselev and Kulikov [8,11]. With this model we
calculate the thermal conductivity for pure carbon dioxide, methane, ethane, and for the carbon
dioxide + ethane and methane + ethane mixtures. Good agreement between experimental data and our
model was achieved for binary mixtures inside the region specified by Eq. (60). This region is
restricted not by the transport property crossover model of Kiselev and Kulikov [8,11], but by the
accuracy of the crossover equation of state used for calculating the thermodynamic quantities which
appear in the crossover equations for the transport coefficients. For pure fluids, good agreement
between experimental and calculated thermal conductivity is observed over the entire thermodynamic
surface for densities specified by Eq. (55) for carbon dioxide, and Eq. (56) for methane and ethane.

Our calculations are fully consistent with the results of the theoretical analysis performed earlier by
Onuki [6] and by Kiselev et al. [7,8,11]. According to this analysis, the crossover behavior of the
transport coefficients of a binary mixture along the critical isochore is determined by the characteristic
temperature

Pe FO y—v
67777( Pe 7Tc)gO&b( Pe ’TL)

(61)

Tp(x) =

In the temperature range 7, << 7 (where 7= T /T, — 1) the thermal conductivity of a binary mixture
behaves as the thermal conductivity of a pure fluid. Asymptotically close to the critical point at
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T<< 7, the thermal conductivity of a binary mixture is renormalized and, unlike the thermal
conductivity of a pure fluid, does not diverge and tends to a finite value at the critical point [8,11],[64]

lm A= Ag = A+ Tug iy (1 +y" ) (62)
Tx)—0

where the background part

Qz’&z

My =F,~T = Py = &bTM;()’ ’ )2 (63)
b
is not equal to the background contribution of the kinetic coefficient ¥ given by Eq. (34) For the
methane and ethane mixtures the renormalization of the thermal conductivity at temperatures
7< 107 was predicted earlier by Kiselev and Kulikov (see Fig. 5 in Ref. [8]). Our estimates for the
characteristic temperature 7, with Eq. (61) give for the 50% CO, +50% C,H, mixture 7, = 1.44 X
107, and 7, = 6.69 X 102 for the 50% CH 4 +50% C,H, mixture, that approximately correspond
to the earlier results of Kiselev and Kulikov [8,11]. Calculated thermal conductivity at the critical
isochore for the 50—50% carbon dioxide + ethane and methane + ethane mixtures as a function of the
temperature is shown in Fig. 14. The results of our calculations confirm this theoretical prediction.
One can see that the calculated curves for carbon dioxide + ethane and for methane + ethane mixtures
appear to be quite different functions of the dimensionless temperature 7. However, the dimensionless
singular part of the thermal conductivity AX = A A /@,Tui(1+y*)? is a universal function of the
rescaled temperature 7= 7/7,. Far away from the critical point AX — 0, at temperatures 7, << 7< 1
the singular part A A increases as in a pure fluid, and at temperatures 7 = Tp the thermal conductivity
of both binary mixtures exhibits the crossover from the one-component like behavior to the critical
background as given by Eq. (62).

Qualitatively this result agrees with the experimental data and the direct mode-coupling calcula-
tions of Sakonidou et al. [44,63]. However, the critical background value obtained in the present paper
for the methane + ethane mixture is about 15% larger than that in Ref. [44,63]. At the isochore
p=18.527 mol 17", accepted by Sakonidou et al. [44,63] as the critical isochore, the difference is
about 5-6%. According to the theoretical prediction [8,11] the critical background value of the
thermal conductivity in a binary mixture is mostly determined by the values of the background parts
of the kinetic coefficients & and S at the critical point. Our estimates with Eq. (29)-Eq. (32) at the
critical temperature and density for the 50% methane + 50% ethane mixture give &, =3.506 X 10~ '
kg s m™ and B,=—1.94%X107% kg m~' s~! K~', which substantially differ from those of
Sakonidou et al. [44,63]: &, =7.086X 107" kg s m~? and B,=635%x10"° kgm~! s~! K™,
Sakonidou et al. [44,63] found the background contributions &, and B, from a fit of the
mode-coupling crossover model [15] to their own experimental thermal conductivity data obtained by
the parallel plate method which is more reliable for measuring the thermal conductivity in the critical
region than the hot wire method used by Roder and Friend [56]. However, the experimental data of
Sakonidou et al. [44,63] is restricted to the near vicinity of the critical point in the 50% methane + 50%
ethane mixture, where the evident discrepancy between two data sets is observed; therefore, we can
not use them in a simultaneous fit with the Roder and Friend data [56]. Moreover, since the
background coefficients &, and BNb not only influence the crossover behavior of the thermal
conductivity of a binary mixture in the critical region, but also determine the thermal-and binary-dif-
fusion coefficients far away from the critical region (see Egs. (23) and (24)), it is important to have
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more experimental data for thermal and binary diffusion coefficients in methane + ethane mixtures so
that better values of &, and (3, may be found.

7. List of symbols

a;

12

b

o e T S O T R T S Sy

<

=

y

Coefficient of excess viscosity

Coefficient of dilute gas thermal conductivity
Coefficient of excess thermal conductivity
Coefficients of collision integral

Isobaric heat capacity

Diffusion coefficient

Coefficient of dilute gas thermal conductivity
Diffusion current

Heat current

Coefficient of ideal gas heat capacity
Crossover function

Boltzmann’s constant

Thermodiffusion ratio |
Molecular mass

Pressure

Crossover function

Cutoff wave number

Gas constant

Molar entropy

Sutherland constant

Temperature J
Dimensionless temperature

Molar volume

Atomic diffusion volume

Mole fraction

Argument of crossover function

Greek letters

O™ R R R

R L™

Critical exponent

Coefficients of excess Onsager coefficient

Onsager coefficient |
Critical exponent ‘
Coefficients of excess Onsager coefficient i
Onsager coefficient

Critical exponent

Critical exponent

Coefficients of excess Onsager coefficient

Onsager coefficient

|
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A Difference 0 [11] S.I

€ Lennard—Jones potential parameter | Hi% g‘

M Shear viscosity [14] R
A Thermal conductivity [15] J.
M Chemical potential [16] S.I
& Correlation length [17] S.I
o Lennard—Jones potential parameter [18] L.
T Reduced temperature difference Eg} ];
0 Crossover function [21] K.
Q@2 Collision integral Ne¢
£ Kawasaki function [22] K.
p Molar density [iﬂ E
Subscript {25] i1
b Background [26] 1.3
c Critical [27] G.
ex Excess function [28] Ll
nb  Normal boiling e
X Mixture properties [31] A.
0 Dilute gas [32] A.
[33] R.

[34] V.
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