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Abstract—Applications using artificial neural networks
(ANNs) for optical performance monitoring (OPM) are pro-
posed and demonstrated. Simultaneous identification of optical
signal-to-noise-ratio (OSNR), chromatic dispersion (CD), and po-
larization-mode-dispersion (PMD) from eye-diagram parameters
is shown via simulation in both 40 Gb/s on-off keying (OOK) and
differential phase-shift-keying (DPSK) systems. Experimental ver-
ification is performed to simultaneously identify OSNR and CD.
We then extend this technique to simultaneously identify accumu-
lated fiber nonlinearity, OSNR, CD, and PMD from eye-diagram
and eye-histogram parameters in a 3-channel 40 Gb/s DPSK wave-
length-division multiplexing (WDM) system. Furthermore, we
propose using this ANN approach to monitor impairment causing
changes from a baseline. Simultaneous identification of accumu-
lated fiber nonlinearity, OSNR, CD, and PMD causing changes
from a baseline by use of the eye-diagram and eye-histogram
parameters is obtained and high correlation coefficients are
achieved with various baselines. Finally, the ANNs are also shown
for simultaneous identification of in-phase/quadrature (I/Q) data
misalighment and data/carver misalignment in return-to-zero
differential quadrature phase shift keying (RZ-DQPSK) transmit-
ters.

Index Terms—Neural networks, optical fiber communication,
optical performance monitoring, phase modulation.

I. INTRODUCTION

IGH-PERFORMANCE optical networks are susceptible
H to various degrading effects that can change over time.
Knowledge of the data channel degradation can be used to
diagnose the network, repair the damage, drive a compen-
sator/equalizer, and/or reroute traffic around a non-optimal link
[1]-[3]. Therefore, it is valuable to monitor the channels for
many types of impairments, such as optical signal-to-noise-ratio
(OSNR), chromatic dispersion (CD), polarization-mode-dis-
persion (PMD), and fiber nonlinearity, which can change with
temperature, plant maintenance, and path reconfiguration. Key
features of any optical performance monitors are simplicity
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in implementation and the ability to accommodate different
modulation formats and impairments.

Recently, optical networks have been evolving from closed
systems to open systems, in which the optical layer is designed
to allow transmitter/receiver add and drop without affecting
the current structure. This trend has been reflected in service
provider requirements for ‘“alien wavelengths” and in the
standards—most notably, ITU-T G.698.2 [4]. Associated with
changes in the number of channels are the power transients in
the surviving channels arising from cross saturation in optical
amplifiers and the nonlinear interactions among channels.
To maintain system performance, agile optical performance
monitoring (OPM) and automatic system control become
increasingly important.

OPM can be performed by measuring changes to the data and
determining “real-time” changes resulting from various impair-
ments, such that a change in a particular effect will change a
measured parameter. This can employ: (i) optical techniques
to monitor changes in a radio frequency (RF) tone power or
in the spectral channel power distribution [5], or (ii) electrical
post-processing techniques in the specific case of coherent de-
tection [6], [7].

The optical approaches have been shown to be powerful for
OPM. However, the electrical distortions that are crucial for the
signal quality at the decision point tend to be neglected in the
optical approaches. Several techniques have been proposed for
OPM using off-line digital signal processing of received elec-
trical data signals [8]-[21]. Four of these methods [8]-[11] uti-
lize amplitude histograms, power distributions or asynchronous
sampling to estimate bit error rate (BER); four [12]-[15] em-
ploy delay-tap plots to distinguish among impairments; three
[16]-[18] use pattern recognition techniques to identify mul-
tiple impairments; and the rest [19]-[21] use parameters derived
from eye diagrams and histograms for the same purpose. The
latter approach is to probe the network upon initialization and
train each receiver to record a specific data eye-diagram pattern
that corresponds to a specified range of potential physical pa-
rameters. These eye diagrams can be generated either from a
synchronized sampler, or by a technique that regenerates such
diagrams from asynchronous samples [11]. Once the network
is fully operational, variations in the received eye diagram from
the ideal formation can then be attributed to specific physical
parameters derived from the prior network/receiver training.

Recently, we have made use of a neural network approach to
“train” receivers in an optical network to distinguish between
resultant shapes of the data channel’s eye diagrams and the de-
grading effects of OSNR, CD, PMD [19], [20]. The ANN ap-
proach has further been applied to monitor accumulated fiber
nonlinearity in addition to OSNR, CD, PMD [21]. By use of
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this method, the coefficients of the neural network algorithm are
iteratively derived prior to live traffic being sent through the net-
work. A similar technique has also been used for time misalign-
ment monitoring in return-to-zero differential quadrature phase
shift keying (RZ-DQPSK) transmitters [22], which extends the
applications of our ANN approach to a broader sense of OPM.

In this paper, we show various applications of ANNSs in
OPM. In Section II, the concept and structure of ANNs are
introduced. The popularly used multilayer perceptron (MLP)
neural network and various steps involved in the development
of neural network models are described. In Section III, simul-
taneous identification of OSNR/CD/PMD is demonstrated in
40 Gb/s on-off keying (OOK) and DPSK systems via simu-
lation. Subsequent experimental verification is performed to
simultaneously identify OSNR and CD. In Section IV, we
add accumulated channel nonlinear effects to CD, PMD, and
OSNR. We demonstrate this technique in a 3-channel 40 Gb/s
RZ-DPSK WDM system. Furthermore, we propose using
our ANN approach to monitor impairment causing changes
from a baseline instead of the absolute values. Simultaneous
identification of accumulated fiber nonlinearity, OSNR, CD,
and PMD introducing changes from a baseline by use of the
eye-diagram and eye-histogram parameters in a 3-channel 40
Gb/s DPSK WDM system is obtained with various baselines.
In Section V, ANNSs are used for simultaneous identification of
in-phase/quadrature (I/Q) data and data/carver misalignments
in RZ-DQPSK transmitters, which indicates the applications of
ANNSs in a broader sense of OPM.

II. ARTIFICIAL NEURAL NETWORKS

A. ANN Concepts

As bit rates increase, it becomes more difficult to predict the
data degradation mechanisms in optical networks. In order to
enable robust and cost-effective “self-managed” operation, it
would be desirable for the network itself to agilely monitor the
physical impairments and the quality of the data signals, and au-
tomatically diagnose and feed back information to control the
network. By incorporating trained receivers, a simple structure
of a self-managed network is shown in Fig. 1(a). Impairments
are indentified by the trained receivers in the optical network
element (ONE) and error signals are generated and sent to the
routers. Further actions can be taken so that the network con-
troller can agilely control and manage the network.

To illustrate how the trained receivers work, we introduce the
concepts of ANNs. ANNSs are information-processing systems
that learn from observations and generalize by abstraction [23],
[24], which are attractive alternatives to conventional methods
such as numerical modeling methods, analytical methods, or
empirical modeling solutions. ANNs have the ability to model
multi-dimensional nonlinear relationships and are simple to use.
Furthermore, the neural network approach is generic (i.e., the
same modeling technique can be re-used for passive/active de-
vices/systems) and the response is fast. Due to these features,
the ANN approach has gained much attention as a powerful
tool in a number of areas such as pattern recognition, speech
processing, control, and bio-medical engineering, and recently
been applied in RF modeling, microwave design, and optical

3581

End Customer

Send error
signals

Re-route or feed
back information to
control the ONE

ONE

Router
: i ONE [
ONE ; Optical Network
|

Trained receivers to
automatically identify
impairments

Fiber link with
various impairments

(a)
Input Layer

Hidden Layer

Yy=Ewyy

Output Neurons

Hidden Neurons
% =f Wi Xy

Input Neurons

Fig. 1. Concepts of ANNs. (a) Self-managed optical networks. ONE: optical
network element; (b) the structure of an artificial neutral network (ANN); (c) a
3-layer perceptron (MLP3) ANN model.

performance monitoring. Oftentimes, neural networks are first
trained to model the electrical/optical behavior of passive and
active components/circuits/systems. These trained neural net-
works can then be used in high-level simulation and design, pro-
viding fast answers to the task they have learned [25], [26].

An ANN consists of multiple layers of processing elements
called neurons. Each neuron is connected to other neurons in
neighboring layers by varying coefficients that represent the
strengths of these connections, as shown in Fig. 1(b). ANNs
learn the relationships among sets of input-output data that are
characteristics of the device or system under consideration.
After the input vectors are presented to the input neurons and
output vectors are computed, the ANN outputs are compared to
the desired outputs, and errors are calculated. Error derivatives
are then calculated and summed for each weight until all of
the training sets have been presented to the network. The error
derivatives are used to update the weights for the neurons, and
training continues until the errors reach prescribed low values.

MLP is the basic and most frequently used structure. In the
MLP neural network, the neurons are grouped into layers. The
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first and last layers are called input and output layers, respec-
tively, and the remaining layers are called hidden layers. Typ-
ically, an MLP neural network consists of an input layer, one
or more hidden layers, and an output layer. For example, an
MLP neural network with an input layer, one hidden layer, and
an output layer, is referred to as 3-layered MLP or MLP3, as
shown in Fig. 1(c). The hidden layer allows complex models of
input-output relationships. The mapping of these relationships
is given by Y = g[W’ e g(W e X)], where X is the input
vector, Y is the output vector, and W and W’ are the weight
matrices between the input and hidden layers and between the
hidden and output layers, respectively. The function g(u) can be
the smooth switch-type activation functions, such as sigmoid,
arc-tangent, and hyperbolic-tangent, which are bounded, con-
tinuous, monotonic and continuously differentiable. In our anal-
ysis, a nonlinear sigmoidal activation function given by g(u) =
1/[14exp(—wu)] is used, where w is the input to a hidden neuron
or an output neuron.

In addition to MLP, there are other ANN structures [27], such
as radial basis function (RBF) networks, wavelet networks, and
recurrent networks. The universal approximation theorem [28]
states that there always exists a 3-layer MLP neural network
that can approximate any arbitrary, nonlinear, continuous, mul-
tidimensional function to any desired accuracy. The number of
hidden neurons depends upon the degree of nonlinearity of the
function and the dimensionality of the model. Highly nonlinear
systems require more neurons, while smoother systems require
fewer neurons. In our work, the number of hidden neurons is op-
timized via adaptive processes, which add/delete neurons during
training.

B. ANN Training and Testing

The most important step in neural network model develop-
ment is the training process. In this sub-section, we will explain
the ANN training and testing processes in more details.

The neural network weight parameters (w) are initialized so
as to provide a good starting point for training. The widely used
strategy for MLP weight initialization is to initialize the weights
with small random values (e.g., in the range [—0.5, 0.5]). To im-
prove the convergence of training, one can use a variety of dis-
tributions (e.g., Gaussian distribution), and/or different ranges
and different variances for the random number generators used
in initializing the ANN weights [29].

The training data consists of sample pairs, {(2,,d,), n €
T, }, where z,, and d,, are T- and K-vectors representing the
inputs and the desired outputs of the neural network and 7. rep-
resents the index set of the training data. In our work, the inputs
are the parameters derived from eye diagrams or other sources,
e.g. RF tone power, and asynchronous diagrams, and the outputs
are the impairments, e.g. OSNR, CD, and PMD. We define the
neural network training error as [30]

1 K
Er, (w) =5 Y > luw(n, w) = diy[” (1)

neT, k=1

where dy, is the kth element of d,, and y (z,,w) is the kth
neural network output for input x,,. The purpose of neural net-
work training is to adjust w such that the error function Er,.(w)
is minimized. The error between training data and ANN outputs
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is fed back to the ANN to guide the internal weight update of
the network. Here, Aw = nh is called the weight update, and
1 is a positive step size known as the learning rate. Gradient
based iterative training techniques determine update direction
h based on error information Er, (w) and error derivative in-
formation O Er,(w)/0w. Step size n can be determined in one
of the following ways: (1) small value, either fixed or adaptive
during training; or (2) line minimization to find best value of 7.

The time needed for training depends on the amount of
training data involved, the structure of the neural network, and
also the training algorithm. There are several gradient-based
iterative training algorithms, including back propagation,
conjugate gradient and quasi-Newton. Back propagation is rel-
atively slow in converging, so second-order training algorithms,
such as conjugate gradient and quasi-Newton, are oftentimes
preferred for their increased efficiency. The quasi-Newton ap-
proach is relatively fast due to its quadratic converge property,
although more computer memory is required since it relies on
the Hessian matrix whose inverse needs to be calculated. The
conjugate gradient method is a nice compromise in terms of
memory and implementation effort, since the descent direction
runs along the conjugate direction, which can be determined
without matrix computations.

We use feed-forward computation in our work. Given the
input vector X and the weight vector W, neural network feed-
forward computation is a process used to compute the output
vector Y. It is useful not only during neural network training but
also during the usage of the trained neural model. The external
inputs are first fed to the input neurons and the outputs from
the input neurons are fed to the hidden neurons. Continuing this
way, the outputs of one layer neurons are fed to the next layer
neurons [30]. During feed-forward computation, neural network
weights W remain fixed.

After training, the ANN can be tested by use of other sets
of data. The correlation coefficient, which represents how close
the ANN model outputs to the testing data, can be used as the
quality measurement factor.

III. ANNs FOR CD/PMD/OSNR MONITORING

A. CD/PMD/OSNR

With the increase of system capacity, optical networks will be
highly susceptible to deleterious and data-degraded fiber-based
impairments. CD, PMD, and OSNR are among a few of the
most important impairments due to the broad spectra of high-
rate signals. Therefore, the ability of the network to identify the
amount of the impairments is quite important to maintain system
performance.

Fig. 2 shows the simulated eye diagrams for a 40 Gb/s
RZ-OOK signal at a few select combinations of OSNR, CD
and first-order PMD (i.e., differential group delay (DGD)).
The simulated DGD emulation assumes that the signal polar-
ization principle states have worst-case alignments with 50:50
power in the fast and slow axes. Visually, it is obvious that
these impairments produce distinct features. To quantify these
attributes, we can calculate various eye-diagram parameters.
For this example, we choose four such parameters, including
Q-factor, eye closure, root-mean-square (RMS) jitter, and
crossing amplitude. Q-factor is defined as the difference of
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Fig. 2. The impact of degradation effects on eye diagrams of an RZ signal. Tx:
transmitter; Rx: receiver; DGD: differential group delay (first-order PMD).

Fiber Link

the mean upper and lower levels divided by the sum of the
upper and lower level standard deviations; eye closure is the
ratio of the outer eye height to the inner eye height; crossing
amplitude is the point on the vertical scale where the rising
and falling edges intersect; and RMS jitter is usually defined as
the standard deviation of the time data calculated in a narrow
window surrounding the crossing amplitude. These four inputs
are chosen because they change significantly with varying
impairment combinations.

The ANN architecture used in this work is a feed-forward,
three-layer perceptron structure. The ANN consists of four
inputs (Q-factor, closure, jitter, and crossing-amplitude), three
outputs (OSNR, CD, and DGD), and twelve hidden neurons.
The ANN is trained by use of a software package developed
by Zhang et al. [31]. We first verify the concept via simulation
in 40 Gb/s RZ-OOK and RZ-DPSK systems. The conjugate
gradient method is used for training. The training data are
obtained from the eye diagrams by use of one set of 125 sam-
ples (OSNR = 32,28,24,20,16 dB; CD = 0,15, 30,45,60
ps/nm; DGD = 0, 2.5, 5, 7.5, 10 ps). Another set of 64 samples
(OSNR = 30,26,22,18 dB; CD = 7.5,22.5,37.5,52.5
ps/nm; DGD = 1.25,3.75,6.25,8.75 ps) is used for testing.

The simulated fiber channel includes a laser with a full width
at half maximum (FWHM) line-width of 10 MHz; a 40 Gb/s
logic source; a single-arm, Mach-Zehnder modulator (MZM)
biased at the quadrature point with V. driving voltage for gen-
erating OOK and at minimum point with 2V driving voltage
for generating DPSK, where V. is the half-wave voltage of the
MZM, followed by another MZM for RZ pulse carving. Impair-
ments are added through emulators in the link and then the sig-
nals are detected by using a single photodiode for RZ-OOK and
a balanced receiver following a delay line interferometer (DLI)
for RZ-DPSK, where the eye diagrams are recorded and the eye
diagram parameters are extracted.

Fig. 3(a) shows the training error versus the epochs. An epoch
is defined as a stage of ANN training that involves presentation
of all the samples in the training data set to the neural network
once for the purpose of learning. The testing and ANN-mod-
eled data are compared in Fig. 3(b) and (c). The ANN reports
a correlation coefficient of 0.97 and 0.96 for OOK and DPSK
systems, respectively. The measured average errors for OSNR,
CD and DGD are 0.57 dB, 4.68 ps/nm, and 1.53 ps, respectively
for 40 Gb/s RZ-OO0K, and are 0.77 dB, 4.74 ps/nm, and 0.92 ps,
respectively for 40 Gb/s RZ-DPSK.

B. Experimental Verification

The experimental setup is shown in Fig. 4. 40 Gb/s RZ-DPSK
or RZ-OOK signals are generated using two cascaded MZMs.
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Fig. 3. Simulation results for OSNR/CD/PMD monitoring in 40 Gb/s OOK
and DPSK systems. (a) Training error; (b) 40 Gb/s RZ-OOK testing results; (c)
40 Gb/s RZ-DPSK testing results.
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Fig. 4. Experimental setup. CW: continuous wave.

The signal then goes through a tunable dispersion compensating
module (TDCM) with +/—400 ps/nm tuning range and 10
ps/nm tuning resolution, which serves as the CD emulator. The
output of the TDCM is sent to an erbium-doped fiber amplifier
(EDFA) with a variable optical attenuator (VOA) in front to ad-
just the received OSNR. The noise-loaded signal is then filtered
by a bandpass filter (BPF) with 1 nm bandwidth, and sent to a
scope, where the eye diagram parameters are extracted.

In our experiment, we vary OSNR and CD to get two sets of
eye diagram parameters for 40 Gb/s RZ-DPSK and RZ-OOK
signals, respectively, including extinction ratio, eye opening
factor and signal-to-noise ratio. One set with 20 samples
(OSNR = 32,28,24,20,16 dB; CD = 0,10, 30, 50 ps/nm) is
sent to the ANN model for training, and the other set with 12
samples (OSNR = 30, 26,22, 18 dB; CD = 10, 20, 40 ps/nm)

Authorized licensed use limited to: NIST Research Library. Downloaded on August 7, 2009 at 10:28 from IEEE Xplore. Restrictions apply.



3584
—=— OSNR[ANN Model) —-=— OSNR(Test Data)
—o— CD{ANN Model) —<—CD(Test Data)
40 =
g 32+ E
>t <
Z 16 g‘-
O Bt (%)
0 1 1 L I 1
0 2 4 6 8 10 12
Test Sample Number
(@)
—=— OSNR{ANN Model) —=— OSNR(Test Data)
—a— CD{ANN Model) —o— CD(Test Data)
40
g 32+ E
> uy <
z 167 2
o sl 3]
0 1 L 1 1 1
0 2 4 6 8 10 12
Test Sample Number
(b)

Fig. 5. Experimental results for OSNR/CD monitoring in 40 Gb/s OOK and
DPSK systems. (a) 40 Gb/s RZ-OOK testing results; (b) 40 Gb/s RZ-DPSK
testing results.

is used for testing. The final training errors for the OOK and
DPSK data are ~0.03 and ~0.04, respectively. Fig. 5 shows
testing results with the experimental data. For the RZ-DPSK
signal, we use the eye of the destructive port of the DLI to
extract parameters since we cannot estimate balanced eye
diagrams with the scope. The ANN reports a correlation coeffi-
cient of 0.99 for both of the 40 Gb/s RZ-OOK and RZ-DPSK
systems. Fig. 5 compares the testing and ANN-modeled data.
The measured average errors for OSNR and CD are 0.58 dB,
2.53 ps/nm, respectively for 40 Gb/s RZ-OOK and are 1.85 dB,
3.18 ps/nm, respectively for 40 Gb/s RZ-DPSK.

The OSNR considered in this experimental work is 16~32 dB
for illustration purpose. In real optical systems, the OSNR can
be lower, such as 10—12 dB in 40 Gb/s DPSK systems, which is
validated via simulation is the next sub-section.

C. Monitoring Low OSNR

OSNR values in real optical networks may degrade to
levels as low as 10-12 dB for 40 Gb/s DPSK systems.
Here, we perform a simulation for 40 Gb/s RZ-DPSK
using parameters similar to that in the experiment above.
Only OSNR and CD are varied for illustration purposes.
We use 49 samples (OSNR = 34,30,26,22,18,14,10
dB; CbD = 0,10,20,30,40,50,60 ps/nm) for training
and 36 samples (OSNR = 32,28,24,20,16,12 dB;
CD = 5,15,25,35,45,55 ps/nm) for testing. The eye-di-
agram parameters include Q-factor, eye closure, and RMS
jitter. Fig. 6 compares the testing and ANN-modeled data. The
ANN reports a correlation coefficient of 0.99, which shows the
effectiveness of using ANNs for identification of lower OSNRs.
In this case, the measured average errors for OSNR and CD are
1.23 dB, and 4.56 ps/nm, respectively.
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Fig. 7. The impact of degradation effects on the eye diagrams of RZ-DPSK.

IV. ANNs FOR CD/PMD/OSNR/ACCUMULATED
NONLINEARITY MONITORING

A. CD/PMD/OSNR/Accumulated Nonlinearity

One parameter that has not been explored much in OPM has
been the accumulation of nonlinear impairment on the data
channels, which has typically been one of the most difficult pa-
rameters to monitor in an optical network. Adding accumulated
nonlinearity is also a challenge in terms of the neural network
approach, due to its specific signatures on the eye diagrams.

Fig. 7 shows simulated eye diagrams for the middle channel
of a 3-channel 40 Gb/s RZ-DPSK WDM system at a few se-
lect combinations of OSNR, CD, DGD and optical power. We
can clearly see that different impairment combinations imprint
different signatures on the eye diagrams. In this case, the four
outputs are input optical power, OSNR, CD, and PMD, and the
eight inputs include Q-factor, eye-closure, RMS jitter, ‘0’-level
crossing amplitude, mean of ‘1’s and ‘O’s, standard derivation
(SD) of “1’s and ‘0’s.

Fig. 8 shows the 3-channel WDM configuration used in the
simulation. The 40 Gb/s RZ-DPSK signals are generated by
two cascaded MZMs and then coupled together with a channel
spacing of 0.8 nm. The channels are decorrelated by use of logic
sources with different pseudo-random bit sequence (PRBS) or-
ders. The WDM signals then pass through 2 km of highly non-
linear fiber (HNLF) with a nonlinear coefficient of 18 W1 .
km_l, zero dispersion wavelength of )y (1550 nm), and dis-
persion slope of 0.05 ps/nm? /km, following by a CD emulator
and a PMD emulator. The output is sent to an EDFA with a
variable optical attenuator in front to adjust the received OSNR.
The signal is then filtered by a BPF with 0.64 nm bandwidth,
and sent to an oscilloscope, where the eye diagram and eye his-
togram parameters are extracted. A 3-channel case is chosen to
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illustrate the concept, although this approach is also applicable
to WDM networks with more channels.

The middle channel is chosen for the analysis because it ex-
periences the strongest interchannel nonlinearity. The training
data are obtained from the eye diagrams by use of a set of 135
samples (optical power = —5,—-3,—1,1,3 dBm; OSNR =
36, 28,20 dB; CD = 0, 20, 40 ps/nm; DGD = 0,4, 8 ps). Note
that a few training samples are used in this work. In practical
networks, a much larger amount of data will be required for
training. Fig. 9 shows the training error versus epochs. The final
training error is ~0.1 in our case.

Once the model is trained, we validate its accuracy by use
of a different set of testing data that includes 32 samples
(optical power = —4,—2,0,2 dBm; OSNR = 32,24 dB;
CD = 10,30 ps/nm; DGD = 2,6 ps). Again, the simulated
DGD emulation assumes that the signal polarization principle
states have worst-case alignments with 50:50 power in the fast
and slow axes. The ANN reports a correlation coefficient of
0.97.

Fig. 10 compares the testing and ANN-modeled data for op-
tical power, OSNR, CD, and DGD. The measured average errors
for optical power, OSNR, CD and DGD are 0.46 dB, 1.45 dB,
3.98 ps/nm, and 0.65 ps, respectively. It is shown that the ANN
models, trained with parameters derived from eye diagrams and
eye histograms, can potentially be used to simultaneously iden-
tify accumulated fiber nonlinearity, OSNR, CD, and PMD in
WDM channels.

B. ANNs for Identification of Impairment Causing Changes
from a Baseline

Normally, when considering a system to be monitored, we as-
sume the system is impairment-free; then different impairments,
such as CD and PMD, are added for the purpose of testing
the monitoring approaches. However, systems are not perfect,
and inevitably contain a certain amount of impairments. Thus,
starting from a baseline is more practical in terms of perfor-
mance monitoring.
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Fig. 11. Block diagrams of using ANN for monitoring changes from a baseline.
RMS: root-mean-square; SD: standard derivation. (a) Training; (b) testing.

From the analyses and demonstrations in the former sec-
tions, ANNs have been shown to be a potentially powerful
tool for OPM. Continuing with this ANN approach, we
make use of changes in optical power, OSNR, CD and PMD
as the outputs of the neural network, rather than absolute
values. Similarly, different impairment combinations imprint
different signatures on the obtained eye diagrams, where
the input parameters are extracted. Again, the ANN used is
an MLP3 with 12 hidden neurons. Fig. 11 shows a block
diagram for the training and testing, where 135 samples
are used for training (A optical power = —4,-2,0,2,4
dB; AOSNR = -8,0,8 dB; ACD = -20,0,20 ps/nm;
ADGD = —4,0,4 ps) and 32 samples are used for testing
(Aoptical power = —3,—1,1,3 dB; AOSNR = —4,4 dB;
ACD = —-10,10 ps/nm; ADGD = —2,2 ps).

Similar to Fig. 8, Fig. 12 shows the simulation setup for mon-
itoring impairment causing changes from a baseline. The initial
system has a certain amount of impairments, which is added
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with a spool of optical fiber. The rest of the system stays the
same, as shown in Fig. 8.

The baseline is set to opticalpower = —1 dBm,
OSNR = 28 dB, CD = 20 ps/nm and DGD = 4 ps for
initial training and testing. The final training error is ~0.1 in
this case. The ANN reports a correlation coefficient of 0.93.
Fig. 13 compares the testing and ANN-modeled data for the
optical power, OSNR, CD, and DGD changes. It is shown
that the ANN models, trained with parameters derived from
eye diagrams and eye histograms, can potentially be used to
simultaneously identify the accumulated fiber nonlinearity,
OSNR, CD, and PMD causing changes in WDM channels.

To consider other cases, we vary the baseline arbitrarily and
repeat the training and testing. Fig. 14 shows a plot of correlation
coefficients for various baselines. We can clearly see that high
coefficients are achieved regardless of the baseline, which shows
that the ANN approach is largely independent of the system ref-
erence. This technique could potentially be valuable for perfor-
mance monitoring in optical systems with dynamic traffic.
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The inputs of ANNSs so far are derived from eye-diagrams,
which in general need clock recovery and are considered high
cost. Recently we are able to derive parameters from the asyn-
chronously generated delay-tap plots and train the ANNSs to si-
multaneously identify OSNR, CD and DGD [32]. Moreover, the
inputs of ANNSs can be any other types of parameters that re-
flect the changes of impairments. In the following section, we
extend the monitoring work to identify the time misalignments
in RZ-DQPSK transmitters, in which case the inputs of ANNs
are the RF tone/low frequency power levels.

V. ANNSs FOR TIME MISALIGNMENT IDENTIFICATION IN
RZ-DQPSK TRANSMITTERS

As the modulation format becomes more advanced, the trans-
mitter tends to become more complex in terms of number of
components and time synchronization among the components.
Due to unavoidable optical/electronic device aging, imperfec-
tions and temperature variations, maintaining the correct timing
within the transmitter is quite difficult and yet crucial to main-
tain system performance. Therefore, a laudable goal would be
to monitor the time misalignment in order to provide a feedback
signal and maintain proper synchronization. For an RZ-QPSK
transmitter, the following are important: (i) I and Q data must
be aligned with each other, and (ii) the RZ pulse carver must be
synchronized to the data.

There have been reports of measurements of time mis-
alignment/synchronization for serial and parallel types of
RZ-DQPSK transmitters [33]. In these techniques, a specific
parameter is measured, such as power in an RF tone or power in
one part of the spectrum. These parameters will either increase
or decrease with a particular temporal misalignment. One could
use a simple feedback loop that would either maximize or
minimize these measured values. However, it would be more
valuable if the transmitter could be “trained” to recognize and
directly relate RF tone power or spectral power to a specific
temporal misalignment cause and value.

Since ANNSs have the ability to learn the relationships among
sets of input-output data that are characteristic of the device or
system under consideration and then apply the relationship to
any testing data within the range of interest, we apply this tech-
nique to identify the time misalignments in both parallel and
serial types of RZ-DQPSK transmitters.

Fig. 15(a) shows the concept of misalignments in par-
allel-type RZ-DQPSK transmitters. When data streams I and
Q are misaligned, the clock tone power at the symbol rate
decreases with the increase of the misalignment. When data
I/Q are aligned, the RF power at low frequencies increases
with the data/pulse carving misalignment. Fig. 15(b) shows
the misalignments in a serial-type RZ-DQPSK transmitter. By
monitoring the optical clock tone at the symbol rate, we can
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Fig. 15. Conceptual diagram of the misalignments in parallel/serial-type
RZ-DQPSK transmitters. (a) Parallel-type. (b) Serial-type.

determine the I/Q misalignment, and the misalignment between
data and carver can be monitored by measuring the power
change in RF clock tone.

The ANN architecture used in this work is a feed-forward,
three-layer perceptron structure. The hidden layer consists of
8 hidden neurons. The conjugate gradient method is used for
training. We choose the RF clock tone power after direct de-
tection of DQPSK and low-frequency RF power after direct de-
tection of RZ-DQPSK for the parallel case, while for the serial
case, we use the optical clock tone power of DQPSK (which can
be filtered by an optical filter and detected by a photodiode to
convert to RF power) and the RF clock tone power after direct
detection of RZ-DQPSK for the inputs to the ANNs. Note that
after directly detecting RZ-DQPSK in the parallel case and the
low-frequency RF power in the serial case, the clock power can
serve as a third parameter for training.

The training data is a set of 121 samples (I/Q misalignment =
0 — 50 ps in steps of 5 ps; carver misalignment = 0 — 50 ps
in steps of 5 ps). Fig. 16(a) shows the training error versus
epochs for the 20-Gb/s parallel RZ-DQPSK transmitter. The
final training error is ~0.087 when two inputs are used and
~0.03 when three inputs are used. Once the model is trained,
we validate its accuracy by use of a different set of testing data
that includes 100 samples (I/Q misalignment = 2.5 —47.5 psin
steps of 5 ps; carver misalignment = 2.5 — 47.5 ps in steps of 5
ps). The ANN reports a correlation coefficient of 0.97 and 0.99
for 2-input and 3-input, respectively. Fig. 16(b) and (c) compare
the testing and ANN-modeled data for the 2-input and 3-input
models. We observe that the 3-input case gives a better predic-
tion.
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Fig. 16. Simulation results for comparison of testing and ANN-modeled data
for 20-Gb/s parallel RZ-DQPSK. (a) Training error; (b) with 2-input ANN
model; (c) with 3-input ANN model.

Fig. 17 shows the results for the 80-Gb/s serial-type
RZ-DQPSK transmitter. A set of 121 samples I/Q
misalignment = 0 — 12.5 ps in steps of 1.25 ps;
carver misalignment = 0 — 12.5 ps in steps of 1.25 ps)
is used for training and another set of 100 samples (I/Q
misalignment = 0.625 — 11.875 ps in steps of 1.25 ps;
carver misalignment = 0.625 — 11.875 ps in steps of 1.25 ps)
is used for testing. We observe that the 2-input model gives
a good prediction, with a correlation coefficient of 0.99. In
contrast, the 2-input model in the parallel case does not do as
well. The reason is that the RF low-frequency power, which
serves as the second input in the parallel-type transmitter
depends not only on the carver misalignment but also on the
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I/Q misalignment, while for the serial case, the second input
RF clock tone power depends only on the carver misalignment
due to the previous phase modulation.

This technique is shown for direct-detection systems, but
should also work for coherent systems, since coherent and
noncoherent setups can share the same types of transmitters.

VI. CONCLUSION

In this paper, we proposed and demonstrated a technique
of using artificial neural networks for optical performance
monitoring. The concept and structure of our neural networks
were introduced. Simultaneous identification of OSNR, CD
and PMD from eye-diagram parameters was demonstrated in
40 Gb/s OOK and DPSK systems with high correlation coef-
ficients. The technique was extended to identify accumulated
channel nonlinear effects in addition to CD, PMD, and OSNR
from eye-diagram and eye-histogram parameters in a 3-channel
40 Gb/s DPSK WDM system. A correlation coefficient of 0.97
was obtained for a set of testing data. Furthermore, we pro-
posed using our ANN approach to monitor impairment causing
changes from a baseline. Simultaneous identification of ac-
cumulated fiber nonlinearity, OSNR, CD, and PMD causing
changes from baseline was obtained and high correlation coef-
ficients were achieved with various baselines. ANNs were also
used for the simultaneous identification of I/Q data misalign-
ment and data/carver misalignment in both parallel-type and
serial-type RZ-DQPSK transmitters. A correlation coefficient
of 0.99 was obtained by using a 3-input ANN for the parallel
case and a 2-input ANN for the serial case.

We have shown that ANNs are a powerful tool for perfor-
mance monitoring in optical fiber communication systems. Be-
cause ANNSs have the ability to model arbitrary relationships
between inputs and outputs, they have the potential to be useful
in other aspects of optical system and device design.
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