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Topological insulators and metals in atomic optical lattices
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We propose the realization of topological quantum states in a cold-atom system, using a two-dimensional
hexagonal optical lattice and a light-induced periodic vector potential. A necessary condition for observing the
topological states is the realization of a confining potential with a flat bottom and sharp boundaries. To probe
the topological states, we propose to load bosons into the characteristic edge states and image them directly.
The possibility of mapping out the edge states and controlling the optical lattice and vector potentials offers
opportunities for exploring topological phases with no equivalent in condensed-matter systems.
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I. INTRODUCTION

Cold-atom systems offer a platform for implementing
quantum dynamics that provides flexible conditions of obser-
vation and control. An emerging theme in this field, which
has been investigated theoretically but is just beginning to
receive experimental attention, is the construction of syn-
thetic Abelian and non-Abelian gauge potentials coupled to
neutral atoms. In this paper, we propose a cold-atom realiza-
tion of a topological insulator using a light-induced periodic
vector potential. More importantly, we establish the neces-
sary conditions for the realization of topological states in
confined systems and we identify a powerful tool for probing
these states by mapping out the characteristic edge states
using bosons.

A solid-state insulator can be defined as a system with
purely local electronic properties [1]. The existence of a bulk
gap is insufficient to ensure the locality of all electronic
properties. Certain strongly correlated systems, such as the
fractional quantum Hall fluids, offer examples of phases hav-
ing bulk gaps, yet being topologically distinct [2]. Such to-
pological insulators can exist even in the absence of interac-
tions; typical examples are the integer quantum Hall fluids or
the quantum spin Hall states [3-5] and their three-
dimensional generalizations [6]. One defining characteristic
of these systems is the existence of chiral gapless edge or
surface states robust to disorder effects and interactions.
Such edge or surface states were recently observed experi-
mentally in several solid-state systems [7,8]. The basic fea-
tures of these states are intrinsically linked to the topological
properties of the system, but their detailed structure is dic-
tated by the boundary. Controlling the boundary is a rather
difficult task in solid-state systems but could be achieved
with ultracold atoms.

A great advantage of the optical lattices is that various
terms in the Hamiltonian can be explicitly controlled experi-
mentally, which in contrast to solid-state systems allows for
tuning the properties of the edge states. The realization of a
topological insulator with cold atoms opens a series of very
exciting prospects: (i) the possibility of direct real-space im-
aging of the edge states [9], (ii) the possibility of testing the
stability of the chiral edge modes in the presence of weak

1050-2947/2009/79(5)/053639(5)

053639-1

PACS number(s): 03.75.Lm, 67.85.—d, 03.65.Vf, 73.43.—f

disorder and interactions, and (iii) the possibility of studying
transitions between a topological insulator and other phases.
The main challenges in building a topological insulator with
cold atoms are (i) generating the vector potential, (ii) con-
trolling the trap potential and manipulating the boundaries,
and (iii) measuring a topological insulating state, i.e., imag-
ing the edge states. In this paper, we address explicitly the
last two problems within a realization of the Haldane model
using ultracold atoms. The ingredients necessary for this re-
alization and the theoretical method used to describe the re-
sulting cold-atom system are presented in Sec. II. The con-
ditions for the trap potential consistent with the existence of
topological edge states are established in Sec. III, together
with a proposal for observing these states experimentally.

II. HALDANE MODEL IN ATOMIC OPTICAL
LATTICES

We study the stability of topological quantum states in the
presence of confining potentials within a realization of the
Haldane model [4] using cold atoms in an optical lattice [10].
We propose a method for identifying and characterizing to-
pological quantum states by mapping out the characteristic
edge states using bosons. The Haldane model consists of a
tight-binding representation of motion on a hexagonal lattice
with direction-dependent complex next-nearest-neighbor
hoppings as the key feature. The imaginary components of
the hopping matrix elements are determined by an effective
vector potential A(r) that generates a periodic “magnetic”
field with zero total flux trough the unit cell. We propose the
use of a light-induced gauge potential that can be realized in
a system of multilevel atoms interacting with a spatially
modulated laser field [10-19]. Within these schemes, the
multilevel atoms interact with laser beams characterized by
spatially varying Rabi frequencies and experience an effec-
tive pseudo-spin-dependent gauge potential. Since our pro-
posal does not require spin-dependent gauge potentials, one
may even be able to utilize a simpler scheme [20]. The hex-
agonal lattice potential is given by the superposition of three
coplanar standing waves characterized by the wave vectors
k1=(0,23—:17), k2=(é,£), and k3=(—é,£), respectively.
The minima of this potential generate a hexagonal lattice
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FIG. 1. (Color online) Optical lattice potential formed by the
superposition of three standing waves (see main text) and generat-
ing a two-dimensional hexagonal lattice with lattice constant a. The
effective confining potential along the segment (0,0)—(0,2a) [ver-
tical red (dark gray) line in the upper right panel] is shown in the
absence of a vector potential (blue circles) and for A #0 (red tri-
angles). Inset: typical cluster used in the calculations consisting of a
disk-shaped piece of hexagonal lattice with radius R~ 39a.

with lattice constant a. The resulting single-particle Hamil-
tonian is

3

H=—p- AT+ VoS, costlk;- 1)+ V(). (1)
2m i=1

Here m is the particle mass; p is the momentum;
A=(aA,,0) is the vector potential, where Ax(r):sin(?),
and « is the strength of the gauge potential; V,, defines the
depth of the optical lattice; and V, describes an additional
confinement that will be discussed in detail below. The
term A?/2m from Eq. (1) represents a contribution to the
lattice potential that does not have hexagonal symmetry
and, therefore, will distort the lattice. This distortion does not
affect the nature and the basic properties of the topological
insulator if o does not exceed a certain critical value but has
quantitative implications for the band structure. For
simplicity, we use in our calculations the symmetric vector
potential A(r)=[sin(41ry/3)+cos(2mx/\3)sin(2my/3),
—V3 sin(2mx/ \E)cos(Zﬂy/ 3)]. The total optical lattice po-
tential, including the A?/2m term coming from the symmet-
ric vector potential, is shown in Fig. 1.

We solve the quantum problem associated with
Hamiltonian (1) within a simple tight-binding approxima-
tion. We use the recoil energy E,= 7;/:1 * as energy unit and
the lattice constant a as length unit. The total effective lattice
potential V,,,, which includes the term AZ?/2m, has
minima at the nodes of a hexagonal lattice (see Fig. 1) and
takes near these minima the form V,,,=~maj/2(6x>+ &y?).
This suggests the wuse of the s-wave orbitals

(()i)(r)zy"Z/(Wc)exp[—(r—ri)z/ c] as a possible simple basis
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for the tight-binding approximation. Here r; represents the
position of a lattice site, c=(4E,)/(m*wy)a’®, and we have
Vo=12E,/ m(a*/ c*>~m*a*a®/4). The approximation holds as
long as the s band is well separated from the p bands, which
is the case for ¢<<0.25. However, because the second-
neighbor hopping is crucial for generating the topological
states [4], a small value of ¢ will make this effect practically
unobservable. In this study we choose ¢=0.2, for which the
single-band tight-binding approximation holds. However, the
optimal regime for the experimental realization of the topo-
logical insulator corresponds to shallower optical lattices
(¢~0.3+0.35), which maximize the anomalous second-
neighbor hopping and thus the insulating gap. Note that, for
E,~10 kHz, typical values of the gap for ¢=0.2 are in the
range of several nK, so that the temperatures necessary for
observing the topological insulator would be much lower
than those currently accessible. The gap values increase sub-
stantially in shallow optical lattices, but detailed calculations
beyond the tight-binding approximation are necessary for
quantitative estimates. Note that this low-temperature limita-
tion stems from the fact that the topological properties of the
Haldane model are controlled by an anomalous second-order
hopping, which in general is rather small. The other indepen-
dent parameter in our calculations is «, which takes the val-
ues @=0 (zero vector potential) or a=2. The hopping param-
eters for the effective tight-binding model are given by
tl-j=(¢g)|H | o). The key contributions coming from the
vector potential (4'|p-A|¢y’) vanish if i and j are nearest
neighbors and are nonzero for second-order neighbors.

Because the s-wave orbitals are not orthogonal, we also
determine their overlap matrix elements (¢g)|¢g)). The re-
sulting tight-binding problem is solved numerically for clus-
ters containing up to 3696 sites (see Fig. 1).

III. CHIRAL EDGE STATES IN TOPOLOGICAL
COLD-ATOM SYSTEMS

First, we consider a disk-shaped cluster with hard-wall
boundary conditions V,.(r)= if r>R and V(r)=0 if r<R.
The density of states (DOS) for this system is shown in Fig.
2 (panels 2 and 3). In the absence of a vector potential
(=0, panel 3), this quantity is similar to the graphene DOS.
In the presence of a vector potential with =2 (panel 2), a
finite-size gap opens in the density of states.

However, the DOS in the “gap” is not exactly zero. To
determine the nature of the residual in-gap states, we calcu-
late the orbital momentum of each single-particle state i,(r)
and the relative contribution v, to the norm (i,| ,) coming
from a narrow ring 37a =r=39a positioned at the edge of
the system. This contribution vanishes for bulklike states and
is on the order 1 for edge states, i.e., it represents a measure
of the edgelike character of a given state. The corresponding
spectrum is shown in Fig. 2. The coordinates of each dot
represent the orbital momentum (x axis) and the energy (y
axis) of a particular state. The edge vs bulk character of the
state, as quantified by the parameter v,, is revealed by the
color code: blue for edge states and red for bulk states. The
spectrum is characterized by a gap for the bulk (red) states.
Within this gap, there is a chiral edge mode (blue states). The
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FIG. 2. (Color online) Spectrum for a cluster with a hard-wall
boundary in the presence of a periodic vector potential with a=2
(panel 1). The coordinates of each dot represent the orbital momen-
tum in some arbitrary units (horizontal axis) and the energy € (ver-
tical axis) of a particular state. The “edge” vs “bulk” character of
each state is shown by the color code, which represents the relative
boundary contribution to the norm 7, (see main text). vy, ranges
from 1 for edge states (blue: the edge mode containing state B) to 0
for purely bulk states (red: the “butterfly wings” corresponding to
the upper and lower bands). Notice the chiral nature of the edge
mode that populates the gap, which is responsible for the well-
defined sign of the edge state orbital momentum. The DOS corre-
sponding to this spectrum is shown in panel 2. For comparison, in
panel 3 we show the DOS in the absence of a gauge potential.

chirality of the edge mode, i.e., the sign of its orbital mo-
mentum, is determined by the sign of a. To have a spatial
characterization of the single-particle quantum states, we
show in Fig. 3 the contour plots of p,(r)=]|4,(r)|? for several
states marked in Fig. 2: (A) the ground state, (B) a typical
edge state, and (C) the lowest-energy bulk state from the
upper band. Each function p,(r) is the product of a common
factor [Z;¢3(r—r,)]> associated with the underlying lattice
structure and a specific envelope function (left panels in
Fig. 3).

Next, we address the key question concerning the role of
the confining potential V. and the dependence of the spec-
trum on the boundary conditions. We replace the hard-wall
boundary by (a) a quartic wall, (b) a linear step potential, and
(c) a harmonic potential plus a hard wall (see top panel in
Fig. 4). The corresponding expressions of the confining po-
tential are V%(r)=M\%(r—Ry)* if r>R, (and O otherwise),
Vf(r):min[)\é(r—Rl)/(Rz—Rl),)\i’] if ¥>R, (and O other-
wise), and Vi(r)=\Sr? if r<R, (and o otherwise), respec-
tively. To define a characteristic length scale associated with
the confining potential, we introduce the radii Ry, such that
V.(Ry)=A, and Ry, with the property V.(Ry)=W. Here A,
is the bulk gap and W is the sum of the bandwidths of the
lower and upper bands for a system with hard walls. The
relevant length scale for a soft boundary produced by the
confining potential V. is given by d.=Ry—R,. Our numeri-
cal calculations show that a topological insulator can be re-
alized provided d,.~ a, i.e., the boundary has a characteristic
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FIG. 3. (Color online) Left panels: contour plots of
pn(r)=|44,(r)|? for the states marked in Fig. 2. The quantity p,(r) is
the product between a common factor associated with the underly-
ing hexagonal lattice structure and a state-dependent envelope func-
tion. The corresponding envelope functions are shown in the right
panels. (a) represents the ground state, (b) is a typical edge state,
and (c) is the lowest-energy bulk state from the upper band. The
weak edge contributions in (c) are due to finite-size effects and
vanish in the large cluster limit.

length on the order of the lattice constant. For example, cases
(a) and (b) in Fig. 5 correspond to Rp=~32.5a and
d.=~3.5a, and in both cases the gap for bulk states is pre-
served. However, in contrast with the hard-wall case charac-
terized by a featureless residual in-gap DOS (see panel 2 in
Fig. 2), a system with soft boundaries has a nontrivial struc-
ture of the residual DOS (middle panels in Fig. 4). This
structure emerges from two causes: (1) the orbital momen-
tum of the chiral edge mode acquires a more complicated
energy dependence and (2) additional edge states that do not
belong to the chiral edge mode develop inside the gap. Both
these points are illustrated in Fig. 5. The B-type edge states
are Tamm-type states, which are formed due to the rapid
variation in the confining potential and are not related to the
topological properties of the insulator. The proliferation of
this type of states will eventually destroy the topological
quantum state for a soft enough confining potential. Finally,
in the presence of a confining potential with a smoothly
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FIG. 4. (Color online) Soft boundary confining potentials (top
panels): (a) quartic wall, (b) linear step, and (c) harmonic trap plus
infinite wall. The turquoise (gray, V,.<0.025) region corresponds to
energies smaller than the gap A,, while in the yellow (light gray,
V.<0.125) region the energy is smaller than the bandwidth W. A
confining potential with characteristic length d. on the order of
lattice spacing [(a) and (b)] preserves the bulk gap (topological
insulator). The in-gap features appearing in the density of states
(middle panels) are all due to edge states (see also Fig. 5). In a
smoothly varying confining potential [case (c)], the bulk gap col-
lapses for Vi(r)> A, (metal, see lower panel). In cases (a) and (b),
the lower band is unaffected by the details of the confining poten-
tial, while the in-gap structures (middle panels) are similar. The
rapid oscillations at low energies in case (c) indicate the formation
of harmonic-oscillator levels.

varying component [case (c) in Fig. 4], the bulk gap col-
lapses for Vi(r) > A, and the system becomes an inhomoge-
neous metal. Note that in the presence of the periodic vector
potential A(r), the system still has chiral edge states even in
the metallic phase; but they are continuously connected with
the bulk states. This situation is similar to the existence of
surface states in doped semiconductors [21] in the presence
of the spin-orbit coupling. We conclude that in order to real-
ize a topological insulator with cold atoms, one needs to
produce a sharp boundary (d,~a) and to minimize any
smoothly varying component of the confining potential
[V <Al

Probing a topological state is a difficult task in atomic
systems. One proposal is to perform density profile measure-
ments on fermionic atomic systems [10,22]. Alternatively,
since the nontrivial topological properties of a system are a
feature of the single-particle Hamiltonian revealed by the
presence of chiral edge states, we propose the direct obser-
vation of these edge states in cold-atomic systems, some-
thing one cannot easily realize in the condensed-matter con-
text. This involves two steps: (1) loading bosons into the
edge states and (2) imaging the atoms. Initially, the optical
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FIG. 5. (Color online) In-gap states for a system with soft
boundary (quartic wall). Color code is the same as in Fig. 2. Note
that all the in-gap states have edgelike character. In addition to the
typical chiral edge states (a), notice the presence of Tamm-type
edge states (b). These states can mix. For softer boundaries, prolif-
eration of and mixing with the Tamm states will eventually destroy
the topological insulating phase.

lattice is loaded with atoms and cooled so that the bosons
occupy only the lowest-energy single-particle states. Such
states have small spatial overlap with the chiral states, so
direct excitation of the bosons into chiral states will be dif-
ficult. However, it is possible to use a sequence of staged
resonance excitation processes to promote atoms into states
of increasing angular momentum, for example, via a se-
quence of the two-photon-stimulated Raman transitions [23].
These high-angular-momentum intermediate states provide
the overlap needed to make resonant Raman transitions to
the edge states possible with reasonable efficiency, as the
edge states are spectrally isolated. Future theoretical studies
are required for a quantitative estimate of the transfer prob-
abilities and for determining the optimal parameters of the
lasers. To image the edge states, one can use a direct in situ
imaging techniques [24,25]. The method developed by the
Greiner group has been recently deployed with a two-
dimensional optical lattice trap and has produced single-site
images of hundreds of atoms confined in a planar array.

IV. CONCLUSIONS

We propose the realization of topological quantum states
with cold atoms in an optical lattice. A combination of a
hexagonal optical lattice potential and a periodic light-
induced vector potential represents a cold-atom realization of
the Haldane model. We show that such a system is charac-
terized by chiral edge modes, which are the signature of a
topological quantum state. Observing these edge states is an
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effective way of “seeing” a topological phase. We establish
that the realization of a sharp boundary and the minimization
of any smoothly varying component of the confining poten-
tial, e.g., of the harmonic confining potential, are necessary
conditions for realizing a topological insulator with optical
lattices. Controlling the confining potential opens the possi-
bility of testing the stability of the chiral edge modes against
weak disorder and interactions and, together with the control
of the vector potential, offers a knob for tuning the system
from a topological insulator state to a standard insulator or a
metallic phase. While these general conclusions hold for any
realization of a topological quantum state with cold atoms,
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we find that the implementation of the Haldane model suffers
from low-temperature limitations due to the chiral contribu-
tions to the Hamiltonian coming from second-neighbor hop-
pings, which are relatively small. The best way to overcome
this limitation is by realizing the topological states in sys-
tems with nearest-neighbor anomalous hopping.
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