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Abstract: Accurate identification of spindle working conditions is one of the 
key features of the next generation smart machining systems with built-in,  
self-diagnosis capability. This paper presents a module-based software system 
for online spindle defect identification and localisation through an analytic 
wavelet envelope spectrum algorithm. The software is designed in accordance 
with the architectural structure of OSA-CBM, and implemented using the 
graphical programming language LabVIEW. Spindle condition is displayed 
online in both a basic window for machine operators and a diagnosis window 
for advanced analysis. The software provides a user-friendly human-machine 
interface and contributes to realising a smart machine tool. 
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1 Introduction 

Unexpected failure of machine tools can cause severe part damage and costly machine 
down time, affecting productivity as well as maintenance cost (Prickett and Johns, 1999; 
Rehorn et al., 2005). Since spindles are essential elements in virtually all machine  
tools and their working condition directly reflects upon machine tool performance, 
effective and reliable spindle condition monitoring is highly desired to capture potential 
failure at its early stage based on the sensor measurement data, to enhance the overall 
performance of the machine tool system. A spindle with such added capability would 
represent one of the key components in the next generation of smart machine tools with 
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self-monitoring and diagnosis functionality (NIST, 2005). Over the past several years, 
research has been conducted to investigate fundamental issues related to the realisation  
of a self-diagnostic, sensor-integrated ‘smart’ spindle (Zhang et al., 2006a, 2006b).  
These include investigation of the correlation between spindle-integrated sensing  
(e.g., number of sensors and sensor placement strategy) and sensing quality  
(e.g., Signal-to-Noise Ratio (SNR) and effectiveness in feature coverage) on a machine 
spindle (Zhang et al., 2006a), and the development of advanced signal-processing 
techniques that combine features extracted from the time, scale and frequency domains  
to enhance spindle defect diagnosis and health assessment (Zhang et al., 2006b).  
In addition, an important aspect of the research is to devise a dynamic, data-driven 
software interface for communication with machine operators and decision-makers in 
online spindle condition monitoring and diagnosis (Zhang et al., 2007). 

Efficient software design and implementation requires a modular and interchangeable 
architecture. A related effort is the Open System Architecture for Condition-Based 
Maintenance (OSA-CBM) programme that was set up by the Machinery Information 
Management Open Systems Alliance (MIMOSA) (Discenzo et al., 1998). The objective 
of the OSA-CBM programme is to develop an open architecture and standards  
for distributed CBM software components. Such an architecture has been defined  
in terms of functional layers (Figure 1), which include 

• Sensing and Data Acquisition 

• Signal Processing 

• Condition Monitoring 

• Health Assessment 

• Prognostics 

• Decision Support 

• Human–Machine Interface. 

Data communication among the layers is enabled by the OSA-CBM interface standards. 
These layers represent a logical flow of information from sensors in the physical  
layer to decision support in the system layer. The Human–Machine Interface layer can 
communicate with all other layers. For instance, a signal measured by the Sensing  
and Data Acquisition layer is used by the Signal-Processing layer to extract features  
on working conditions of the machine. Such information is in turn used by the  
Condition-Monitoring layer to compare against expected values and output  
condition indicators. The Health Assessment layer then utilises the input from the 
Condition-Monitoring layer to derive the current state of the system, which is 
subsequently used by the Prognostics layer to predict future performance of the system. 
The current state and predictions are fed into the Decision-Support layer to provide 
recommended actions for system maintenance. In addition, the current state  
and predictions, together with all measured and computed data, are displayed by the 
Human–Machine Interface layer such that the users can have visual interaction with  
the system. 
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Figure 1 Functional layers of the OSA-CBM architecture (see online version for colours) 

The layered architecture shown in Figure 1 facilitates the integration and 
interchangeability among sensors, electronics and software components (Thurston and 
Lebold, 2001; Lee et al., 2002), which allows flexibility for upgrading or expanding  
the system by incorporating new functions into corresponding layers. By taking 
advantage of the OSA-CBM architecture, this paper presents the design and 
implementation of a module-based software system for online spindle condition 
monitoring and diagnosis. After introducing the software configuration in Section 2, 
various functions of the software are discussed in Section 3, in which each of them is 
implemented as a module using the programming language LabVIEW. In Section 4,  
a Graphical User Interface (GUI) is designed to integrate all the modules into one entity 
for spindle condition monitoring and diagnosis. The performance of the integrated 
modules is then experimentally evaluated on a custom-designed spindle test system. 
Finally, conclusions are drawn in Section 5. 

2 Software configuration 

The designed software presents a unified platform for spindle signal measurement, 
processing, visualisation and management. It takes a modular approach to integrate 
various functions into one entity and allows for evaluation of the spindle working 
condition. Whereas the overall architectural design has taken into consideration the 
specific functionalities of the various modules concurrently to ensure consistency,  
each module is programmed independently. When a certain function needs to be 
modified, only the module related to that function will be reprogrammed. New functions 
can be added into the software package as independent modules. To be relevant  
to the OSA-CBM architecture, each OSA-CBM layer consists of one or more modules, 
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and each module can perform functions associated with one or more OSA-CBM layers. 
As illustrated in Figure 2, different types of sensor measurement data (e.g., speed, 
temperature and vibration) obtained in the Data Acquisition layer are transferred  
to the Signal-Processing layer such that features characterising the spindle dynamics are 
extracted. In addition to statistical analysis, several advanced signal-processing 
algorithms (e.g., Stochastic Subspace Identification (SSI)-based modal analysis and 
wavelet transform-based enveloping spectrum analysis) are embedded in this layer.  
As an example, the magnitudes of the power spectrum at the defect-related  
characteristic frequency lines extracted in the Signal Processing layer are fed into the 
Condition-Monitoring layer. The ratio of the magnitude of each characteristic frequency 
to the noise floor is then compared against a predefined threshold to identify potential 
defect patterns. In the Health Assessment layer, the output of the Condition-Monitoring 
layer is assessed, based on the trending information recorded in the system, to determine 
if the system health is degraded and specify the type and location of the identified 
degradation. The result is an enumerated condition indicator, which describes the 
operational state and health index of the spindle, and is visually displayed through  
the GUI. 

Figure 2 Configuration and data flow of the designed monitoring software (see online version
for colours) 

The core functions of the software are designed as individual modules. Each module 
features a hierarchical structure in that it can call its second-level submodule, and each 
submodule can further call its next lower-level submodules to ultimately realise a specific 
function. In the following sections, details of the major modules (e.g., data acquisition 
module, WES module, SSI module, spindle health indicator module and data 
management module) are discussed in accordance with the structure of the OSA/CBM 
layers.

3 Software module design 

The effectiveness and efficiency of a software design is dependent on how the 
programming process is executed. When compared with a text-based programming 
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language, such as C and C++, the programming language of LabVIEW is graphic-based, 
and uses graphic icons to replace the text command (NI LabVIEW User Manual, 2003). 
These graphic icons are wired together through drag-and-drop operations to realise 
various functions, such as data acquisition and data management. As a result,  
the software development process can be significantly simplified (Wang and Gao, 2000). 
Therefore, the graphical programming language of LabVIEW has been chosen for the 
design of the software system for spindle condition monitoring and diagnosis. 

3.1 Data acquisition module 

The data acquisition module has been designed to provide an interface to sensors  
that measure three types of signals: temperature, speed and vibration, and fulfil the 
functions associated with the Sensing and Data Acquisition layer of the OSA/CBM. 
Figure 3 illustrates major components of the data acquisition module in the spindle 
environment. Thermocouples were employed to measure temperature fluctuations of the 
spindle structure. A speed encoder was installed to measure the spindle rotating speed, 
which provides input to Condition-Monitoring layer for estimating the theoretical values 
of the structural-defect-related characteristic frequency. Four accelerometers were placed 
at the front and rear ends of the spindle, both within and outside the loading zones  
of the bearings, to measure their vibrations. Preliminary study has identified that spindle 
vibrations measured contain information on structural defects of the spindle system,  
and the corresponding frequency components are generally within the range of 50 kHz.  
In this study, a commercially available data acquisition board from National Instruments 
(NI PCI-6070E) with the highest sampling frequency of 1.25 M/s has been chosen.  
This board can provide eight analogue inputs in differential measurement mode. It also 
has the characteristics of 12-bit resolution, dedicated A/D converter and anti-aliasing 
filter per channel individually. Such configuration ensures that requirements for online 
spindle condition monitoring are met, for which all of the signals are to be measured 
simultaneously at over 100 kHz sampling rate without distortion. 

Figure 3 Experimental set-up for spindle data acquisition (see online version for colours) 
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Figure 4 illustrated the designed data acquisition module in the LabVIEW programming 
environment. The channel information is provided from either the default settings saved 
in the configuration file (an example is shown in Figure 5) or the parameter set-up user 
interface, which will be discussed in the next section. After the channel information  
is formatted according to the specification of the DAQ board, data acquisition task  
is created and transferred to initialise the DAQ board. All the analogue output from  
the sensors are converted into a digital format, and then sampled and temporally stored  
in on-board buffer. According to the individual channel set-up, vibration, spindle speed 
and temperature signals are obtained. To provide software users with a clear display  
of information, a formula node that evaluates mathematical formulas and expressions  
has been designed to covert the voltage input for temperature readings in Celsius degree. 
The acquired signals are used as input to the Signal-Processing layer for feature 
extraction.

Figure 4 Code for performing the spindle data acquisition (see online version for colours) 

Figure 5 An example of the configuration file used for the data acquisition board
(see online version for colours) 
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3.2 Wavelet Envelope Spectrum module 

Once signals are obtained through the Data Acquisition Module embedded in the Sensing 
and Data Acquisition layer, they are converted to ‘features’ by the Signal-Processing 
layer for purpose of signal characterisation. Since bearings constitute a critical as well as 
vulnerable component in a machine tool spindle, the key module in Signal-Processing 
layer of the designed software is designed for bearing defect feature extraction.  
Previous research has shown that spectrum analysis of the envelope of a vibration signal 
is more effective in detecting and identifying bearing structural defect than that  
of the vibration signal itself (Ho and Randall, 2000; Yan and Gao, 2004). Traditionally, 
bandpass filtering was employed to pre-process vibration signals for subsequent envelope 
spectrum analysis (Jones, 1996; Tse et al., 2001). However, it suffers from a low SNR, 
especially when defect-induced vibration is weak in amplitude and overwhelmed by 
strong structural-borne noise (Yan and Gao, 2003). Various advanced techniques,  
such as blind source separation (Gelle et al., 2003), empirical mode decomposition  
(Yan and Gao, 2006) and wavelet transform (Wang and Gao, 2003), have been 
investigated for bearing signal processing, among which the wavelet transform has shown 
to provide an effective means for extracting a weak signal component out of a strong 
noise environment through a time–scale domain analysis (Wang and Gao, 2003).  
The wavelet transform of a signal at a given scale s can be essentially viewed as the 
signal passing through a bandpass filter (Yan, 2007). Therefore, combining the advantage 
of wavelet transform and envelope spectrum analysis would enhance the defect feature 
extraction (Zhang et al., 2006b). Furthermore, since the imaginary part of a complex 
wavelet is inherently the Hilbert transform of its real part, the wavelet coefficients of a 
transformed signal, in which the complex wavelet is used as the base wavelet,  
are analytic in nature. Thus, the corresponding modulus forms the signal’s envelope.  
As a result, a complex wavelet-based signal transformation combines the ability of 
bandpass filtering with enveloping in one single computational step, eliminating the need 
for additional operations such as the Hilbert transform (Hahn, 1996) or low-pass filtering 
to extract signal envelope. Figure 6 illustrates the WES algorithm developed during the 
course of this study. Both the signal x(t) and the scaled wavelet ( , )s tψ  are first 
processed using the Fourier transform. The inner product operation between the 
transformed coefficients X( f ) and ( )s sfΨ  is then performed to obtain the wavelet 
coefficients of the signal in the frequency domain. Through an inverse Fourier transform, 
the wavelet coefficients are converted back into the time domain. The wavelet envelopes 
are then extracted by taking the absolute values (i.e., modulus) of the wavelet 
coefficients. Finally, the envelope spectrum is formed by performing the Fourier 
transform on the wavelet envelope. 

To ensure effective feature extraction for defect identification of the spindle bearings, 
an appropriate complex wavelet function need to be chosen before applying the 
developed algorithm to the sensor data. Previous research has identified the complex 
Morlet wavelet as an appropriate wavelet function for bearing defect identification 
(Zhang et al., 2006b; Yan, 2007). Another advantage of the complex Morlet wavelet lies 
in its explicit expression in the frequency domain: 
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with the symbols fb and fc being the bandwidth and wavelet centre frequency parameters, 
respectively. This implies that no Fourier transform needs to be performed on the wavelet 
function when it comes to the code development, which saves memory buffers for data 
storage and improve the memory efficiency. Figure 7 illustrates the coded algorithm of 
the WES module. 

Figure 6 Procedure of the Wavelet Envelope Spectrum algorithm (see online version for colours) 

Figure 7 Code for performing the Wavelet Envelope Spectrum (see online version for colours) 

It should be noted that instead of the scaling parameter s as commonly used in the 
analytical expression for wavelet transform, a pair of bandwidth fb and centre frequency  
fc parameters, as indicated in equation (1), are used to stretch the wavelet function,  
in the actual code realisation. Given the inputs from the sampling rate, the wavelet 
bandwidth and the centre frequency, the Morlet wavelet function in the frequency domain 
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(denoted as Gm) is designed and implemented in the module as a formula node, which is 
used to evaluate the mathematical expressions. By multiplying Gm with coefficients  
that have resulted from Fourier transform of the input signal, and then applying the 
inverse Fourier transform, the wavelet transformation of the input signal is realised. 
Further operation is taken through the ‘complex-to-polar’ submodule to obtain the 
modulus of wavelet coefficients (i.e., wavelet envelope). Subsequent operation of Fourier 
transform on the wavelet envelope results in the WES. 

3.3 Stochastic subspace identification module 

To ensure complete frequency coverage of the vibration signal when the WES module is 
executed, a data-driven scheme for wavelet centre frequency fc selection is needed.  
The appropriate wavelet centre frequency should also be dynamically modifiable by the 
programme. This is realised by utilising the resonance frequencies of the spindle structure 
identified using the SSI technique (Tasker et al., 1998; Peeters and De Roeck, 1999; 
Kushnir, 2004). Instead of fitting an empirical model to the Frequency Response 
Function (FRF) using both the input and output measurement data as the traditional 
approach does (Németh et al., 2000), the SSI technique is taken to extract resonance 
frequencies from the spindle’s measured output only. Mathematically, the SSI  
technique is formulated and solved using a discrete-time state space model of a linear, 
time-invariant system (e.g., the spindle) without known external inputs, according to the 
following equation: 

1

   
k k k

k k k

x Ax w
y Cx v

+ = +ë
ì = +í

 (2) 

where xk = x(k t) is the discrete-time state vector, yk is the system response vector,  
A is the state matrix and C is the output matrix. The two components, wk and vk, represent 
the disturbance noise to the spindle and measurement noise owing to sensor inaccuracy, 
respectively, and are stochastic in nature. Equation (2) indicates that the new state of the 
spindle system, xk+1, can be obtained by the sum of the state matrix A multiplied with  
the old state vector xk and the disturbance noise vector wk. This means the dynamic 
behaviour of the spindle can be completely characterised by the state matrix A.
As a result, resonance frequencies of the spindle system can be estimated from the 
eigenvalues of the state matrix A. Figure 8 illustrates the algorithm that identifies spindle 
resonance frequencies. 

Figure 8 Algorithm for resonance frequency identification (see online version for colours) 
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As illustrated in Figure 8, vibration signals measured from multiple sensors are  
used to formulate the Hankel matrix. Numerical techniques, such as singular value 
decomposition, are then applied to estimate the state matrix A, which is subsequently 
decomposed to derive the corresponding eigenvalues. Through a mathematical 
transformation, the eigenvalues are converted to resonance frequencies. 

On the basis of the developed algorithm, Figure 9 illustrates how the SSI module 
contained in the Signal-Processing layer is realised in the LabVIEW environment.  
As shown in Figure 9, the ‘Hankel’ submodule is called first to construct the Hankel 
matrix from the input signals. Then, the ‘Observability Matrix’ submodule, whose major 
function is the singular value decomposition, is called to estimate the state matrix A.
After this step, the eigenvalues of the state matrix A are extracted by calling the 
“Eigenvalues and Eigenvector” submodule to estimate the resonance frequencies. Since  
a structural defect may excite the spindle system at any of the identified resonance 
frequencies, the equally spaced wavelet centre frequencies, which cover the range of 
these resonance frequency components, are chosen for implementing the WES algorithm. 

Figure 9 Code for SSI-based resonance frequency identification (see online version for colours) 

3.4 Spindle health indicator module 

With output from the Signal-Processing layer, working condition of the spindle is 
determined by tracking the magnitude of the WES within the Condition-Monitoring 
layer. Furthermore, to present a generic data model for quantifying the working status  
of various types of spindles and machine tools, trending information on the magnitude of  
the WES needs to be recorded to construct a database, which is used subsequently for  
setting up a spindle health indicator in the Health Assessment layer. Since both the 
Condition-Monitoring layer and the Health Assessment layer utilise the WES results  
to fulfil respective functions, a single spindle health indicator module was designed in  
the present software to serve these two layers. The spindle health indicator includes two 
major components: health index, which provides a quantitative measure of the spindle 
defect severity level (e.g., healthy, small defect, medium defect and severe defect),  
and health status, which presents the type and location of the spindle defect. Both of them 
are established based on the SNR of the WES output. The SNR is defined as: 

Energy of defect-related charateristic frequency components10log .
Energy of other frequency components

SNR =  (3) 

Figure 10 shows the flow chart of the spindle health indicator module. For the WES data, 
the ‘SNR calculation’ submodule is called first at each pair of wavelet bandwidth  
and centre frequency. If the calculated SNR is larger than a predefined threshold value, 
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then “Health Index Evaluation” and “Health Status Assessment” submodules are called to 
update the spindle working conditions. The threshold value is also updated to the next 
condition level. Such a process is repeated for each sampling cycle when new WES data 
are generated from vibration signals measured from each sensor. 

Figure 10 Flow chart of the spindle health indicator module (see online version for colours) 

Figure 11 illustrates the corresponding code in LabVIEW. As indicated in Figure 8, 
before the SNR calculation, the magnitude information for several frequency intervals 
that cover possible defect-related frequency components (e.g., Ball Pass Frequency of the 
Inner raceway, denoted as BPFI) is extracted from the WES by a “Frequency Range 
Selection” submodule. The calculated SNR is then compared with the predefined 
thresholds at different levels. If the SNR is within the threshold interval, a corresponding 
health index is determined. Also, the health status (i.e., defect type and location)  
is derived through the defect-related frequency lines whose magnitudes are above the 
predefined thresholds. 

Figure 11 Code for spindle health indicator module (see online version for colours) 

3.5 Data management module 

To log the spindle working condition (e.g., health index and health status) identified by 
the health indicator module and provide historical assessment values for subsequent 
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usage in the Prognostics Layer, a data management module, which archives the spindle 
working condition in a unified format, was designed in the Health Assessment layer. 
Because the eXtensible Mark-up Language (XML) provides standardised information 
exchange and is independent of the platform and language (W3C, 2006), an XML-based 
data format is adopted in the module development. A further advantage of the  
XML-based data format is that it can be used with a wide range of networking 
technology (e.g., Time Control Protocol/Internet Protocol (TCP/IP)) for data transfer 
(Lebold et al., 2003), and all of the information stored with such a format can be retrieved 
through web-based applications. Figure 12 illustrates the code implementation for 
logging health status and health index using XML. During each data sampling cycle, 
vibration signals are acquired and then processed to output spindle health status and 
index values. These values, together with a time stamp, are converted to XML format.  
On the basis of predefined XML schema, which is embedded in the LabVIEW 
development environment, the time information, spindle health status and spindle  
health index are logged into an XML file. Figure 13 shows an example on a piece of the 
XML-based data format, where the health index and health status of the spindle bearing 
are logged during one sampling cycle. 

Figure 12 Code for data management module (see online version for colours) 

Figure 13 Representation of spindle health status and health index using XML-based data format 
(see online version for colours) 



      

      

      

   A module-based software system for spindle condition monitoring 545    

      

      

      

      

Whereas the present software design does not include functions associated with the 
Prognosis and Decision-Support layers, they can be added into the system as individual 
modules if such requirement is needed. For example, a module for establishing an 
empirical model through continuous curve fitting of the combined historical and current 
assessment values can be designed in the Prognosis layer to extrapolate the trend of the 
spindle structural damage development and consequently, predict its future working 
condition. Also, based on information about the current and predict assessment values of 
the spindle structure, a module that utilises the e-mail notification function in LabVIEW 
can be designed in the Decision-Support layer to notify an expert who is not onsite  
to monitor the working condition of the spindle but can provide recommended actions 
remotely using web-based programme interface. 

4 Software implementation and verification 

By integrating all the modules discussed in the previous section, the software is 
implemented to present a user-friendly human–machine interface. The design takes into 
account various aspects, such as visual appearance, ease of operation and accommodation 
of the needs for different users. Figure 14 illustrates the designed user interface of the 
spindle condition monitoring software. As shown in Figure 14(a), the parameter-setup 
window enables a machine operator to select parameters for data acquisition and 
archiving, such as device channels, sampling frequency and data length. It provides input 
to the data acquisition module such that the data acquisition board is initialised and ready 
to sample sensor measurement data. In addition, the right side of the user interface in 
Figure 14(b) and (c) also demonstrates several general parameter set-up options, such as 
the data saving mode and spindle health index logging mode. The left side of the user 
interface in Figure 14(b) and (c) has integrated previously designed modules and presents 
the spindle working conditions in two types of windows: a simplified spindle condition 
display window for machine operators (operator window, Figure 14(b)), and an advanced 
diagnosis window for machine experts (expert window, Figure 14(c)), respectively. 

Figure 14 A Graphical User Interface for the designed software: (a) screenshot of the  
parameter-setup window; (b) screenshot of the operator window and (c) screenshot
of the expert window (see online version for colours) 

 (a) 
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Figure 14 A Graphical User Interface for the designed software: (a) screenshot of the  
parameter-setup window; (b) screenshot of the operator window and (c) screenshot
of the expert window (see online version for colours) (continued) 

 (b) 

 (c) 

The operator window (as shown in Figure 14(b)) allows interactive communication 
between the machine operator and the software regarding the current status of the spindle, 
without the distraction from behind-the-window calculations. It displays the speed, 
temperature and vibration signals in real time. Furthermore, the health status and health 
index of the spindle are updated online based on the results from the embedded modules, 
and an alarm will be set off when defects are detected. A statistical parameter,  
Kurtosis, is also implemented in this operator window to track the working condition of 
the spindle. 
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The expert window shown in Figure 14(c) allows a machine expert to interactively 
adjust input parameters for the WES module to conduct a complete investigation of the 
spindle working condition. For example, the wavelet bandwidth and centre frequency can 
be adjusted based on the identified spindle resonance frequencies using the SSI module, 
thus enhancing online defect detection capability. Furthermore, quantitative evaluation of 
the envelope spectrum resulting from each pair of wavelet bandwidth and centre 
frequency is conducted at the bottom of the expert window, which provides detailed 
frequency information of the vibration signal. 

To experimentally evaluate its performance, the designed software was installed  
and run on a dedicated computer for a custom-designed spindle test system as shown  
in Figure 3. During the first stage of the experimental study, no dynamic load was applied 
to the spindle to establish a reference base that characterises an undamaged, ‘healthy’ 
spindle. The sampling rates for temperature, speed and vibration sensors were set to 
10 Hz, 1 kHz and 20 kHz, respectively. Signals measured from these sensors were 
continuously acquired and displayed on the computer through the GUI of the software, 
and subsequently processed to indicate the spindle working status. The measured spindle 
rotating speed was used to determine the potential defect-related characteristic 
frequencies, which was calculated as a constant related to the spindle rotating speed,  
as indicated in Table 1. The upper portion of Figure 15(a) displays the measured signals 
for one sampling cycle, where the spindle was operated at 8400 RPM. The results shown 
in the operator window (Figure 15(a)) indicate that the spindle was under a healthy 
condition (indicated by health index ‘0’ and status ‘Bearing Healthy’). This is verified  
by the WES shown in the expert window (Figure 15(b)), in which no defect-related 
characteristic frequency components were identified. 

Table 1 Defect-related characteristic frequencies of the bearing 

Defect type Characteristic frequency 

Unbalance fr ≈ rpm/60 
Rolling element fBSF ≈ 2.346fr

Outer raceway fBPFO ≈ 4.414fr

Inner raceway fBPFI ≈ 6.586fr

After establishing the reference base, dynamic impacts with a force of 13,300 N were 
applied to the rotating spindle to expedite degradation of the spindle structure. The time 
interval for the two successive impacts was set to 1 s. As shown in Figure 15(c),  
the software system diagnosed that a localised defect on its inner raceway had developed 
after 700 impacts. This is indicated in the operator window, where a health index value  
of 2 is shown, and the health status is described as ‘Bearing Inner Raceway Defect’.
In addition, all the kurtosis values of the measured vibration signals deviated from  
the normal value of 3, which is characteristic for a healthy bearing. This is also verified 
by the WES shown in Figure 15(d), in which the frequency peak at 935 Hz is identified 
as the BPFI. Theoretically, the BPFI frequency at 8400 RPM is calculated to be 922 Hz  
using the equation given in Table 1. The 1.4% difference between the theoretical  
and experimental values can be traced back to the combined effect of rolling  
element slippage and the slight drift of spindle speed from the nominal input values to the 
spindle drive controller. The spectrum also displayed several other frequency peaks at 
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1075 Hz, 1215 Hz and 1355 Hz, respectively, which can be mathematically specified as 
BPFI + k⋅rpm, with k = 1, 2, …, n. They demonstrate the combined effect of spindle 
unbalance and inner raceway defect. From these experimental results, the effectiveness  
of the developed software for spindle condition monitoring is confirmed. 

Figure 15 Experimental results of the test spindle: (a) screenshot of the expert window
before impacts; (b) screenshot of the expert window before impacts; (c) screenshot
of the expert window after 700 impacts and (d) screenshot of the expert window
after 700 impacts (see online version for colours) 

(a)

(b)
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Figure 15 Experimental results of the test spindle: (a) screenshot of the expert window
before impacts; (b) screenshot of the expert window before impacts; (c) screenshot
of the expert window after 700 impacts and (d) screenshot of the expert window after 
700 impacts (see online version for colours) (continued) 

(c)

(d)

5 Conclusion 

Consistent with the OSA-CBM architecture, a software package for online spindle 
condition monitoring and health diagnosis has been designed and realised using the 
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LabVIEW programming language. The software design takes a modular approach to 
implement each individual functions, thus providing flexibility to software update and 
functionality extension, in case such needs arise. Experimental evaluation conducted  
on a custom-designed spindle test system has demonstrated that the software has met the 
design requirements, and was able to detect bearing defects caused by accumulated 
dynamic impacts. The software is functionally adaptive and presents a new tool  
that enables effective and efficient monitoring and diagnosis of machine spindles,  
thus contributing directly to the development of a new generation of smart machine tools. 
In addition to spindles, the software can be applied to the health diagnosis of other types 
of rotary machines used in manufacturing systems. 
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