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Sequential Testing to Guarantee
the Necessary Sample Size in Clinical Trials

ANDREW L. RUKHIN

Statistical Engineering Division, Information Technologies Laboratory,
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Gaithersburg, Maryland, USA

This article addresses the sequential sampling issues related to attainment of a
given number of subjects in a Poisson arrival process. The problem of guaranteeing
the necessary sample size is formulated as that of open-ended hypothesis testing.
To implement the procedure a one-sided stopping boundary must be specified.
The formulas for the probabilities of general stopping time distribution are derived.
For the linear boundary they are in the class of Lagrangian Poisson distributions.
A locally optimal test is obtained.

Keywords Borel distribution; Clinical trials; Enrollment process; Lagrangian
Poisson distribution; Locally optimal test; Poisson process.

Mathematics Subject Classification Primary 62P10; Secondary 60G40, 62L10.

1. Introduction and Summary

Adequate sample size planning for a clinical trial or a drug development trial is
an integral part of the design required by the existing protocols. While formulas
for the necessary sample size depend on the specific nature of the trial and on the
scientific problem formulation (usually as hypothesis testing or confidence bounds
in frequentist or Bayesian setting for continuous or discrete data), the number of
subjects in a clinical study should always be large enough to provide reliable answers
to the primary issue addressed by this trial. For economic and ethical reasons it is
important not to overestimate this sample size.

Lenth (2001) reviewed the fundamental issues of sample-size planning and made
several suggestions for applied statisticians how to interpret the existing formulas.
A review of these formulas and guidelines for their use in clinical research can be
found in Shuster (1990) and Chow et al. (2007), and in many other publications in
specific areas of medical and biostatistical literature.
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Sequential Testing and Necessary Sample Size 3115

The problem addressed in this article is different. If the necessary sample size
N0 for a trial is given, the issue is how to organize the interim analysis to make sure
that this number is attained (or rather how to reach it with a given high probability).
More specifically, if the current enrollment seems to be too low, at what time and
how the decision about opening an additional center should be made?

Formulated this way, our problem becomes that of sequential analysis, and
under the assumption of a Poisson enrollment process, the goal is to design the
recruitment, so as to meet the target of N0 subjects by a given time T0. One may
think of tracking a Poisson process and adding to it another process via opening
new center(s) when the goal of N0 subjects looks to be unattainable.

Although sequential estimation of a (homogeneous) Poisson process has been
studied by several authors (El-Sayyad and Freeman, 1973; Shapiro and Wardrop,
1980; Vardi, 1979), this statistical problem has received little attention. We mention
articles by Zacks (1991, 2005) who derived explicit formulas for the distribution
of stopping times for this process which are defined by linear boundaries.
The probabilities of the first crossing of a lower boundary by compound Poisson,
gamma renewal or birth process in terms of pseudopolynomials were obtained by
Picard and Lefevre (1996). Fedorov et al. (2005) gave approximations to the mean
squared errors for estimators of treatment effect difference in multi-center clinical
trials when the number of patients follows the Poisson distribution.

In Sec. 2, the problem of attaining the necessary sample size is formulated as
that of finding a one-sided stopping boundary. The formulas for the distribution of
stopping times are given in Sec. 3. Section 4 provides the form of a locally optimal
testing procedure which turns out to have a degenerate, non sequential form and
which minimizes a convex combination of Type I and Type II error probabilities.
An example is given in Sec. 5.

2. Poisson Process Model and Open-Ended Testing

A natural model assumes that the patients arrive at the center according to a
stationary Poisson process N�t�� 0 ≤ t ≤ T0� with the (unknown) rate �. In reality
this center consists of several clinics or hospitals. At the terminal instant T0, it is
desired to have more than N0 subjects in the study. A sensible condition then is to
have

P��N�T0� > N0� � 1− ��

for a small error probability �. Since the left-hand side of this formula is an
increasing function of �, one can define �0 as the solution to the equation,

P�0
�N�T0� > N0� = 1− ��

This condition means that the cumulative distribution function of a Poisson random
variable with the parameter �0T0 evaluated at N0 equals �� By using R language
notation, we write:

ppois�N0� �0T0� = ��
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3116 Rukhin

In medical studies, both N0 and T0 (measured in days) can be fairly large
numbers, so that according to the normal approximation to the Poisson distribution,

�0T0 + z�
√
�0T0 � N0�

where z� is the �-th percentile of the standard normal distribution, ��z�� = �. This
fact suggests an approximate formula for �0,

�0 =
N0 −

√
N0z�

T0

� (1)

The suggested procedure is to test sequentially the null hypothesis H0 � � ≥ �0
vs. one-sided alternative H1 � � < �0. The sampling process is continued until the
instant at which H0 is rejected, when additional center(s) must be opened, or until T0.
Thus, our procedure is an open-ended sequential scheme, which is known to have the
power approaching one as T0 → �. These procedures were introduced by Robbins
(1970) and their use in clinical trials was advocated by Berry and Ho (1988).

At time t, the null hypothesis is rejected if N�t� ≤ g�t� for a suitably chosen
function g�t� which determines the boundary of the stopping region. Let g�t� be
an arbitrary monotonically non decreasing (continuous from the right) function.
The boundary defined by this function can be crossed only at the instants tk�
k = 0� 1� � � � , such that g�tk� = k, 0 < t0 ≤ t1 ≤ · · · � When g�t� is not strictly
increasing, the usual definition, tk = inf	t � g�t� ≥ k
� applies.

If g is strictly increasing, the stopping rule is

�g = min	tk � N�tk� ≤ g�tk� = k
�

and one of our main goals is to recommend an appropriate function g.

3. Distribution of Stopping Time

The random variable �g has a discrete distribution whose probabilities
fk =P���g = tk� can be determined in principle from the formulas for probability
generating functions known in the queuing theory (e.g., Kemperman, 1961,
pp. 99–105), although there are numerical difficulties with this approach. Zacks
(1991, 2005) obtained explicit formulas for the distribution of stopping time �g
defined by a linear function g�t� = �0t − b, for some positive (integer) b, in which
case the possible values are of the form tk = �b + k�/�0� k = 1� 2� � � � .

Assuming only that t0 < t1 < · · · , we demonstrate the following representation
of the probabilities fk,

fk = fk��� = e−�tk
��tk�

k

k! Rk�t0� � � � � tk�� k = 0� 1� � � � � (2)

where the sequence Rk satisfies the formula

n∑
k=0

(
n
k

)(
tk
tn

)k(
1− tk

tn

)n−k

Rk�t0� � � � � tk� = 1� (3)
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Sequential Testing and Necessary Sample Size 3117

One has R0�t0� = 1� R1�t0� t1� = t0/t1, and Rn is an homogeneous function of degree
zero, i.e.,

Rn�at0� � � � � atn� = Rn�t0� � � � � tn�

for all positive a. We put here 00 = 1, so that the last term �k = n� in (3) is
Rn�t0� � � � � tn�.

To prove (3) notice that

fn = P��N�tn� = n�N�tk� > k� k = 0� 1� � � � � n− 1�

and by stationarity of the Poisson process and by its Markov property,

P��N�tn� = n��g ≤ tn� =
n∑

k=0

P��N�tn� = n��g = tk�P���g = tk��g ≤ tn�

=
n∑

k=0

fk
P��N�tn − tk� = n− k�

P���g ≤ tn�
�

It follows that

P��N�tn� = n� =
n∑

k=0

fkP��N�tn − tk� = n− k��

which establishes (2).
It is easy to see that tkkRk�t0� � � � � tk� = Qk�t0� � � � � tk−1� does not depend on tk,

and induction shows that (3) implies

tnn =
n∑

k=0

(
n
k

)
�tn − tk�

n−kQk�t0� � � � � tk−1��

Since tn in this formula is an arbitrary positive number, by equating the coefficients
at t�n� � = 0� 1� � � � � n− 1� in both sides of this equation, we get

n−�∑
k=0

(
n
k

)(
n− k
�

)
�−1�n−k−�tn−k−�

k Qk�t0� � � � � tk−1� = 0�

When � = 0, it follows that

Qn�t0� � � � � tn−1� =
n−1∑
k=0

�−1�n−k−1

(
n
k

)
tn−k
k Qk�t0� � � � � tk−1�� (4)

One has Q0 = 1� Q1�t0� = t0, Q2�t0� t1� = 2t0t1 − t20, Q3�t0� t1� t2� = t0�6t1t2 − 3t21 −
3t0t2 + t20�, and one can derive an explicit formula for Qn as in Theorem 3.3, in
Zacks (1991).

In particular, let for a fixed positive 
, tk = 
�k+ 1�� k = 0� 1� � � � � which
corresponds to a linear function g�t� = 
−1t − 1. According to (4), the sequence
qk = 
−kQk�t0� � � � � tk−1� satisfies the recurrence

qn =
n−1∑
k=0

�−1�n−k−1�k+ 1�n−k

(
n
k

)
qk�
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3118 Rukhin

This formula means that the n-th difference of the sequence qk vanishes or that the
values qk are those of a polynomial in k of degree n− 1; see Levy and Lessman
(1992). Induction shows that qk = �k+ 1�k−1� k = 1� 2� � � � � Thus, with � = 
�,

fk = e−��k+1� �
kqk
k! = e−��k+1� �

k�k+ 1�k−1

k! � k = 0� 1� � � � � (5)

These probabilities define the Borel distribution on non negative integers
(see Johnson et al., 1992, p. 395.)

It is well known that for the Borel distribution probabilities

�∑
k=0

fk = 1�

if and only if 0 ≤ � ≤ 1, so that if 
� > 1, P��g = �� > 0�
If tk = 
�b + k�� k = 1� 2� � � � , corresponding to a general linear function g�t� =


−1t − b� b > 1, then similarly to the above Qk�t0� � � � � tk−1� = b
k�k+ b�k−1, k =
1� 2� � � � � In this situation for � = 
�,

fk = e−��k+b� b�
k�k+ b�k−1

k! � k = 0� 1� � � � � (6)

determine a Lagrangian Poisson distribution (formula (9.248), p. 396 in Johnson
et al., 1992). This is a proper probability distribution if and only if 0 ≤ � ≤ 1, with
finite mean only when � < 1.

We formulate now the main results of this section.

Theorem 3.1. For the stopping rule �g such that t0 < t1 < · · · , the probabilities
fk = P��g = tk�, k = 0� 1� � � � , satisfy the recurrent formula (2). They correspond to
the Borel distribution (5) when the boundary is given by g�t� = 
−1t − 1, and to the
Lagrangian Poisson distribution (6) when g�t� = 
−1t − b.

Notice that formulas for the probabilities of first crossing of a lower boundary
by Poisson (and more general) processes in terms of Abel–Gontcharoff polynomials
are available (see Picard and Lefevre, 1996).

4. Locally Optimal Test

For pragmatic reasons we are interested in sequential procedures which terminate
even earlier than at T0. Namely, in many situations one can specify the last interim
evaluation moment T1� T1 ≤ T0� at which additional center(s) realistically can be
activated. We define

�∗g = min	tk � tk ≤ T1� N�tk� ≤ g�tk�
�

and put K = 	g�T1�
, so that g�TK� = K� tK ≤ T1. Then the probability to reject H0

is P���
∗
g ≤ tK��

The conditional probability of Type I error given that �∗g = tK under � = �0 is
ppois�K� �0tK�� When linear interpolation is used, K = 	T1N0/T0
� and by using (1),
the approximate value of this probability is �

(√
T1
T0
z�
)
.
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Sequential Testing and Necessary Sample Size 3119

Let � = �∗ be a fixed value of the parameter. Here we derive a test of H0 based
on �∗g which is locally optimal at �∗. This test is known to maximize the absolute
value of the derivative of the power function at � = �∗. Since the sampling process
is curtailed at T1, one has

���� = P���
∗
g ≤ tK� =

K∑
k=0

fk����

with fk��� defined by (2). Clearly,

�′��� =
K∑

k=0

f ′
k��� = −�−1

K∑
k=0

��tk − k�fk����

Let sk = �∗tk� k = 0� 1� � � � � K. Then our goal for a fixed K is to determine s’s so as
to maximize

K∑
k=0

�sk − k�e−sk

k! Qk�s0� � � � � sk−1�� (7)

It is immediate to see that for the optimal boundary sk > k� and by differentiating,
the best choice for sK is seen to be ŝK = K + 1. We prove now that this formula
holds for all k.

To find ŝK−1, notice that (4) implies that

�

�sK−1

QK�s0� � � � � sK−1� = KQK−1�s0� � � � � sK−2��

so that the partial derivative of (7) with regard to sK−1 is proportional to

�K − sK−1�e
−sK−1 + e−K−1�

This derivative vanishes changing its sign from positive to negative only at
sK−1 = K + 1.

Assuming now that ŝj = K + 1� j = k+ 1� � � � � K and

�

�sj
Qn�s0� � � � � sj� K + 1� � � � � K + 1�

= �n− j�

(
n
j

)
�K + 1− sj�

n−j−1Qj�s0� � � � � sj−1��

for 1 ≤ k < j < n ≤ K, we show that ŝk = K + 1. According to the induction
assumption for n ≥ k+ 1

�

�sk
Qn�s0� � � � � sk� K + 1� � � � � K + 1�

= �−1�n−k−1�n− k�

(
n
k

)
sn−k−1
k Qk�s0� � � � � sk−1�

+
n−1∑

j=k+1

�−1�n−j−1�K + 1�n−j

(
n
j

)
�

�sk
Qj�s0� � � � � sk� K + 1� � � � � K + 1�
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3120 Rukhin

= Qk�s0� � � � � sk−1�n!
k!

[
�−1�n−k−1sn−k−1

k

�n− k− 1�! +
n−1∑

j=k+1

�K + 1�n−j�K + 1− sk�
j−k−1

�n− j�!�j − k− 1�!
]

= �n− k�

(
n
k

)
�K + 1− sk�

n−k−1Qk�s0� � � � � sk−1��

The partial derivative of (7) with regard to sk is

�k+ 1− sk�e
−sk

k! Qk�s0� � � � � sk−1�

+ e−K−1
K∑

j=k+1

�K + 1− j�

j!
�

�sk
Qj�s0� � � � � sj� K + 1� � � � � K + 1�

= Qk�s0� � � � � sk−1�

k!
[
�k+ 1− sk�e

−sk

+ e−K−1
K∑

j=k+1

�K + 1− j��K + 1− s − k�j−k−1

�j − k− 1�!
]
�

and this derivative vanishes if and only if sk = K + 1.
It remains to show that s0 = K + 1. If s0 = u ≤ sk = v� k = 1� 2� � � � � n�

which correspond to the function g�s� = −1� 0 ≤ s < u�= n� u ≤ s < v, then
Qk�s0� � � � � sk−1� = vk − �v− u�k� k = 1� 2� � � � � n� which can be proven by using (4).
Thus, Qk�s0� K + 1� � � � � K + 1� = �K + 1�k − �K + 1− s0�

k� k = 1� � � � � K, and (7)
takes the form

s0e
−s0 + e−K−1

K∑
k=1

�K + 1− k���K + 1�k − �K + 1− s0�
k�

k! �

This function of s0 is indeed maximized when s0 = K + 1.
Thus for a locally optimal at �∗ test, tk ≡ �K + 1�/�∗, which corresponds to the

boundary g�t� = −1� 0 ≤ �∗t < K + 1�= K� �∗t ≥ K + 1. Since all tk are equal, the
formula (2) is not directly applicable, but the power function of this non sequential
test can be easily evaluated:

���� = P��N�T1� ≤ K� = ppois
(
K�

��K + 1�
�∗

)
� (8)

Here we assume that T1 = �K + 1�/�∗. Observe that for large K, ���∗� = ppois
�K�K + 1� � 0�5, so that in practice �∗ must be taken from the alternative, �0 ≥ �∗.

For fixed �1 < �0, the test which maximizes ���1�+ w�1− ���0�� for a given
positive weight w has the same form. More precisely, the convex combination of
the error probabilities of the first and of the second kind is minimized when tk ≡
��K+ 1� log��0/�1�+ logw�/��0 − �1�� k = 0� 1� � � � � K.

Theorem 4.1. For the locally optimal at �∗ test, tk ≡ �K + 1�/�∗, corresponding to
the boundary g�t� = −1� 0 ≤ �∗t < K + 1�= K� �∗t ≥ K + 1. The power function of
this procedure is given by (8). When tk ≡ ��K + 1� log��0/�1�+ logw�/��0 − �1�, the
corresponding test minimizes the weighted sum of the error probabilities of the first and
the second kind errors, w���0�+ 1− ���1�.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
i
n
f
o
r
m
a
 
i
n
t
e
r
n
a
l
 
u
s
e
r
s
]
 
A
t
:
 
1
0
:
4
5
 
4
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



Sequential Testing and Necessary Sample Size 3121

In the next section, we compare the power of these tests to the power functions
of sequential tests with linear boundaries.

5. An Example

Assume (as is the case in some cancer studies) that the desired number of subjects
in a clinical trial is N0 = 500 to be recruited during T0 = 548 days and T1 = 340 is
the last interim analysis instant. If � = 0�05, then �0 = 0�98.

Figure 1 depicts the graphs of the power function ���� in (8) for
K = 	T1N0/T0
 = 310, and �∗ = �K + 1�/T1 = 0�92. Also, when 
 = 1/�0 the power
functions for linear boundary tests (5) and (6) for b = 5 and b = 38 are shown.
Clearly, the power functions of (5) or (6) for b = 5 are too large leading to an
unacceptable type I error probability. However, the test based on the Lagrangian
Poisson distribution with b = 38 has a very reasonable power function which equals
to 0�95 at �1 = 0�82 and to 0�07 at �0. Larger values of b result in smaller Type I
error probability, but a smaller power at the alternative too.

If � = 0�01, then �0 = 1�01 and ppois�K� �0T1� = 0�04� The choice b = 33 leads
then to the power function equal to 0�95 at �1 = 0�84 and to the Type I error
probability 0�05.

Figure 1. Plots of power functions (5) (line marked by +), (6) with b = 5 (line marked
by 
), (8) for �∗ = 0�92 (continuous line), and (6) with b = 38 (line marked by ∗), when
� = 0�05� N0 = 500� T0 = 548.
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