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Alignment of Noisy Signals
Kevin J. Coakley and Paul Hale

Abstract—We study the relative performance of various
methods for aligning noisy one-dimensional signals. No knowledge
of the shape of the misaligned signals is assumed. We simulate sig-
nals corrupted by both additive noise and timing jitter noise which
are similar in complexity to nose-to-nose oscilloscope calibration
signals collected at NIST. In one method, we estimate the relative
shift of two signals as the difference of their estimated centroids.
We present a new adaptive algorithm for centroid estimation. We
also estimate relative shifts from three different implementations
of cross-correlation analysis. In a complete implementation, for

signals, relative shifts are estimated from all ( 1) 2
distinct pairs of signals. In a naive implementation, relative shifts
are estimated from just ( 1) pairs of signals. In an iterative
adaptive implementation, we estimate the relative shift of each
signal with respect to a template signal which, at each iteration, is
equated to the signal average of the aligned signals. In simulation
experiments, 100 misaligned signals are generated. For all noise
levels, the complete cross-correlation method yields the most
accurate estimates of the relative shifts. The relative performance
of the other methods depends on the noise levels.

Index Terms—Adaptive estimation, cross-correlation analysis,
high-speed sampling oscilloscopes, least-squares estimation,
robust estimation, signal alignment, timing jitter noise.

I. INTRODUCTION

WE STUDY the accuracy of various methods for align-
ment of noisy one-dimensional signals. Our work is

motivated by a project where we want to characterize impulse
response functions of high-speed sampling oscilloscopes [1],
[2]. In our experiments, we measure noisy signals which drift
in time. To improve the signal-to-noise ratio (SNR), we collect
many waveforms. We wish to estimate the unknown “true”
signal from an ensemble of misaligned noise corrupted signals.
If we average the misaligned noisy signals, the resulting signal
average is blurred with respect to the “true” signal. Hence,
before averaging, we must align the signals. Signal alignment
problems occur in other areas including the biomedical field
[3]–[11], speech recognition [12], [13], seismology [14],
particle physics [15], [16], and sonar and radar [17]–[20].

We assume that each noisy signal is shifted with respect to
the others. That is, the expected value of theth signal at time

is

(1)
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where is a unobserved drift parameter and is the unob-
served signal we want to estimate. From a set ofsignals, we
cannot estimate the set of absolute drifts . How-
ever, we can estimate the relative drift of theth and th signal

. In this work, for all methods, we estimate the
relative shift of the th signal with respect to the first signal.
Hence, we estimate relative shifts from misaligned
signals. Based on the estimated relative shifts, we align each of
the signals and then compute the average of the aligned signals.
This signal average is our estimate of . The best we can do
is estimate a translated version of , that is where
depends on the choice of the reference signal. If we pick the first
signal as the reference, we must translate theth observed noisy
signal by the estimated value of . Summing the first signal
with the other translated noisy signals, and dividing by

yields our signal average. Given a relative shift estimate, we
translate a signal by a Fourier method.

In previous studies, the relative shift of two noisy signals was
estimated as the difference of the time centroids of the signals
[3]. These centroid estimates are sensitive to noise. In this work,
we present a new time centroid estimate which is robust against
the effects of noise.

If the true signal were known, the relative shifts of a set
of signals can be determined by an optimal matched filtering
approach. In this approach, cross-correlation analysis of each
signal with respect to a template signal [equal to ] would
yield shift estimates. Since is unknown, an optimal matched
filtering approach is not feasible. However, relative shifts can be
estimated by an iterative suboptimal matched filtering approach
[3], [4]. We denote this iterative approach as the “adaptive” im-
plementation of the cross-correlation method. For comparison,
we also estimate the relative shifts from cross-correlation anal-
ysis of each signal with respect to the first signal (this is equiva-
lent to halting the adaptive algorithm after the first iteration). We
call this the “naive implementation” of cross-correlation anal-
ysis.

We introduce a new cross-correlation method for estimating
the relative shifts of misaligned signals. Based on cross-cor-
relation analysis of each of the distinct pairs of sig-
nals, we estimate the relative shifts of interest by the
method of least-squares. In [18], [19] relative shifts were esti-
mated from cross-correlation analysis of all possible pairs of
signals. The noise was assumed to be additive and indepen-
dent of the signal. Assuming knowledge of the power spec-
trum of both the additive noise and of the signal, a weighted
least-squares estimate of the relative shifts was obtained. In this
method, the weighting matrix is nondiagonal. In our work, due
to jitter, the noise is not independent of the signal. Further, we do
not assume knowledge of the power spectrum of the signal nor
do we assume knowledge of the power spectrum of the noise.
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Hence, the method developed in [18] and [19] is not applicable
to our case.

We simulate signals which have complexity similar to ex-
perimental data. Near the boundaries, the noise-free simulated
signal and noise-free experimental oscilloscope signals are ap-
proximately flat. Over a short interval of time, both the simu-
lated and real signals rise and then fall (somewhat like a differ-
entiated Gaussian pulse does). After this rapid rise and fall, the
signals follow quasiperiodic oscillations which eventually damp
out. We do not claim that the alignment methods presented here
will work well for signals which display significant complexity
at either boundary.

The paper is organized as follows. In Section II, we define our
robust centroid estimate of relative shift. In Section III the three
implementations of cross-correlation analysis are presented. In
Section IV, the relative performances of the different methods
for estimation of relative shifts are studied by means of Monte
Carlo simulation. For all cases considered, the complete cross-
correlation method is the most accurate method. In Section V,
we estimate relative shifts for a set of 100 measured misaligned
oscilloscope signals.

II. CENTROID METHOD

In [3], the time centroid of a signal was computed in two
ways. The first centroid estimate was computed from the posi-
tive part of the signal

(2)

where

if

otherwise.
(3)

The second estimate was

(4)

These estimates are not robust against the effects of noise. To
illustrate, suppose that beyond a certain time, the true (noise-
free) signal is 0. Further, assume that additive noise contami-
nates the signal. In the centroid computation, values of the signal
corresponding to , contribute no useful information. In-
stead, noise in this part of the signal increases the variability of
the estimate.

To reduce variability, we estimate the centroid from a subset
of the full signal. To belong to this subset, the magnitude of
the signal must exceed a selected threshold. We estimate the
centroid of a signal as

(5)

Fig. 1. (a): Noise-free simulated signal. (b): Noisy simulated signal where
� = 0:02 and� = 2:5. We plot the��̂ where�̂ is the optimal threshold
for the centroid method.

where

if

otherwise
(6)

where is the threshold. We estimate the relative shift between
signal and as .

A. Theoretical Threshold Selection Rule

Given knowledge of the true signal and the actual relative
shifts, we can minimize the root-mean-square (RMS) predic-
tion error of the relative shift estimate as a function of. The
threshold which minimizes this RMS prediction error is called
the “theoretical” estimate of the optimal threshold.

We simulate pairs of misaligned signals as follows. For each
pair, the relative drift of the signals is a Gaussian random vari-
able with expected value equal to 0 and standard deviation equal
to 5. Each signal has 4096 time samples. Theth time sample
of the th simulated waveform is

(7)

where the timing jitter of the th time sample of theth signal
is modeled as a realization of a Gaussian process

(8)

The additive noise realizations are mutually independent
Gaussians. Each has expected value of 0 and variance.
Jitter realizations at different times are independent; additive
noise realizations at different times are independent; and jitter
is independent of additive noise at any time. This assumption
is consistent with how the high-speed oscilloscope under study
operates. The analytic expression for the simulated signal is
given in Appendix I.

In Fig. 1(a), we plot the noise-free signal versus time. In
Fig. 1(b), we plot a noisy realization of the signal versus time
where and . As a dashed line, we plot
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Fig. 2. RMS prediction error for centroid estimate of relative shift of noisy
realizations ofg where� = 2:5, � = 0:02 and� = 5.

where is selected by the theoretical selection rule method.
(Fig. 2).

The noise-free version of is well localized if we threshold
the signal at . That is, for

. Hence, 0.08 is a localization level. When ,
the subset of the signal which satisfies , is not
well localized; random excursions above 0.08 cause high vari-
ability in the centroid estimate. For the example of Fig. 1, the
theoretical estimate of the optimal threshold is

. The accuracy of the centroid method is dra-
matically improved by our method (Table I).

For various choices of and , we compute RMS pre-
diction error. For each choice of and , we simulate
12 runs. In each run, we simulate 1000 pairs of noisy signals
and select the optimal threshold by minimizing RMS predic-
tion error. (In the study, we vary the threshold from 0 to 1 by
increments of 0.01.) In Table II, we list the median value of
the 12 estimates for the various noise levels. For all cases,

.

B. Empirical Threshold Selection Rule

In real applications, we do not know the actual shifts nor do
we know the shape of the “true” signal. Hence, the theoretical
selection rule is not practical. As an alternative, we can select
the threshold by an empirical threshold selection rule.

In general, the average of misaligned signals will have less
total power than the average of properly aligned signals [9].
More explicitly, consider a noise-free ideal signal which, at
frequency , has Fourier transform . If this signal is
translated by , at frequency , its Fourier transform becomes

. If the shift is a random variable, the
magnitude of the expected value of is less than
1. Hence, at each frequency, on average, misalignment reduces
power in an ideal signal. By Parseval’s Theorem, the integrated
power over all frequencies equals the integrated square of the
signal in the time domain. According to our empirical selection
rule, the best estimate of the optimal threshold is the one that
maximizes the total power of the average of the aligned signals.

TABLE I
THEORETICAL ESTIMATES OFOPTIMAL THRESHOLD AND RMS PERDICTION

ERROR FORCENTROID METHOD FOR APAIR OF MISALIGNED SIMULATED

SIGNALS. THE SIMULATED SIGNAL IS THE SUM OF A DIFFERENTIATED

GAUSSIAN, THREEGAUSSIANS AND A DAMPED SINUSOID. � = 2:5

TABLE II
THEORETICAL ESTIMATES OF OPTIMAL THRESHOLDS FORCENTROID

METHOD OF ESTIMATION OF RELATIVE SHIFTS OF 100 MISALIGNED

SIMULATED SIGNALS. � = 5

Our statistical measure of the total power of the average of the
aligned signals is

(9)

where is the th time sample of the average of the aligned
signals. In practice, for a set of noisy signals, we estimate rel-
ative shifts for each of many candidate thresholds. For each
threshold, we estimate the relative shifts, the average of the
aligned signals and . The threshold which maximizes

is our empirical estimate of the optimal threshold.
We study the accuracy of our empirical threshold selection

rule by a Monte Carlo method. In each run of the Monte Carlo
experiment, we simulate a set of 100 misaligned noisy signals.
In Figs. 3(a) and (b) we illustrate the empirical threshold se-
lection rule by plotting as a function of threshold for
a sample run where , and .
For this case, the empirical and theoretical selection rules agree
very well. In Table III, we list empirical estimates of the op-
timal threshold for other cases. The statistical correlation be-
tween the empirical (Table III) and theoretical (Table II) esti-
mates is . Further all the empirical and theoretical
estimates satisfy . Thus, the estimates are
plausible because they exceed the localization level of 0.08 (see
Section II-A) by or more.

In Tables IV and V, we compare the relative performance of
the empirical and theoretical threshold selection rules according
to a RMS prediction error criterion. The RMS statistic is defined
in Appendix II. For the cases studied,the RMS associated with
the empirical selection rule is no more than 12% more than the
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Fig. 3. (a): Total power (SUMSQ) of the average of 100 realizations ofg
where� = 3, � = 0:08 and� = 5. (b): NormalizedSUMSQ

for the same case.

TABLE III
EMPIRICAL ESTIMATE OF OPTIMAL THRESHOLD FORCENTROID ESTIMATE OF

RELATIVE SHIFTS OF100 MISALIGNED SIMULATED SIGNALS. � = 5

RMS associated with the theoretical selection rule. Hence, the
empirical selection rule performs almost as well as the theoret-
ical selection rule.

Comment: Consider the case where jitter realizations at dif-
ferent times are independent; additive noise realizations at dif-
ferent times are independent; and jitter is independent of addi-
tive noise at any time. On average, the number of samples above
the threshold is inversely proportional to the interval between
time samples. For the case where the realizations of additive
noise and the realizations of the jitter noise at different times
are mutually independent, the accuracy of the centroid estimate
should improve if the sampling interval is reduced provided that
the total duration of the experiment is fixed. This is so because
the centroid estimate is a weighted average. As the number of
samples in the weighted average increases, the variability of the
weighted average decreases. Hence, the root-mean-square pre-
diction error of the relative shift should scale as

RMS (10)

TABLE IV
RMS FOR ESTIMATED SHIFTS OF A SET OF 100 SIGNALS. THRESHOLDS

ARE SELECTED EMPIRICALLY (TABLE III )

TABLE V
RATIO OF RMS PREDICTION ERRORS OFRELATIVE SHIFT FOR EMPIRICAL

THRESHOLDSELECTION RULE AND THEORETICAL THRESHOLDSELECTION

RULE IMPLEMENTATIONS OF THECENTROID METHOD

where is the number of samples above the thresholdwhen
the interval between samples is . In a Monte Carlo experi-
ment, we sampled realizations of the simulated signal over the
interval (1, 4096). We varied the sampling interval from 0.1
to 5. In the simulation, , , the RMS rela-
tive shift of the two signals in each pair is 5, and the threshold
is . For this special case, the RMS prediction error is
well approximated by the following formula

RMS (11)

Over this range of , RMS varied from 0.2 to about 1.4. The
root-mean-square difference between the computed and pre-
dicted value of RMS was less than 2%. From this study, for mu-
tually independent additive noise and jitter noise processes, we
conclude that we can make the centroid estimate as accurate as
we like, provided that we can collect an unlimited number of
time samples during a fixed time interval.

For other signal models, where the jitter and additive noise are
mutually independent, we expect that RMS . However,
the proportionality constant would not necessarily be the same
as the above case.
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III. CROSS-CORRELATION METHODS

A. Naive Cross-Correlation

In the simplest implementation of the cross-correlation ap-
proach, we estimate the relative shift of theth signal with re-
spect to the first signal. Theth sample of the translated version
of the th signal is . To estimate the relative shift
of the th and first signal, we minimize

(12)

as a function of . Denote the value of which minimizes
the above as . Minimization of the above is equivalent to
maximization of the cross-correlation (at lag 0) of the first signal
and the translated version of theth signal. A reasonable es-
timate of is . We shift a signal by a Fourier method.
We use the fact that the Fourier transform of a translated signal

, at frequency is where
is the Fourier transform of . Hence, to estimate the trans-
lated signal, we adjust the Fourier transform of and then
do an inverse Fourier transform to estimate the translated ver-
sion of . Before computing the Fourier transform of each
noisy simulated signal, we taper the signal with a cosine bell
data window [21]. Each signal has 4096 samples. The taper is 1
for . (Near the boundaries, the expected value of
the simulated signal is essentially 0. For these simulated signals,
tapering has a negligible effect on the relative shift estimates.)
To ensure convergence to the global minimum, we first evaluate
(12) over a grid centered on the actual value of the relative shift.
About the grid value which minimizes (12), we search for the
global minimum using a golden search and parabolic interpola-
tion algorithm [22].

In this naive cross-correlation method, we compute
relative shifts from the signals. However, from signals,
there are distinct pairs of signals. Hence, is
not the most accurate estimate of . For this reason, we call

the naive cross-correlation estimate of .

B. Complete Cross-Correlation Method for Alignment

To demonstrate how to estimate the relative shifts more accu-
rately, consider the case where . The three relative shifts
we seek to estimate form the vector

(13)

From the data, we estimate six relative shifts. These estimates
form the data vector

(14)

We have

(15)

where is a residual vector and

(16)

We estimate by minimizing the Euclidean norm of .
That is, we use the method of least squares. The least-squares
estimate of is

(17)

where denotes the transpose of. Since is a function of all
six relative shifts it is expected to be a better estimate than the
naive estimate which is based on just three relative shifts.

There are analytic expressions for and . In gen-
eral, for signals,

if

otherwise.
(18)

We derive the inverse of with the Sherman–Morrison
formula [23] which states that

(19)

where

(20)

We get that

if

otherwise.
(21)

For the case , we have

(22)

Hence,

(23)
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Fig. 4. RMS prediction error versus RMS additive noise when 100 misaligned simulated signals are aligned by different methods.

In general, the estimated relative shift between theth and th
signals is

(24)

We call (24) the complete cross-correlation estimate of.
When and

(25)

Hence, the complete cross-correlation estimate is the weighted
mean of different estimates. Each of these estimates has
an expected value equal to . The term is weighted twice
as much as the other terms . If we assume that the
terms are statistically independent

VAR VAR (26)

When we combine statistically independent estimates which are
unbiased but have different variances, the optimal weights are
inversely proportional to the variance of each term [24, p. 88].
Given the assumption of independence, the weights in (24) are
optimal. Under the assumption that the terms in (24) are statis-
tically independent, the relative variance of the complete cross-
correlation and naive cross-correlation estimates is

VAR

VAR
(27)

To derive this, we use the fact that the variance of a weighted
average of independent random variablesis VAR

VAR . We do not expect this much variance re-
duction because the terms in (24) are statistically dependent.

(a)

(b)

Fig. 5. (a) Measured oscilloscope signal. (b) Average of 100 aligned
oscilloscope signals using cross-correlation method estimates of relative shifts.
The interval between samples is=1:953 ps.

C. Adaptive Cross-Correlation

In the adaptive cross-correlation [3], [4] method, during each
iteration, we estimate all relative shifts by maximizing the cross-
correlation of each of the signals and a template signal. Initially,
the first signal is the template signal. From the relative shifts, we
compute the average of the shifted signals. The updated tem-
plate signal is set equal to this signal average. In [4], the authors
remark that the adaptive cross-correlation method approach is
a suboptimal matched filter approach. In an optimal matched
filter approach, the template is the “true” waveform.

We iterate the adaptive algorithm 30 times. Hence, for set of
100 signals, we perform cross-correlation analyses. For
all cases, by 30 iterations, the mean squared difference between
each of the shifted signals and the template signal converges to a
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Fig. 6. Relative shift estimates for experimental data due to different methods.

precision of 0.004% (or less). By 30 iterations, the RMS statistic
is accurately determined to 0.1% (or less).

IV. COMPARISONSTUDY

For each choice of and , we simulate a set of 100
misaligned signals. The standard deviation of the random shift
associated with each signal is 2.5. We estimate relative shifts
by naive cross-correlation, complete cross-correlation, adaptive
cross-correlation, and the centroid method. In Fig. 4, we plot the
RMS prediction error for all the methods versul additive noise
RMS. See Appendix II for a definition of RMS prediction error
for estimation of relative shifts.

If the terms in (24) were independent, the RMS ratio for
the complete and naive cross-correlation methods would be

according to (27). For the cases studied,
the ratio falls in the interval (0.17,0.62). Since the observed
variance reduction is less than the theoretical value given
in (27) [which is derived under the assumption the terms in
(24) are independent], we conclude that the terms in (24)
are statistically dependent. For all noise levels, the complete
cross-correlation method yields the lowest RMS prediction
error. In all cases, the adaptive cross-correlation method yields
lower RMS prediction error than does the naive correlation
method The relative performance of the centroid and adaptive
cross-correlation methods depends on the noise level.

Comment: The performance of the adaptive cross-correla-
tion method should be no better than the performance of an
optimal matched filtering approach. In the optimal filtering ap-
proach, the template signal is the expected value of an ensemble
of perfectly aligned noisy signals. In the adaptive cross-corre-
lation method, the template is the average of a finite number
of imperfectly aligned noisy signals. The alignment is imper-
fect because the relative shift estimates are not exactly equal
to the true relative shifts. For high jitter noise, the adaptive

cross-correlation method performs poorly compared to the com-
plete cross-correlation method and the centroid method (Fig. 4).

As the number of signals increases, we expect that the
RMS prediction error of the adaptive cross-correlation method
to decrease, but never to go below, the nonzero RMS predic-
tion error of the optimal matched filtering approach. In con-
trast, the RMS prediction error of the complete cross-correla-
tion method should tend to an arbitrarily low level provided that
the number of signals is increased to an arbitrarily high level.
This is expected because the number of distinct pairs of signals
is whereas the number of parameter we estimate
is only .

V. EXPERIMENTAL DATA

We estimate the relative shifts for a set of 100 experimental
oscilloscope signals collected at NIST. In each signal, the in-
terval between samples is 1.953 ps. In the top part of Fig. 5,
we show one of the measured oscilloscope waveform and the
average of the 100 aligned signals. To compute this signal av-
erage, we use the relative shifts provided by the complete cross-
correlation method. In Fig. 6, we show the estimated relative
shifts determined by the different methods. In the cross-correla-
tion analyses, signals are not tapered before computing Fourier
transforms. We do not taper because as the boundaries are ap-
proached, the signal levels off to a nonzero plateau. Hence, near
the boundary, tapering would distort the signal from this plateau
level toward zero.

We expect that a poor estimation method will yield a rougher
relative shift curve compared to a good estimation method.
Thus, the centroid method appears to be the least accurate
method and the adaptive and complete cross-correlation appear
to be the most accurate methods (Fig. 6). The relative shift esti-
mates for the complete and adaptive cross-correlation methods
are close; the RMS value of their difference is 0.0125 ps. In
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the simulation study, for low jitter noise levels, the adaptive
and complete cross-correlation method estimates were in
good agreement (Fig. 4). Hence, the observed closeness of
the adaptive and complete cross-correlation estimates may be
attributed to a relative low jitter noise level. For these signals,
RMS jitter noise is about 1 ps.

VI. SUMMARY

We simulated signals corrupted by both additive noise and
timing jitter noise. In one method, we estimated the relative
shift of two signals as the difference of their estimated centroids.
We presented a new adaptive algorithm for centroid estimation
which is robust against the effects of noise. We also estimated
relative shifts by three different implementations of cross-cor-
relation analysis. In the naive implementation of the cross-cor-
relation method, for a set of signals, relative shifts are esti-
mated from cross-correlation analysis of pairs of signals.
We introduced a complete implementation of the cross-correla-
tion method. In this approach, estimates were determined from
cross-correlation analysis of all distinct pairs of
signals. In an adaptive implementation of the cross-correlation
method, relative shifts were estimated by maximizing the cross-
correlation between the shifted version of each signal and a tem-
plate signal. After each iteration of the adaptive algorithm, the
template was equated to the average of the shifted signals. For
all noise levels, the complete implementation of the cross-corre-
lation method was the most accurate method. The accuracies of
the adaptive and complete cross-correlation methods were close
for low jitter noise. At high jitter noise, the adaptive method was
dramatically inferior to the complete cross-correlation method.
The relative accuracy of the robust centroid method and the
adaptive implementation of the cross-correlation method de-
pended on the choice of noise levels. The relative accuracy of
the robust centroid method and the naive implementation of
the cross-correlation method depended on the choice of noise
levels. In all cases, the adaptive implementation of the cross-cor-
relation method was more accurate than the naive implementa-
tion of the cross-correlation method. We also estimated relative
shifts for a set of 100 experimental oscilloscope signals.

APPENDIX I
SIMULATED SIGNAL

Define the following times

and

Also, define the following damping factors:

Define a sigmoid function as follows:

where

Define the following arguments:

Define the following functions:

Our function is .

APPENDIX II
PERFORMANCECRITERION FORESTIMATING RELATIVE SHIFTS

FROM SIGNALS

When we estimate relative shifts from signals, we
compute the RMS value of prediction errors which are adjusted
so that their mean value is zero. To explain why we do so, con-
sider the ideal case where we estimate the relative shifts exactly.
For this case, the true absolute shifts are re-
lated to the estimated relative shifts by

(28)

where for , the constant satisfies .
Because we cannot estimate the constantfrom the data, any
measure of performance should be invariant to translation of all
relative shift estimates by an arbitrary constant. We select the
following translation invariant measure of performance

RMS (29)

where

(30)

and

(31)

Alternatively, our performance measure is

RMS (32)
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where

(33)

and

(34)
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