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Abstract
The usefulness of weighted means statistics as a consensus mean estimator in collaborative
studies is discussed. A random effects model designed to combine information from several
sources is employed to justify their appeal to metrologists. Some methods of estimating the
uncertainties and of constructing confidence intervals are reviewed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction: common mean model for
interlaboratory studies

The goal of this paper is to review the use of weighted
means statistics in interlaboratory testing. Statistical analysis
initiated, for example, when certifying standard reference
materials, has the fundamental goal of estimating the overall
treatment effect µ (the common effect, the consensus mean
or the reference value) and providing a standard error for this
estimate. See [1–3] for a detailed discussion of the problem.

Assume there are p laboratories, each measuring the
unknown underlying (non-random) value µ common to all
laboratories. In the simplest model the measurements xij ,
i = 1, . . . , p; j = 1, . . . , ni , are of the form

xij = µ + eij , (1)

with independent Gaussian errors eij ∼ N(0, κ2
i ). All

parameters µ, κ2
i , i = 1, . . . , p are unknown, but the main

goal is to estimate µ or, more importantly, to provide a
confidence interval for µ. The fairly small sample sizes typical
in metrology do not always allow asymptotic or non-parametric
inference; out of parametric models (1) is the simplest and most
widely (albeit not universally) used.

Denote by xi = x̄i =∑j xij /ni the within-lab means and
by s2

i = ∑
j (xij − xi)

2/[ni(ni − 1)] (unbiased) estimates of
the variances σ 2

i = κ2
i /ni of xi . When these variances σ 2

i are
known, the best (in terms of the mean squared error) unbiased
estimator of the reference value µ is a weighted means statistic,

x̃ =
∑

i wixi∑
i wi

,

with wi = wtr
i = σ−2

i , i = 1, . . . , p. Then the formula for the
variance,

Var(x̃) = E(x̃ − µ)2 = 1∑
i w

tr
i

, (2)

is well known. These results hold even without the normality
assumption if one restricts the class of unbiased estimators to
linear unbiased estimators. However, in practice the variances
σ 2

i are unknown, so that the ‘true’ weights wtr
i are also

unknown. The usual suggestion [3–5] is to replace σ 2
i by their

estimates s2
i , i.e. to estimate Var(x̃) by[∑

i

s−2
i

]−1

. (3)

Although s2
i estimates σ 2

i unbiasedly, estimate (3) of Var(x̃)

underestimates this variance. This fact follows from the
inequality,

E

[∑
i

s−2
i

]−1

<

[∑
i

Es−2
i

]−1

,

and its implications are known to metrologists who complain
that the reciprocal square-root of the sum of the weights
becomes too small as the number of participants increases and
many labs fall outside the uncertainty interval (see for example
[6]). The variation in the s2

i themselves, or the uncertainties
in the σ 2

i , must be taken into account when estimating the
precision of x̃. We will stress this point several times.

The traditional statistical procedure, the maximum
likelihood estimator (MLE) of µ, does not have an explicit
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form, although it is a weighted means statistic with the weights
inversely proportional to the maximum likelihood estimates
of σ 2

i . There are numerical algorithms for its evaluation
[7–9]. Alternative simpler procedures in our situation include
the sample mean x̄ and the so-called Graybill–Deal [10]
estimator,

x̃GD =
∑

i xis
−2
i∑

i s
−2
i

, (4)

which merely is the plug-in version of x̃. Estimator (4) is
popular among metrologists. In particular, it is used when
calculating CODATA recommended values of the fundamental
physical constants [11].

An unbiased estimator v̂ar of the variance of x̃GD can
be expressed in terms of the hypergeometric function [12, pp
194–6]

F(1, 2; c; z) =
∞∑

n=0

(n + 1)!�(c)

�(n + c)
zn.

Namely,

v̂ar(x̃GD) =
∑

i ω
GD
i F (1, 2; (ni + 1)/2, 1 − ωGD

i )∑
i 1/s2

i

.

Here ωGD
i = s−2

i /
∑

k s−2
k are normalized weights, so that

x̃GD =∑i ω
GD
i xi .

For ni = 3, F(1, 2; 2; 1 − z) = 1/z and

v̂ar(x̃GD) = p∑
i 1/s2

i

.

Thus, in this simple situation when all p labs make three
measurements, the unbiased estimator is p times larger
than estimate (3) of the same parameter. Clearly (3) can
dramatically underestimate var(x̃GD). A serious drawback of
the Graybill–Deal estimator is that small values of s2

i lead to
unjustifiably large weights. Our simulation results (section 7)
confirm that this estimator has serious deficiencies especially
for small sample sizes ni .

Fairweather’s estimator [13] of µ is based on the weights
(ni − 3)/[si(ni − 1)],

x̃F =
∑

i

(ni − 3)

(ni − 1)si

xi∑
i

ni − 3

(ni − 1)si

. (5)

The important feature of this estimator is its relationship to
a pivot based on convex combination of t-distributed ratios
(xi − µ)/si , which leads to a practical confidence interval
determined from a t-approximation with estimated degrees of
freedom (see section 5).

Model (1) may not be adequate in situations when the
results of different labs do not agree, so that, say, 95%
individual confidence intervals for µ based on data from the
individual labs do not all overlap. Indeed, it is possible that a
lab with the smallest reported uncertainty dominates the data
from all other labs. An additional difficulty for (1) arises
when one tries to incorporate type B errors of the uncertainty
budget. For these reasons more flexible estimators/models are

desirable. In the next section we discuss utility of one such
model.

2. Random effects model for interlaboratory studies

Assume that the datum xij in the ith laboratory in addition
to the measurement error is affected by a random laboratory
effect bi . More precisely, let

xij = µ + bi + εij , (6)

where, as in (1), i = 1, . . . , p indexes the laboratories,
j = 1, . . . , ni represents the sample size (the number of
measurements) in laboratory i and µ still is the true mean
(reference value). The random variables bi and εij are all
independent and normal with zero means and variances σ 2

B and
τ 2
i ; bi represent the between-laboratory effect (or a hidden error

[14]) which is commonly observed in collaborative studies. It
is possible that in (6) bi ≡ 0, i.e. σ 2

B = 0.
Clearly, (6) leads to the following model for the sample

means xi = x̄i =∑j xij /ni ,

xi = µ + bi + ei . (7)

Here bi ∼ N(0, σ 2
B) and ei ∼ N(0, σ 2

i ) are mutually
independent.

Cochran [15] introduced this model in 1937 (see [16]
for a review). He studied the MLE which, as for (1), does
not admit an explicit form. He reports results of an early
numerical efficiency study in which the sample mean, x̄, the
Graybill–Deal estimator, x̃GD, and the MLE were compared
when σ 2

B = 0. Cochran writes ‘when p is as low as 6,
MLE is satisfactory, but tedious’ to evaluate, and ‘there is
little to choose between x̃GD and x̄, but occasionally x̃GD wins
handsomely’; x̃GD ‘may be recommended’ when p � 15. The
sample mean is better than x̃GD when p is fairly small and σi do
not vary much. The results of a similar study for some positive
values of σ 2

B are given in [17].
Because of the rather inconclusive nature of such studies

caused by the large number of parameters and complicated
form of the likelihood equations, simpler procedures are
desirable in practice. Estimators of the common mean via
moment-type equations are reviewed in the next section.

Before that we note that model (6) may not help to
understand possible systematic influences on the measurement
results of one or several labs [18]. Still, a common
distribution of hidden errors applicable to all labs clarifies
further uncertainty analysis. Both models (1) and (6) have
been criticized by metrologists as they assume potentially
unresolved differences through an infinite population of
laboratories/institutes while in many interlaboratory studies
(especially in the so-called Key Comparisons) there is
only a limited number of qualified participants [19, 20].
However, taking into account the exact nature of all laboratory
measurement techniques needed in the formulation of a
finite population sampling is difficult, if not impossible; the
alternative finite population sampling models lead to less
tractable mixture type distributions, while the relationship
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of (6) and error estimation theory in linear models benefits
evaluation of the ensuing uncertainties.

3. Estimating equations and weighted means
statistics

In model (6) the within-labs variances σ 2
i can be estimated by

the available estimates s2
i (type A uncertainty), but the problem

of estimating the between-study component of variance σ 2
B

remains. Here several estimators of Var(x̃) for a class of
weighted means statistics x̃ of the form

x̃ =

∑
i

xi

y + s2
i∑

i

1

y + s2
i

(8)

are suggested. Here y is supposed to estimate the unknown
variance σ 2

B. Thus, we restrict our attention to the weights of
the form

wi = 1

y + s2
i

. (9)

Because of positive y, (9) is much less sensitive than the
Graybill–Deal weights to small values of s2

i . Indeed the
presence of y makes it impossible for one laboratory to
dominate all others unless all labs produce similar results
(in which case σ 2

B is estimated by zero.) The limiting case
y = ∞ corresponds to the arithmetic (sample) mean with
equal weights.

An estimating equation was suggested to get an estimator
(8) of µ. If the weights wi are arbitrary,

E
∑

i

wi(xi − x̃)2 =
∑

i

(σ 2
B + σ 2

i )wi −
∑

i (σ
2
B + σ 2

i )w2
i∑

i wi

= σ 2
B

[∑
i

wi −
∑

i w
2
i∑

i wi

]
+
∑

i

σ 2
i wi −

∑
i σ

2
i w2

i∑
i wi

(10)

[21, 22]. In particular, when wi = 1/σ 2
i ,

E
∑

i

(xi − x̃)2

σ 2
i

= p − 1 + σ 2
B

∑
i

1

σ 2
i

−

∑
i

1

σ 4
i∑

i

1

σ 2
i

 . (11)

By employing the idea behind the method of moments,
DerSimonian and Laird [23] made use of identity (11) as
an estimating equation for µ and σ 2

B in the following way.
Determine a non-negative y = yDL from the formula

∑
i

(xi − x̃GD)2

s2
i

= p − 1 + y

[∑
i

s−2
i −

∑
i s

−4
i∑

i s
−2
i

]
,

i.e. with the Graybill–Deal estimator x̃GD in (4),

yDL = max

[
0,

∑
i s

−2
i (xi − x̃GD)2 − p + 1∑

i s
−2
i −∑i s

−4
i

[∑
i s

−2
i

]−1

]
.

Thus, the statistic x̃GD and the weights wi = s−2
i ,

corresponding to σ 2
B = 0, are used to estimate E

∑
i (xi −

x̃)2/σ 2
i , which then serves to find the true σ 2

B via (11).

The resulting estimator,

x̃DL =

∑
i

xi

yDL + s2
i∑

i

1

yDL + s2
i

, (12)

became immensely popular especially in biostatistics.
DerSimonian and Laird, motivated by (2), also gave an
approximate formula for the estimate of the variance of x̂DL,

V̂ar(x̃DL) = 1∑
i (yDL + s2

i )
−1

,

which is similar to (3).
The Mandel–Paule algorithm [24, 25] uses weights of the

form (9) as well. However now y = yMP, which is designed
to approximate σ 2

B, is found from the moment-type estimating
equation,

F(yMP) = p − 1, (13)

where with x̃ defined by (8),

F(y) =
∑

i

(xi − x̃)2

y + s2
i

is a convex monotonically decreasing function of y � 0.
Motivation for (13) comes from the formula

E
∑

i

wtr
i (xi − x̃)2 = p − 1,

which follows from (11) when the weights wi are optimal, i.e.
when they coincide with wtr

i . The explicit solution of (13)
for p � 3 does not exist; in practice a number of iterations
is needed to get it with desired accuracy. The following
approximation is easily computable:

x̂MPA =

∑
i

xi

yMPA + s2
i∑

i

1

yMPA + s2
i

, (14)

where

yMPA =



yDL +
F(yDL)

|F ′(yDL)| if
2F(yDL)F ′′(yDL)

[F ′(yDL)]2
� 1

yDL +
|F ′(yDL)|
F ′′(yDL)

−
√[

F ′(yDL)

F ′′(yDL)

]2

− 2F(yDL)

F ′′(yDL)

otherwise.

The formula for the derivative of the weighted sum of
squares [26, p 323] shows that for example,

F ′(yDL) = −
∑

i

(xi − x̂DL)2

(yDL + s2
i )

2
,

and this solution is the one-step application of the Newton
method for the initial value y = yDL. Notice that (p −
1)−1∑

i (xi − x̂MP)
2/(yMP + s2

i ) is the square of the so-called
Birge ratio which is commonly used in metrology for testing
goodness-of-fit. Thus, the Mandel–Paule procedure seeks the
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weights under which the squared Birge ratio equals its expected
value. Schiller and Eberhardt [27] write about the Mandel–
Paule method: ‘... seems to be about the best scheme available’.

The modified Mandel–Paule procedure with y = yMMP is
defined by replacing p − 1 in the right-hand side of (13) by
p, i.e. ∑

i

(xi − x̃MMP)
2

yMMP + s2
i

= p. (15)

As was shown in [28], this procedure is characterized by the
following fact: the MLE σ̂ 2

B of σ 2
B coincides with yMMP, if in the

reparametrized version of the likelihood equation the weights
wi admit representation (9).

Thus, the modified Mandel–Paule estimator can be
interpreted as a procedure which uses the weights of the form
1/(y + s2

i ) (instead of solutions of the likelihood equation
that are difficult to find) and still maintains the same estimate
of σ 2

B as the maximum likelihood. A similar interpretation
holds for the original Mandel–Paule rule and the restricted
likelihood function. For this reason both Mandel–Paule
rules are natural approximations of their maximum likelihood
counterparts. The multivariate extension of these two methods
is also available [29].

4. Behaviour of weighted means: large number of
labs

Here we look at the behaviour of the class of statistics that
includes the DerSimonian–Laird procedure and the Mandel–
Paule rule assuming (perhaps rather unrealistically) that the
number p of different laboratories is large. The class is
composed of general weighted means statistics x̃ of the form
(8) with wi given by (9). The value of y is determined
from an estimating equation such as (12) or (13). Under
the assumptions detailed below, this quantity converges with
probability one to a constant obtained from the limiting form
of the estimating equations.

We regard the variances, σ 2
i as i.i.d. (independent

identically distributed) realizations of a random variable with
some fixed but otherwise arbitrary distribution function G.
Although in practice the elicitation of G from practitioners
is difficult, this approach is useful since approximate variance
estimation for the statistics (8) becomes possible.

Let the observable i.i.d. random variables xi , s2
i , i =

1, 2, . . . , p, be realizations of the random vector (X, S2) such
that X and S2 are conditionally (for given σ ) independent with
the conditional distribution of X being N(µ, σ 2

B +σ 2) for some
unknown σ 2

B. For simplicity, we take both µ and σ 2
B to be

fixed. The conditional distribution of S2 is supposed to be of
the form σ 2W with a random variable W , EW = 1, which
is independent of σ 2. In the typical Gaussian case W has
the distribution of χ2

ν /ν with ν being the typical degrees of
freedom or a mixture of such distributions. A similar model
has been used when σ 2

B = 0 [30].
Thus, E(X|σ) = µ and E([X − µ]2|σ) = σ 2

B + σ 2. The
law of large numbers shows that for a fixed y,

1

p

∑
i

1

y + s2
i

→ E
1

y + S2

and for a fixed non-negative y,

x̃ =

∑
i

xi

y + s2
i∑

i

1

y + s2
i

→
E

X

y + S2

E
1

y + S2

=
E

[
E(X|σ)E

(
1

y + S2
|σ
)]

E

[(
E

1

y + S2
|σ
)] = µ.

Thus, under our assumptions, x̃ is a consistent estimator
of µ, and, according to the Central Limit Theorem,
p−1/2∑

i wi(xi − µ) = p−1/2(x̃ − µ)
∑

i wi has an
approximately normal distribution with zero mean and with
the variance E(X − µ)2(y + S2)−2. Therefore, p1/2(x̃ − µ)

is asymptotically normally distributed with zero mean and the
variance

S(y) =
E

(X − µ)2

(y + S2)2(
E

1

y + S2

)2 =
E

σ 2
B + σ 2

(y + σ 2W)2(
E

1

y + σ 2W

)2 � 1

E
1

σ 2
B + σ 2

.

(16)
For moderate p, p � 15, when y is small, this normal
approximation may be inadequate. Given the distributions of
W and σ , the asymptotically optimal value of y = yopt can
be found as the minimizer of S(y). Observe that if W ≡ 1,
yopt = σ 2

B, in which case the lower bound in (16) is attained.
When σ 2 ≡ σ 2

0 , S(y) monotonically decreases to the
value σ 2

B + σ 2
0 , so that in this case yopt = ∞, and x̄ is

asymptotically optimal. In general, for y → ∞,

S ′(y)

2E(σ 2
B + σ 2)

∼ Var(σ 2)

y2
> 0,

so that S(y) increases for large y, and then yopt < ∞.
Also, provided that Eσ−4 < ∞, S ′(0) < 0, unless

W ≡ 1. Therefore, in this setting, the Graybill–Deal estimator
with y = 0 cannot be optimal for non-degenerate distributions
of W . For a fixed positive y, the variance of x̃ can be estimated
via a consistent estimate of S(y), e.g. by

δ0 = p

p − 1

∑
i

(xi − x̃)2

(y + s2
i )

2

[∑
i

1

y + s2
i

]−2

(17)

or by
∑

i
(xi−x̃)2

(y+s2
i )2

[∑
i

1
y+s2

i

]−2
[28]. The factor p(p − 1)−1

in (17) is motivated by the fact that (17) corresponds to an
unbiased estimator,

∑
i (xi − x̃)2/[p(p − 1)], of the variance

of the sample mean x̄ when all σ 2
i are equal.

5. Confidence intervals based on the weighted means

If zα denotes the critical point of the standard normal
distribution, for large p the interval,

x̃ ± zα/2

√
p
∑

i

(xi − x̃)2

(y + s2
i )

2

√
p − 1

∑
i

1

y + s2
i

, (18)
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is an approximate (1 − α)100%-confidence interval for µ on
the basis of the weighted means statistics x̃. In practice it
is reasonable to replace the critical point zα/2 by that of the
t-distribution, tα/2(p − 1).

We stress again that for larger p, the variance of the
Mandel–Paule rule x̃ is better estimated by (17) with y = yMP

determined by (13), rather than by (3) as suggested by Mandel
[1, p 72]. However, Mandel writes: (y + s2

i )
−1 ‘are actually

only sample estimates of the true weights resulting in perhaps
considerable uncertainty in’ δ1 = [

∑
i (y + s2

i )
−1]−1. In the

setting of section 4 these estimators cannot give a good estimate
of the variance of the weighted means statistic with weights
(9), as this would suggest that the minimal value of the variance
is attained at y = 0. An alternative estimator of the variance
of x̃ can be obtained for any p from the following procedure
suggested in the context of general linear models [31].

Let ωi = wi/(
∑

k wk),
∑

i ωi = 1, be fixed normalized
weights, which determine the weighted means statistic, x̃ =∑

i ωixi, with the variance, Var(x̃) = ∑
i ω

2
i Var(xi). For the

(unbiased) weighted means statistic x̃,

E(xk − x̃)2 = (1 − 2ωk)Var(xk) +
∑

i

ω2
i Var(xi).

When ωi = ωtr
i = wtr

i (
∑

k wtr
k )−1, x̃ is the optimal least

squares estimator, and the second term in the right-hand side
simplifies to [

∑
i Var(xi)

−1]−1 = ωtr
k Var(xk). By substituting

this expression, one obtains

E(xk − x̃)2 = (1 − ωtr
k )Var(xk).

Horn et al [31, p 382] argue that by continuity, if the weights are
close to ωtr

k , this is an approximate identity. Thus, one derives
an almost unbiased estimator of Var(xk) as (xk − x̃)2/(1−ωk),
and the corresponding estimate of the variance, Var(x̃), is

V̂ar(x̃) =
∑

i

ω2
i (xi − x̃)2

1 − ωi

.

This statistic gives an estimate of the variance of any weighted
means statistic for weights (9) when s2

i are fixed. The method
leads to the following estimate δ2 of Var(x̃),

δ2 =

∑
i

(xi − x̃)2

(y + s2
i )

2

∑
k:k �=i

1

y + s2
k

−1

∑
i

1

y + s2
i

. (19)

with the plug-in weights ωi = (y + s2
i )

−1/
∑

k(y + s2
k )

−1, i =
1, . . . , p. Simulations show that (19) gives good confidence
intervals of the form x̃±tα/2(p−1)

√
δ2. For the Mandel–Paule

rule or the DerSimonian–Laird procedure they outperform the
intervals x̃ ± tα/2(p − 1)

√
δ1.

Estimator (19) alleviates the problem mentioned in
section 1 for the Graybill–Deal estimator when one laboratory
reports a very small uncertainty. Then not only this laboratory
estimate becomes x̃GD, but also its uncertainty takes over as
the estimate of the variance of this statistic.

Indeed if, say, s2
1 � s2

i , i = 2, . . . , p, then (3) practically
coincides with s2

1 . However according to (19),

V̂ar(x̃GD) 	 s2
1

(
p∑

i=2

xi − x1

s2
i

)2 [ p∑
i=2

1

s2
i

]−1

.

The data-dependent factor on the right-hand side of this
formula typically prevents V̂ar(x̃GD) from getting very close
to s2

1 .
We conclude this section with another procedure based

on a quadratic estimator
∑

i qi(xi − x̃)2 of the variance of a
weighted means statistic x̃. A natural confidence interval for
µ based on x̃ is x̃ ± t

√∑
i qi(xi − x̃)2, and the question is an

appropriate choice for t . When t is large,

tp−1 sup
σ 2

1 ,...,σ 2
p

P

(∣∣∣∣∣ x̃ − µ√∑
i qi(xi − x̃y)2

∣∣∣∣∣ > t

)

	 tp−1P

|Tp−1| > t

√√√√(p − 1)

(
γpp

∏
i

qi

)1/(p−1)


= �(p/2)√

π�((p + 1)/2)(p − 1)p−1ppγ
∏

i qi

,

where γ = ∑
i ω

2
i /qi � 1/q, q = ∑

qi , and Tp−1 denotes a
t-random variable with p−1 degrees of freedom [32]. In other
words, the smallest coverage probability of the (1 − α)100%-
confidence interval, x̃ ± t

√∑
i qi(xi − x̃)2, when α is small,

is attained for a t-distribution with p − 1 degrees of freedom.
The ‘least-favourable’ variances σ 2

i are all equal.
The shortest interval obtains when ωi = qi/q, and this

interval,

x̃ ± tα/2(p − 1)
√∑

i ωi(xi − x̃)2√
(p − 1)

[
pp
∏

i ωi

]1/(p−1)
, (20)

can be recommended in practice especially when mini

ni < 5. Under model (1) the confidence interval based on the
Fairweather procedure (5) has the average width smaller than
(20), but this dominance disappears in a more general situation
of (6). Notice that the conservative interval (20) is wider
than the interval defined by the so-called external consistency
estimator of the variance, (p − 1)−1∑

i ωi(xi − x̃)2 [33].

6. Type B uncertainty and Bayes estimators

Model (6) can be adjusted to incorporate type B uncertainty.
More precisely, assume now that the data xij have the form

xij = µ + λi + bi + εij . (21)

The random variables bi , εij are still assumed to be mutually
independent and normal with zero means and variances σ 2

B
and τ 2

i , respectively. The component λi represents the type
B uncertainty assessed by the laboratory i as composed of a
systematic bias component, δi , and a variance component, β2

i .
Define λi in a hierarchical way, λi | ξi ∼ N(ξi, β

2
i ),

with the expected bias component ξi for lab i being normal
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N(0, ϕ2
i ), so that Eλi = 0, Var(λi) = ϕ2

i + β2
i =

σ 2
Bi

. Assume that the reported combined standard type B
uncertainty provides an estimate of the variance, σ 2

Bi
, whereas

the individual estimates of ϕ2
i and β2

i are not available. Then
type B uncertainty, σ 2

Bi
, becomes merely a variance component,

which can be added to s2
i in all formulas in sections 3–5. Of

course if Eλi �= 0, then all weighted means statistics become
biased, and µ itself cannot be estimated. Thus, we assume that
all recognized systematic errors (biases) have been corrected
for as recommended [34]. Rukhin and Sedransk [35] discuss
metrological implications of models (1), (6) and (21), which
also can be interpreted using the Bayesian paradigm.

The (generalized) Bayes estimator of µ under the squared
error loss is approximately a weighted means statistic when
the prior distribution has the following structure. Take a ‘non-
informative’ improper prior, i.e. a constant density for µ, and
some prior density π of the remaining parameters σ1, . . . , σp,
σB. The formula for this estimator is

x̃π (x1, . . . , xp, s1, . . . , sp) =
∑

i xiγi∑
i γi

,

where γi = E(σ 2
B(σ 2

i + σ 2
B)−1|x1, . . . , xp, s1, . . . , sp).

Choice of the prior density π such that explicit calculation
of γ s can be performed does not seem to be feasible. However,
if the density π is fairly flat and the likelihood integrated over
µ is peaked, one can approximate δπ by the weighted means
statistic (

∑
i xi γ̃i)/(

∑
i γ̃i ). Here γ̃i minimize the function,(∑

ni − 1
)

log

[∑
i

γi(xi − x̃)2 +
∑

i

γi(ni − 1)s2
i

1 − γi

]

+ log

(∑
i

γi

)
+
∑

i

(ni − 1) log(1 − γi)

−
∑

i

ni log γi.

These weights coincide with with the restricted maximum
likelihood solution mentioned in section 3.

7. Simulation results

The results of a Monte Carlo simulation study for p = 5,
12, 25 and randomly chosen sample sizes ni with the uniform
distribution over integers from 4 to 12 are reported here as a
function of σ 2

B = 0, 1, . . . , 10. The error variances σ 2
i were

taken to have a lognormal distribution, so that Eσ 2
i = 1.

The MLE and the restricted maximum likelihood (REML)
estimator were computed via their R-language implementation
(through the lme function from nlme library). The intervals
function with fixed effects provides approximate confidence
intervals for µ. The employed formula for the variance
of these two estimators is based on the observed Fisher
information, which is 1/

∑
σ̂−2

i [7], i.e. it is similar to δ1 with
the MLEs σ̂ 2

i replacing s2
i . The simulation results indicate

that this (essentially asymptotic in ni) formula can seriously
underestimate the true variance of the MLE (when ni 	 8),
i.e. the length � of these intervals might be too short. For
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Figure 1. The q–q plot of the pivots for the maximum likelihood
estimator when p = 5, σ 2

B = 0.
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Figure 2. Plot of actual coverage probabilities for confidence
intervals with the nominal 95% level based on MLE (line marked
by +), REML (dashed–dotted line), xGD (continuous line), xDL (line
marked by ∗), xMP (dotted line), xF (line marked by ♦), when p = 5.

multimodal or flat likelihood functions convergence of the
algorithm is problematic. Figure 1 depicts a clearly non-
normal q–q plot of pivotal quantity (MLE − µ)/� when
p = 5 and σ 2

B = 0 with 50 000 runs.
The coverage probability of the intervals based on MLE

and REML when p = 5 did not exceed 91%, staying about
82% (MLE) and about 87% (REML) for most σ 2

B values. These
two intervals exhibit better performance in the balanced case
ni ≡ n, but then both the sample mean and the Fairweather
procedure outperform them.

Figure 2 displays the coverage probability of these
intervals with a nominal confidence coefficient of 95%
when p = 5 and the variance estimator is δ1. Both the
DerSimonian–Laird estimator (12) and the Mandel–Paule
procedure with y = yMPA sustain this confidence level very
well. The Graybill–Deal estimator (4) cannot be recommended
especially with estimate (3) as its coverage probability drops
almost to zero for large σ 2

B.
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Figure 3. Plot of coverage probabilities of the confidence intervals
based on δ2 when p = 12 (designations of lines are the same as in
figure 2).
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Figure 4. Plot of coverage probabilities of the confidence intervals
based on δ2 when p = 25 (designations of lines are the same as in
figure 2).

The Fairweather estimator, x̃F , is reasonable when δ2

is used, especially for small σ 2
B , but poor with δ0 and δ1.

Figures 3 and 4 show the coverage probabilities of the same
intervals with a nominal confidence coefficient of 95% when
p = 12 and 25 for the variance estimator δ2. The average
half-widths (standard errors) of these intervals are increasing
as σ 2

B increases, but in the case of likelihood estimators not fast
enough to compensate for the loss in stated confidence.

8. Examples

8.1. Determination of Newton’s gravitational constant

In the first example we compare two studies (1998 and 2002)
involving the Newtonian gravitational constant reported in
[11, 36]. The data are given in tables 1 and 2. In table 1
the studies have the following numbering: CODATA-86 = 1,

PTB-95 = 2, LANL-97 = 3, TR&D-98 = 4, JILA-98 = 5,
HUST-99 = 6, MSL-99 = 7, BIPM-99 = 8, UZur-99 = 9,
UWup-99 = 10.

In the 1998 study the outlying result of laboratory 2
influences the x̃GD to take the value 6.6818, while x̃MP =
6.6795 and x̃DL = 6.6796. The approximate 95%-confidence
intervals based on estimates (19) are (6.6695, 6.6897) for x̃DL

and (6.6690, 6.6899) for x̃MP = 6.6795.
The interval based on x̃GD is quite narrow: (6.6812,

6.6823). The problem with this interval becomes clear after
inspecting the 2002 data given in table 2 [11], where LANL-
97 = 1, TR&D-98 = 2, HUST-99 = 3, UWash-00 = 4,
BIPM-01 = 5, UWup-02 = 6, UZur-02 = 7, MSL-03 = 8.

The 2002 value x̃GD = 6.6742 was not covered by the
interval above. In hindsight the DerSimonian–Laird procedure
(as well as the Mandel–Paule rule) is more robust to the
outlying result, and the 2002 value is in agreement with the
advocated confidence intervals on the basis of 1998 data.
Neither the maximum likelihood estimator nor the Fairweather
estimator are available, because in this example (as in many
others) the sample sizes ni were not specified.

8.2. Gas concentration estimation

Next is an example from analytical chemistry data from gas
metrology international comparisons [37] which gave the
average concentrations and uncertainties in µmol mol−1 as
shown in table 3.

While the consensus values evaluated according to
different methods were rather close

x̄ = 10.0749, x̃F = 10.0262,

x̃GD = x̃DL = x̃MP = x̃MMP = 10.0225,

(yMP = yDL = 0), their estimated expanded uncertainties were
felt by specialists to be too small:

δ0 = δ1 =
[∑

i

s−2
i

]−1

≈ 0.001.

In this situation, interval (18) may not be appropriate,
but the conservative interval (20) gives a very sensible
answer: 10.0262 ± 0.0907 (the Mandel–Paule estimator),
10.0225 ± 0.0919 (the DerSimonian–Laird estimator). Again
the Fairweather interval is not available, because in this
example nmin = 3.

9. Summary and conclusions

The weighted means estimators of the common mean have
many desirable statistical features: they are unbiased and
consistent, they have properties of asymptotic efficiency
and can be easily evaluated. These estimators lead
to t-distribution based confidence intervals (20), admit a
Bayesian interpretation, and allow adjustments to incorporate
type B uncertainty.

However, the mentioned properties are in full play only if
the variance of such a procedure is carefully estimated. The
maximum likelihood intervals produced in R language can
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Table 1. 1998 data on the Newtonian gravitational constant, p = 10, xi are measured in m3 kg−1 s−2 × 10−11, si in m3 kg−1 s−2 × 10−13.

i

1 2 3 4 5 6 7 8 9 10

xi 6.673 6.715 6.674 6.673 6.687 6.670 6.674 6.683 6.675 6.673
si 0.085 0.056 0.07 0.05 0.94 0.07 0.07 1.1 0.15 0.29

Table 2. 2002 data on the Newtonian gravitational constant, p = 8, xi are measured in m3 kg−1 s−2 × 10−11, si in m3 kg−1 s−2 × 10−13.

i

1 2 3 4 5 6 7 8

xi 6.674 6.6729 6.6709 6.674 255 6.675 59 6.674 22 6.674 07 6.673 87
si 0.07 0.05 0.07 0.009 0.003 0.098 0.033 0.027

Table 3. Gas concentration data for seven labs in µmol mol−1 units.

i

1 2 3 4 5 6 7

xi 9.961 9.979 10.012 10.013 10.026 10.038 10.495
si 0.205 0.174 0.078 0.086 0.158 0.063 0.503

be too short, and may not achieve the nominal coverage. In
practice the considered estimators provide, on average, similar
values for the consensus value. It is their uncertainties which
heavily depend on the estimation method.
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