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Alignment of Noisy Signals

Kevin J. Coakley and Paul Hale

Abstract—We study the relative performance of various whered, is a unobserved drift parameter a¥d) is the unob-
methods for aligning noisy one-dimensional signals. No knowledge served signal we want to estimate. From a seVdignals, we
of the shape of the misaligned signals is assumed. We simulate Sig'cannot estimate the set of absolute dissa, - - - , 6. How-

nals corrupted by both additive noise and timing jitter noise which . . . .
are similar in complexity to nose-to-nose oscilloscope calibration ever, we can estimate the relative drift of fte andkth signal

signals collected at NIST. In one method, we estimate the relative jx = 6; — 0. In this work, for all methods, we estimate the
shift of two signals as the difference of their estimated centroids. relative shift of thejth signal with respect to the first signal.
We present a new adaptive algorithm for centroid estimation. We Hence, we estimat&/ — 1 relative shifts from/N misaligned

also estimate relative shifts from three different implementations signals. Based on the estimated relative shifts, we align each of

of cross-correlation analysis. In a complete implementation, for the si | dth te th fthe ali dsi |
N signals, relative shifts are estimated from allN(N — 1)y2 € sSignaisand then compute the average ot the aligned signals.

distinct pairs of signals. In a naive implementation, relative shifts This signal average is our estimates¢f). The best we can do
are estimated from just (IN — 1) pairs of signals. In an iterative  is estimate a translated versionsgt), that iss(¢ +7') whereT
adaptive implementation, we estimate the relative shift of each depends on the choice of the reference signal. If we pick the first
signal with respect to a template signal which, at each iteration, is signal as the reference, we must translatejthebserved noisy

equated to the signal average of the aligned signals. In simulation . . . ) .
experiments, 100 misaligned signals are generated. For all noiseS'gnal by the estimated value df;. Summing the first signal

levels, the complete cross-correlation method yields the most With the other’V — 1 translated noisy signals, and dividing by
accurate estimates of the relative shifts. The relative performance N yields our signal average. Given a relative shift estimate, we

of the other methods depends on the noise levels. translate a signal by a Fourier method.

Index Terms—Adaptive estimation, cross-correlation analysis, N previous studies, the relative shift of two noisy signals was
high-speed sampling oscilloscopes, least-squares estimationgstimated as the difference of the time centroids of the signals
robust estimation, signal alignment, timing jitter noise. [3]. These centroid estimates are sensitive to noise. In this work,

we present a new time centroid estimate which is robust against
the effects of noise.
) _ If the true signaks(¢) were known, the relative shifts of a set
W E STUDY the accuracy of various methods for alignpf v signals can be determined by an optimal matched filtering
ment of noisy one-dimensional signals. Our work ignproach. In this approach, cross-correlation analysis of each
motivated by a project where we want to characterize impulggynal with respect to a template signal [equakte)] would
response functions of high-speed sampling oscilloscopes [hb|q shift estimates. Sincgt) is unknown, an optimal matched
[2]. In our experiments, we measure noisy signals which drifftering approach is not feasible. However, relative shifts can be
in time. To improve the signal-to-noise ratio (SNR), we colle@stimated by an iterative suboptimal matched filtering approach
many waveforms. We wish to estimate the unknown “trug3] [4]. We denote this iterative approach as the “adaptive” im-
signal from an ensemble of misaligned noise corrupted signgifamentation of the cross-correlation method. For comparison,
If we average the misaligned noisy signals, the resulting signgb also estimate the relative shifts from cross-correlation anal-
average is blurred with respect to the “true” signal. Hencgs;s of each signal with respect to the first signal (this is equiva-
before averaging, we must align the signals. Signal alignmeght to halting the adaptive algorithm after the first iteration). We
problems occur in other areas including the biomedical fieldy| this the “naive implementation” of cross-correlation anal-
[3]-[11], speech recognition [12], [13], seismology [14]ysis.
particle physics [15], [16], and sonar and radar [17]-{20]. We introduce a new cross-correlation method for estimating
We assume that each noisy signal is shifted with respecttf@: relative shifts ofV misaligned signals. Based on cross-cor-
the others. That is, the expected value of tle signal at time  re|ation analysis of each of the distin®( N — 1) pairs of sig-
tis nals, we estimate thé&/ — 1 relative shifts of interest by the
L B method of least-squares. In [18], [19] relative shifts were esti-
(s(t)) = 5(t + 6x) (1) mated from cross-correlation analysis of all possible pairs of
signals. The noise was assumed to be additive and indepen-
dent of the signal. Assuming knowledge of the power spec-
. . _ rum of both the additive noise and of the signal, a weighted
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Hence, the method developed in [18] and [19] is not applicabg a
to our case.

We simulate signals which have complexity similar to exs
perimental data. Near the boundaries, the noise-free S|mulalo
signal and noise-free experimental oscilloscope signals are ¢g,‘_

proximately flat. Over a short interval of time, both the simu-g N
lated and real signals rise and then fall (somewhat like a d|ffe~ '

[a\)

rary un

—

arbi

0 1000 2000 3000 4000
e.nt|ated Gaussian _pul;e QOes) .Aft.er this r_apld rise and fall, tg fime (arbitrary units)
signals follow quasiperiodic oscillations which eventually dam b

out. We do not claim that the alignment methods presented he2
will work well for signals which display significant compIeX|ty
at either boundary.

The paper is organized as follows. In Section Il, we define ow e
robust centroid estimate of relative shift. In Section Il the threg -
implementations of cross-correlation analysis are presented.? «
Section 1V, the relative performances of the different methocg 0 1000 2000 3000 4000
for estimation of relative shifts are studied by means of Mont. time (arbitrary units)

Carlo SI,mUIatlon' qu all cases considered, the complete _CI’OES- 1. (a): Noise-free simulated signal. (b): Noisy simulated signal where
correlation method is the most accurate method. In Section,V, , = 0.02 ando;;, = 2.5. We plot thet-G wherea is the optimal threshold
we estimate relative shifts for a set of 100 measured misaligrfedthe centroid method.

oscilloscope signals.

--------- theoretical estimate of optimal threshold

rbitrary units

where
II. CENTROID METHOD .
1 if|s(t)] > «
In [3], the time centroid of a signal was computed in two H(t, o) = { _ (6)
ways. The first centroid estimate was computed from the posi- 0 otherwise
tive part of the signal wherex is the threshold. We estimate the relative shift between
signalk andj asdy; = Cy, — C;.
Z S+(ti)ti
i @) A. Theoretical Threshold Selection Rule
Z st () Given knowledge of the true signal and the actual relative
‘ shifts, we can minimize the root-mean-square (RMS) predic-
where tion error of the relative shift estimate as a functiomofThe
. threshold which minimizes this RMS prediction error is called
sT(t) = {S(t) if s(t) > 0 (3) the “theoretical” estimate of the optimal threshold.
0 otherwise. We simulate pairs of misaligned signals as follows. For each
The second estimate was pair, the relative drift of the signals is a Gaussian random vari-
able with expected value equal to 0 and standard deviation equal
Z |s(ti)|*t: to 5. Each signal has 4096 time samples. Ftietime sample
4) of the jth simulated waveform is
Z' s'[k] = g(te + 7 + &) + & @)

These estimates are not robust against the effects of noisewfere the timing jitter of théth time sample of thgth signal
illustrate, suppose that beyond a certain timehe true (noise- js modeled as a realization of a Gaussian process
free) signal is 0. Further, assume that additive noise contami-

nates the signal. In the centroid computation, values of the signal i~ N(0, o7). 8
corresponding t@ > ¢., contribute no useful information. In- '
stead, noise in this part of the signal increases the variability Biie additive noise realizations, are mutually independent
the estimate. Gaussians. Each has expected value of 0 and variafige

To reduce variability, we estimate the centroid from a subséitter realizations at different times are independent; additive
of the full signal. To belong to this subset, the magnitude oise realizations at different times are independent; and jitter
the signal must exceed a selected threshold. We estimate ithendependent of additive noise at any time. This assumption

centroid of a signak(¢) as is consistent with how the high-speed oscilloscope under study
operates. The analytic expression for the simulated signal is
E| DIH(E;, a)t; given in Appendix I.
C= (5) In Fig. 1(a), we plot the noise-free signal versus time. In
E| DIH (5, a) Fig. 1(b), we plot a noisy realization of the signal versus time

whereoj;, = 2.5 ando,qq = 0.02. As a dashed line, we plot
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> TABLE |

o - theoretical estimate of optimal threshold THEORETICAL ESTIMATES OF OPTIMAL THRESHOLD AND RMS FERDICTION

ERROR FORCENTROID METHOD FOR APAIR OF MISALIGNED SIMULATED
SIGNALS. THE SIMULATED SIGNAL IS THE SUM OF A DIFFERENTIATED
GAUSSIAN, THREE GAUSSIANS AND A DAMPED SINUSOID. 0 ;;; = 2.5
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= TABLE I

THEORETICAL ESTIMATES OF OPTIMAL THRESHOLDS FORCENTROID
METHOD OF ESTIMATION OF RELATIVE SHIFTS OF 100 MISALIGNED
SIMULATED SIGNALS. 0,p:5¢ = 5

1

0.0 0.5 1.0 15 2.0

threshold (arbitrary units)
Tjit
Fig. 2. RMS prediction error for centroid estimate of relative shift of noisy Opad| O 1 2 3 4 5

realizations ofy whereo ;;; = 2.5, 0,44 = 0.02 ando ;5 = 5.
0.00 [0.080 0.080 0.080 0.080 0.080 0.080

+& whered is selected by the theoretical selection rule method. 0.02|0-440 0.160 0.150 0.150 0.150 0.150

(Fig. 2). 0.04|0.490 0.240 0.240 0.230 0.230 0.230
The noise-free version af is well localized if we threshold
the signal ate = 0.08. That is, |g(t)| > 0.08 for 526 <
T < 613. Hence, 0.08 is a localization level. Whep,y > 0,
the subset of the signal which satisfigg¢)| > 0.08, is not 0.10[0.610 0.580 0.565 0.540 0.530 0.540
well localized; random excursions above 0.08 cause high vari-
ability in the centroid estimate. For the example of Fig. 1, the

0.06 [0.550 0.510 0.465 0.355 0.330 0.325
0.080.585 0.550 0.500 0.485 0.435 0.440

theoretical estimate of the optimal thresholdsis= 0.15 = Our statistical measure of the total power of the average of the
0.08 + 3.5 X o,qq. The accuracy of the centroid method is dra@ligned signals is
matically improved by our method (Table I). N

For various choices of;;; andoqqq, We compute RMS pre- SUMSQ = Z (é[k])Q )
diction error. For each choice af;;; ando,qq, We simulate et

12 runs. In each run, we simulate 1000 pairs of noisy signals . ) )
and select the optimal threshold by minimizing RMS predid’yheres[k] is thekth time sample of the average of the aligned

tion error. (In the study, we vary the threshold from 0 to 1 b§|gnals. In practice, for a set of noisy signals, we estimate rel-

increments of 0.01.) In Table II, we list the median value d:-ﬁive ;hli(;ts for each of rrrl]any Icapdide;]tit thr(ra]sholds. For ?aﬁh
the 12 estimates for the various noise levels. For all cases, t res 0 N we estimate the relative shifts, t ? a"erage_ of the
0.08 + 3 X 0au aligned signals andU M SQ. The threshold which maximizes

SUMSQ is our empirical estimate of the optimal threshold.

We study the accuracy of our empirical threshold selection
rule by a Monte Carlo method. In each run of the Monte Carlo

In real applications, we do not know the actual shifts nor dexperiment, we simulate a set of 100 misaligned noisy signals.
we know the shape of the “true” signal. Hence, the theoretidal Figs. 3(a) and (b) we illustrate the empirical threshold se-
selection rule is not practical. As an alternative, we can seléettion rule by plottingSUM S@ as a function of threshold for
the threshold by an empirical threshold selection rule. a sample run where,qq = 0.08, 5j;; = 3 ando.pipr = 5.

In general, the average of misaligned signals will have leBsr this case, the empirical and theoretical selection rules agree
total power than the average of properly aligned signals [9fery well. In Table Ill, we list empirical estimates of the op-
More explicitly, consider a noise-free ideal signal which, @mal threshold for other cases. The statistical correlation be-
frequency f, has Fourier transformX (f). If this signal is tween the empirical (Table IIl) and theoretical (Table II) esti-
translated by, at frequencyyf, its Fourier transform becomesmates isp?> = 0.89. Further all the empirical and theoretical
exp(—j2n6 )X (f). If the shift § is a random variable, the estimates satisfg > 0.08 + 3 X o,44. Thus, the estimates are
magnitude of the expected value ofp(—j276f) is less than plausible because they exceed the localization level of 0.08 (see
1. Hence, at each frequency, on average, misalignment redusestion 1l-A) by3 x ¢ or more.
power in an ideal signal. By Parseval’'s Theorem, the integratedn Tables IV and V, we compare the relative performance of
power over all frequencies equals the integrated square of the empirical and theoretical threshold selection rules according
signal in the time domain. According to our empirical selectioto a RMS prediction error criterion. The RMS statistic is defined
rule, the best estimate of the optimal threshold is the one thatAppendix Il. For the cases studied,the RMS associated with
maximizes the total power of the average of the aligned signalse empirical selection rule is no more than 12% more than the

B. Empirical Threshold Selection Rule
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a TABLE IV
z ° K RMS FOR ESTIMATED SHIFTS OF A SET OF 100 SGNALS. THRESHOLDS
R ARE SELECTED EMPIRICALLY (TABLE Ill)
g ;
-] .
88 . Tjit
g s ‘
:E) Q "‘-.‘...“.“"“M." Tadd 0 1 2 3 4 5
® 0.0 0.2 0.4 0.6 0.8 1.0 0.0010.015 0.240 0.423 0.630 0.750 0.878
threshold (arbitrary units)
0.02]0.078 0.235 0.480 0.588 0.846 1.105
b 0.040.143 0.277 0.518 0.702 0.717 1.014
§ 2 0.06 |0.205 0.335 0.553 0.692 0.866 1.131
c’. * ......... ete *
é : T e, 0.0810.229 0.400 0.608 0.750 0.966 1.197
o D
3 3 . . ) ) 0.10]0.338 0.372 0.589 0.850 1.034 1.171
Ew " —— empirical estimate of optimal threshoid
sgy - theoretical estimate of optimal threshold
2.
0.4 05 0.6 07 0.8 0.9 1.0
threshold (arbitrary units) TABLE V
) / o RATIO OF RMS FREDICTION ERRORS OFRELATIVE SHIFT FOR EMPIRICAL
Fig. 3. (a): Total power{UMS(Q) of the average of 100 realizations f  THrReSHOLD SELECTION RULE AND THEORETICAL THRESHOLD SELECTION

whereo ;s = 3, 0,44 = 0.08 ando.; ;. = 5. (b): NormalizedSUM SQ
for the same case.

RULE IMPLEMENTATIONS OF THECENTROID METHOD

Tjit
TABLE Il 0 L : 5 4 5
EMPIRICAL ESTIMATE OF OPTIMAL THRESHOLD FORCENTROID ESTIMATE OF Tadd
RELATIVE SHIFTS OF100 MISALIGNED SIMULATED SIGNALS. Ushijt:‘S 0.00|0.805 1.038 1.016 1.005 1.000 1.023
” 0.02(0.830 1.000 1.014 0.999 0.997 1.129
it
- 0 . 5 5 . 5 0.04|1.039 1.000 1.027 0.972 1.000 1.008
add
0.0010.100 0.110 0.090 0.140 0.080 0.130 0.06[0.977 0.972 1.006 1.025 1.000 1.096
0.0210.170 0.160 0140 0160 0.140 0.400 0.081.050 1.093 0.985 0.987 0.994 1.022
00110470 0240 0260 0.250 0230 0.220 0.10|1.042 0.990 1.051 1.129 1.000 1.033
0.06 [ 0.540 0.520 0.400 0.310 0.330 0.560
0.080.620 0.490 0.440 0.400 0.490 0.370 whereM is the number of samples above the thresholdhen
0.10 | 0.550 0.540 0.500 0.490 0.630 0.670 the interval between samples4s. In a Monte Carlo experi-
ment, we sampled realizations of the simulated signal over the

interval (1, 4096). We varied the sampling interdsd from 0.1

RMS associated with the theoretical selection rule. Hence, fife>- IN the simulationg;i; = 2, 74q¢ = 0.02, the RMS rela-
empirical selection rule performs almost as well as the theor8 shift of the two signals in each pair is 5, and the threshold

ical selection rule. is @« = 0.18. For this special case, the RMS prediction error is
Comment: Consider the case where jitter realizations at difvell approximated by the following formula

ferent times are independent; additive noise realizations at dif-

ferent times are independent; and jitter is independent of addi-

tive noise at any time. On average, the number of samples above

the threshold is inversely proportional to the interval between

time samples. For the case where the realizations of additive

noise and the realizations of the jitter noise at different timéaver this range ofa¢, RMS varied from 0.2 to about 1.4. The

are mutually independent, the accuracy of the centroid estimé@et-mean-square difference between the computed and pre-
should improve if the sampling interval is reduced provided théicted value of RMS was less than 2%. From this study, for mu-
the total duration of the experiment is fixed. This is so becauiéally independent additive noise and jitter noise processes, we
the centroid estimate is a weighted average. As the numbercgpclude that we can make the centroid estimate as accurate as
samples in the weighted average increases, the variability of #@ like, provided that we can collect an unlimited number of

weighted average decreases. Hence, the root-mean-square!fi& samples during a fixed time interval.
diction error of the relative shift should scale as For other signal models, where the jitter and additive noise are

mutually independent, we expect that RMSy/ At. However,
the proportionality constant would not necessarily be the same
as the above case.

RMS =~ 0.6315v/At. (11)

1
RMS ¢ —— x VAt
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I1l. CROSSCORRELATION METHODS We have

A. Naive Cross-Correlation
: . . . z=A0+¢ (15)
In the simplest implementation of the cross-correlation ap-

proach, we estimate the relative shift of tjtb signal with re- wherec is a residual vector and
spect to the first signal. Thieth sample of the translated version )
of the jth signal iss’ (¢, — A7,). To estimate the relative shift 1

0 0
of the jth and first signal, we minimize Lo
i . 1rqy 2
> (57t — Ay) — sME]) (12) . 0 1 16)
k -1 1 0
as a function ofA?; . Denote the value ok, which minimizes -1 01
the above as&jl. Minimization of the above is equivalent to 0 -1 1

maximization of the cross-correlation (at lag 0) of the first signal
and the translated version of thjéh signal. A reasonable es-
timate ofd;; is A;1. We shift a signal by a Fourier methqd.T at is, we use the method of least squares. The least-squares
We use the fact that the Fourier transform of a translated signak - ote of is
X(t + 6), at frequencyf is exp(—j27 f6)X(f) where X (f)

is the Fourier transform akK (¢). Hence, to estimate the trans-

lated signal, we adjust the Fourier transformX{t) and then

do an inverse Fourier transform to estimate the translated verﬁ A d h bfSinced is af . all
sion of X (t). Before computing the Fourier transform of eacl/€"® enotes the transpose.f Since¢ is a function of a

noisy simulated signal, we taper the signal with a cosine béff(, relati\{e shifts it_ is gxpected to ,be a better es'gimate' than the
data window [21]. Each signal has 4096 samples. The taper i831V€ estimate which is based on just three rtelanvle shifts.

for 50 < ¢ < 4047. (Near the boundaries, the expected value of 1here are analytic expressions oA and(A*4)~*. In gen-

the simulated signal is essentially 0. For these simulated sign&&, for V' signals,

tapering has a negligible effect on the relative shift estimates.) o

To ensure convergence to the global minimum, we first evaluate (AL A),; = {N -1 ifi=y (18)

(12) over a grid centered on the actual value of the relative shift. N -1 otherwise.

About the grid value which minimizes (12), we search for the

global minimum using a golden search and parabolic interpola/e derive the inverse ofA*A) with the Sherman—Morrison

We estimate by minimizing the Euclidean norm ¢f — Af)|.

6= (AA) LA (17)

tion algorithm [22]. formula [23] which states that
In this naive cross-correlation method, we compiyte- 1
relative shifts from theV signals. However, fromV signals, (B —w')~! = B~ 4 B tuvt B~ (19)

there areV(IV — 1)/2 distinct pairs of signals. Hencé;jl is
not the most accurate estimatedyf . For this reason, we call
Aj; the naive cross-correlation estimate/®f; . where

B. Complete Cross-Correlation Method for Alignment a=1/(1-v'B" ). (20)

To demonstrate how to estimate the relative shifts more acGhe get that
rately, consider the case wheke= 4. The three relative shifts
we seek to estimate form the vector

Lo [2/N ifi=
(A*A);;" = . (21)
do1 I 1/N otherwise.
=1 4ds |. (13)
d For the caséV = 4, we have
41
From the data, we estimate six relative shifts. These estimates 211 -1 -1 0
form the data vector (AtA)ytAt=1/4]11 2 1 1 0 -1]. (22
Aoy 112 0 1 1
A
A?’l Hence,
c= " (14) S,
Ago 2801 + Az + Ay — Ago — Ay
Ao g = 1/4 Aoy +283 + Ay + Az —Ags | (23)

Ay Agy 4+ Asy +2A4 + Apo + Ay
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Fig. 4. RMS prediction error versus RMS additive noise when 100 misaligned simulated signals are aligned by different methods.

In general, the estimated relative shift between/ttieand jth _ H
signals is s3
R U ————
5
o 1 o o o ¢ N y --------- +/- empirical estimate of optimal threshold
di; = N 20, + Z '(Arnj —App) |- (29) =
m#k, j 0 1 2 3 4
time (ns)
We call (24) the complete cross-correlation estimatef/gf ()
Whenm # j andm # k
E,
<Ak1> = <Amj — Ap) = iy (25) :'gfug
=]
©
Hence, the complete cross-correlation estimate is the weightz
mean ofV — 1 different estimates. Each of these estimates h@ S
an expected value equaldp;. The termA,; is weighted twice 0 1 2 3 4
as much as the other terms,,; — A,,,;. If we assume that the time (ns)
terms are statistically independent (b)
R R R Fig. 5. (a) Measured oscilloscope signal. (b) Average of 100 aligned
VAR (Amj —Ank) =2 x VAR (Ajk)_ (26) oscilloscope signals using cross-correlation method estimates of relative shifts.

The interval between samples=s1.953 ps.

When we combine statistically independent estimates which are
unbiased but have different variances, the optimal weights &@e Adaptive Cross-Correlation

inversely proportional to the variance of each term [24, p. 88]. |, yhe adaptive cross-correlation [3], [4] method, during each
Given the assumption of independence, the weights in (24) & ation, we estimate all relative shifts by maximizing the cross-

optimal. Under the assumption that the terms in (24) are staligsire|ation of each of the signals and a template signal. Initially,
tically independent, the relative variance of the complete Crogf first signal is the template signal. From the relative shifts, we

correlation and naive cross-correlation estimates is compute the average of the shifted signals. The updated tem-
— plate signal is set equal to this signal average. In [4], the authors
VAR (d’“f) _ 2 27) remark that the adaptive cross-correlation method approach is

a suboptimal matched filter approach. In an optimal matched
filter approach, the template is the “true” waveform.

To derive this, we use the fact that the variance of a weightedWe iterate the adaptive algorithm 30 times. Hence, for set of
average of independent random variabless VAR(Y . w;z;) 100 signals, we perforisd x 100 cross-correlation analyses. For

= Y, w? VAR(z;). We do not expect this much variance reall cases, by 30 iterations, the mean squared difference between
duction because the terms in (24) are statistically dependenteach of the shifted signals and the template signal convergesto a

VAR(Ay;) N
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Fig. 6. Relative shift estimates for experimental data due to different methods.

precision of 0.004% (or less). By 30 iterations, the RMS statistixoss-correlation method performs poorly compared to the com-
is accurately determined to 0.1% (or less). plete cross-correlation method and the centroid method (Fig. 4).
As the number of signal&/ increases, we expect that the
RMS prediction error of the adaptive cross-correlation method
to decrease, but never to go below, the nonzero RMS predic-

For each choice of;;; ando .44, We simulate a set of 100 tion error of the optimal matched filtering approach. In con-
misaligned signals. The standard deviation of the random sHfst, the RMS prediction error of the complete cross-correla-
associated with each signal is 2.5. We estimate relative shif@h method should tend to an arbitrarily low level provided that
by naive cross-correlation, complete cross-correlation, adaptid number of signal®y’ is increased to an arbitrarily high level.
cross-correlation, and the centroid method. In Fig. 4, we plot tA&is is expected because the number of distinct pairs of signals
RMS prediction error for all the methods versul additive noigé N(V — 1)/2 whereas the number of parameter we estimate
RMS. See Appendix Il for a definition of RMS prediction erroiis only N — 1.
for estimation of N — 1 relative shifts.

If the terms in (24) were independent, the RMS ratio for
the complete and naive cross-correlation methods would be
Vv2/10 = 0.1414 according to (27). For the cases studied, We estimate the relative shifts for a set of 100 experimental
the ratio falls in the interval (0.17,0.62). Since the observexscilloscope signals collected at NIST. In each signal, the in-
variance reduction is less than the theoretical value givérval between samples is 1.953 ps. In the top part of Fig. 5,
in (27) [which is derived under the assumption the terms ime show one of the measured oscilloscope waveform and the
(24) are independent], we conclude that the terms in (2dyerage of the 100 aligned signals. To compute this signal av-
are statistically dependent. For all noise levels, the completege, we use the relative shifts provided by the complete cross-
cross-correlation method yields the lowest RMS predictiacorrelation method. In Fig. 6, we show the estimated relative
error. In all cases, the adaptive cross-correlation method yieklsfts determined by the different methods. In the cross-correla-
lower RMS prediction error than does the naive correlatidion analyses, signals are not tapered before computing Fourier
method The relative performance of the centroid and adaptivansforms. We do not taper because as the boundaries are ap-
cross-correlation methods depends on the noise level. proached, the signal levels off to a nonzero plateau. Hence, near

Comment: The performance of the adaptive cross-correldhe boundary, tapering would distort the signal from this plateau
tion method should be no better than the performance of kvel toward zero.
optimal matched filtering approach. In the optimal filtering ap- We expect that a poor estimation method will yield a rougher
proach, the template signal is the expected value of an ensemblative shift curve compared to a good estimation method.
of perfectly aligned noisy signals. In the adaptive cross-corr€hus, the centroid method appears to be the least accurate
lation method, the template is the average of a finite numbethod and the adaptive and complete cross-correlation appear
of imperfectly aligned noisy signals. The alignment is impeto be the most accurate methods (Fig. 6). The relative shift esti-
fect because the relative shift estimates are not exactly eqoedtes for the complete and adaptive cross-correlation methods
to the true relative shifts. For high jitter noise, the adaptivare close; the RMS value of their difference is 0.0125 ps. In

IV. COMPARISON STUDY

V. EXPERIMENTAL DATA
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the simulation study, for low jitter noise levels, the adaptivevhere
and complete cross-correlation method estimates were in
good agreement (Fig. 4). Hence, the observed closeness of z = (t —12)/40.96.
the adaptive and complete cross-correlation estimates may be
attributed to a relative low jitter noise level. For these signals, Define the following arguments:
RMS jitter noise is about 1 ps.
bl :(t—tl)/al, bQI(tQ—t)/CLQ, bgz(t—tg)/ag,
VI. SUMMARY b4 I(t—t4)/a4, b;) = (t—t;))/a;), b(; = (t—t(;)/a(;.
We simulated signals corrupted by both additive noise and
timing jitter noise. In one method, we estimated the relative Define the following functions:
shift of two signals as the difference of their estimated centroids.
We presented a new adaptive algorithm for centroid estimation fi=—5x by x exp(—b?)
which is robust against the effects of noise. We also estimated F2 =0.08 x f(z) x sin(2nt/ar) x exp(—b%)
relative shifts by three different implementations of cross-cor-

! . e . fa = exp(—13)

relation analysis. In the naive implementation of the cross-cor- )
relation method, for a set d¥ signals, relative shifts are esti- f1=0.02 x exp(—b3)
mated from cross-correlation analysis/éf- 1 pairs of signals. f5 =0.03 x exp(—b3)
We introduced a complete implementation of the cross-correla- fo =—0.75 x exp(—b2).

tion method. In this approach, estimates were determined from
cross-correlation analysis of aW (N — 1)/2 distinct pairs of
signals. In an adaptive implementation of the cross-correlation
method, relative shifts were estimated by maximizing the cross-
correlation between the shifted version of each signal and atem- APPENDIX Il

plate signal. After each iteration of the adaptive algorithm, th@ER':ORMANCECR'TER'O’\l FORESTIMATING RELATIVE SHIFTS
template was equated to the average of the shifted signals. For FROM V. SIGNALS

all noise levels, the complete implementation of the cross-corre\When we estimatév — 1 relative shifts fromN signals, we
lation method was the most accurate method. The accuraciesahpute the RMS value of prediction errors which are adjusted
the adaptive and complete cross-correlation methods were clesehat their mean value is zero. To explain why we do so, con-
for low jitter noise. At high jitter noise, the adaptive method wasider the ideal case where we estimate the relative shifts exactly.
dramatically inferior to the complete cross-correlation methoBor this case, the true absolute shffts, 6., ---, éy5) are re-

The relative accuracy of the robust centroid method and tleted to the estimated relative shifts by

adaptive implementation of the cross-correlation method de-

pended on the choice of noise levels. The relative accuracy of 8 =diy +e (28)

the robust centroid method and the naive implementation of

the cross-correlation method depended on the choice of nQj§sere forj =1, ---, N, the constant satisfiesc = &, — d;
? ? ! J Ji-

levels. In all cases, the adaptive implementation of the cross-Cgscause we cannot estimate the constainbm the data any
relation method was more accurate than the naive implemenigsasyre of performance should be invariant to translation of all

tion of the cross-correlation method. We also estimated relatiygative shift estimates by an arbitrary constant. We select the
shifts for a set of 100 experimental oscilloscope signals.  fqowing translation invariant measure of performance

Our functionisg = fi + fo + fa + fa + f5 + fe.

APPENDIX | N X 2
SIMULATED SIGNAL (RMS)”> =" ((6i —8) = (diy — d)) (29)
Define the following times =1
where
t1 =570, to =650, t3=0600, t5=3000, t;= 2000,

and XN

te = 570. b=+ Z 8; (30)
, . . and

Also, define the following damping factors: -4 X
B B B B e =5 Z di1. (31)

a1 =20, ap=1000, a3=10, a4=100, a5 =50, i

ag =10, a7 = 50. . .
Alternatively, our performance measure is

Define a sigmoid function as follows: N

1
RMS)2 = = ¢; —€)? 32
f(z) = exp(2)/(exp(z) + 1) ( ) N ;( ) 52
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where
a =di —d; (33)
and
N
1
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