
J.S
tat.M

ech.
(2009)

P
04006

ournal of Statistical Mechanics:
An IOP and SISSA journalJ Theory and Experiment

Available states and available space:
static properties that predict
self-diffusivity of confined fluids

Gaurav Goel1, William P Krekelberg1, Mark J Pond1,
Jeetain Mittal2, Vincent K Shen3, Jeffrey R Errington4

and Thomas M Truskett1,5

1 Department of Chemical Engineering, The University of Texas at Austin,
Austin, TX 78712, USA
2 Laboratory of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520,
USA
3 Chemical and Biochemical Reference Data Division, NIST, Gaithersburg,
MD 20899-8320, USA
4 Department of Chemical and Biological Engineering, University at Buffalo,
The State University of New York, Buffalo, NY 14260, USA
5 Institute for Theoretical Chemistry, The University of Texas at Austin,
Austin, TX 78712, USA
E-mail: goel@che.utexas.edu, krekel@che.utexas.edu, mjp736@che.utexas.edu,
jeetain@helix.nih.gov, vincent.shen@nist.gov, jerring@buffalo.edu and
truskett@che.utexas.edu

Received 22 January 2009
Accepted 13 March 2009
Published 8 April 2009

Online at stacks.iop.org/JSTAT/2009/P04006
doi:10.1088/1742-5468/2009/04/P04006

Abstract. Although classical density functional theory provides reliable
predictions for the static properties of simple equilibrium fluids under
confinement, a theory of comparative accuracy for the transport coefficients
has yet to emerge. Nonetheless, there is evidence that knowledge of how
confinement modifies static behavior can aid in forecasting dynamics. Specifically,
recent molecular simulation studies have shown that the relationship between
excess entropy and self-diffusivity of a bulk equilibrium fluid changes only
modestly when the fluid is isothermally confined, indicating that knowledge of
the former might allow semi-quantitative predictions of the latter. Do other
static measures, such as those that characterize free or available volume, also
strongly correlate with single-particle dynamics of confined fluids? Here, we
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investigate this question for both the single-component hard-sphere fluid and
hard-sphere mixtures. Specifically, we use molecular simulations and fundamental
measure theory to study these systems at approximately 103 equilibrium state
points. We examine three different confining geometries (slit pore, square
channel, and cylindrical pore) and the effects of particle packing fraction and
particle–boundary interactions. Although average density fails to predict some
key qualitative trends for the self-diffusivity of confined fluids, we provide strong
empirical evidence that a new generalized measure of available volume for
inhomogeneous fluids correlates excellently with self-diffusivity across a wide
parameter space in these systems, approximately independently of the degree
of confinement. An important consequence, which we demonstrate here, is that
density functional theory predictions of this static property can be used together
with knowledge of bulk fluid behavior to semi-quantitatively estimate the self-
diffusion coefficient of confined fluids under equilibrium conditions.

Keywords: structural correlations (theory), fluids in confined geometries,
interfacial phenomena and wetting, diffusion, molecular dynamics
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1. Introduction

Confining an equilibrium fluid of particles to length scales on the order of several
particle diameters changes both its static and dynamic properties. Classical density
functional theory (DFT) can often make reliable predictions concerning the former, but
implications of confinement for dynamics remain challenging to forecast for even the
most basic models. For example, Enskog theory generalized for inhomogeneous fluids [1]
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predicts that constant-activity confinement of the hard-sphere (HS) fluid between hard
walls will significantly decrease self-diffusivity parallel to the boundaries [2]. Recent
molecular dynamics simulations of that system, however, show that this prediction is
qualitatively incorrect, i.e., self-diffusivity increases with constant-activity confinement [3].
Hydrodynamic theories, on the other hand, can predict how the presence of a single wall [4]
or confinement between two walls [5]–[8] impacts the self-diffusion of a single Brownian
particle in solvent. But it is not yet clear how to generalize these approaches to account for
the effects that strongly inhomogeneous static structuring has on the transport coefficients
of dense confined fluids [3, 9, 10]. Given the absence of a reliable microscopic theory, the
development of new qualitative or semi-quantitative heuristics for predicting dynamics of
confined fluids would be of considerable practical use.

In this spirit, one productive strategy has been to first exhaustively simulate the static
and dynamic behaviors of simple models of confined fluids. The idea is that comprehensive
study of these systems may reveal static quantities that strongly correlate with transport
coefficients for a wide variety of confining environments. Knowledge of these correlations
together with reliable predictions of the static quantities from equilibrium theory would,
in turn, lead to indirect predictions for how confinement modifies dynamics.

Indeed, recent simulation data covering hundreds of state points for various confined
HS, Lennard-Jones, and square well fluids point to the existence of a robust, isothermal
correlation between the self-diffusion coefficient D and the excess entropy per particle
(over ideal gas) sex—a relationship that is approximately independent of the degree of
confinement for a wide range of equilibrium conditions [3, 9], [11]–[13]. The practical
implication is that the mathematical form of the correlation for a given fluid (obtained
from bulk fluid simulations) can be used together with knowledge of the excess entropy
of the confined system (computed, e.g., via DFT) to make a heuristic estimate for how
confinement will modify the self-diffusivity. As has been discussed elsewhere [3, 9], this
strategy can successfully predict subtle, confinement induced effects of packing frustration
on relaxation processes, behavior not reflected in other static quantities traditionally
thought to track dynamics, such as the average density.

Although a fundamental and general derivation that explains the observed
relationship between excess entropy and dynamics of confined fluids is still lacking, the
fact that the two are connected is not surprising. Excess entropy is a negative quantity
that measures the extent to which static interparticle correlations reduce the number of
microstates available to the fluid. In fact, −sex is often used as a metric for characterizing
the ‘amount’ of structural order present in condensed phase systems [14]–[18]. Since
interparticle correlations strongly influence collisional processes, it makes intuitive sense
that macrostate changes which increase structural order (−sex) might also tend to
reduce single-particle mobility. Qualitative arguments such as these have previously been
presented to rationalize empirically observed correlations between excess entropy and
transport coefficients of both bulk [19]–[21] and confined [3], [9]–[13] equilibrium fluids.
Nonetheless, it is natural to wonder whether excess entropy is unique in this regard.
Perhaps other measures also accurately forecast the implications of confinement for the
dynamics of dense fluids. For example, does the mobility of inhomogeneous HS fluids
also increase with the average amount of space available for particle motion? Do some
measures of free or available volume correlate much more strongly with dynamics than
others? Can one quantitatively, or semi-quantitatively, predict self-diffusivity of confined
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fluids on the basis of knowledge of how confinement affects the free or available volume
of the system?

Here, we put the above questions to stringent tests for a variety of confined fluid
systems. To ascertain the effect of pore geometry on correlations between self-diffusivity
and thermodynamics, we study a monodisperse hard-sphere fluid confined to smooth
hard-wall slit pores, square channels, and cylindrical pores. We also explore the
effects of boundary interactions in the slit pore geometry by examining cases for which
square well (attractive) or square shoulder (repulsive) particle–boundary interactions
are present. Finally, we investigate the self-diffusivity and thermodynamics of a
confined binary hard-sphere mixture which can be equilibrated in the fluid state at
higher packing fractions without crystallizing than the corresponding single-component
fluid. Altogether, this study represents, to our knowledge, the most comprehensive
exploration of the relationships between self-diffusivity and static properties in these basic
inhomogeneous systems to date. We calculate the self-diffusion coefficient (via molecular
dynamics simulations), and excess entropy and various measures of available volume (via
transition matrix Monte Carlo (TMMC) simulations and fundamental measure theory) at
approximately 103 state points. Our results illustrate that accurate theoretical predictions
of either excess entropy or a generalized measure of average available volume from classical
density functional theory can be used together with knowledge of bulk fluid behavior to
heuristically estimate the diffusion coefficient of confined fluids across a wide range of
equilibrium conditions.

2. Connections between density, available volume, and dynamics: preliminary
evidence

The available volume in a configuration of the single-component HS fluid refers to the space
into which the center of an additional HS particle of equal size can be inserted without
creating an overlap with existing particles or the boundary. It might also be considered a
coarse measure of the space immediately available for particle motion in that configuration
of the system. For the bulk equilibrium HS fluid, the ensemble averaged fraction of the
total volume that is available (in the above sense) is given by p0 = ρ/ξ [22], where ρ is
number density, ξ = exp[βμ]/Λ3 is activity, μ is the chemical potential, β = [kBT ]−1, kB is
the Boltzmann constant, T is the temperature, and Λ is the thermal de Broglie wavelength.
It is known that increasing ρ monotonically decreases both p0 and self-diffusivity D for
this system; i.e. dp0/dρ < 0 and dD/dρ < 0 (see, e.g., [18]), which is consistent with the
intuitive idea that these static and dynamic properties might be linked. In the low particle
density limit, some analytical results relating transport coefficients to static properties are
also known. For example, Rosenfeld has used kinetic theory together with a second-virial
expansion of thermodynamic properties to show that self-diffusivity, viscosity, and thermal
conductivity of hard- and soft-sphere fluids scale in a simple way with sex [20]. The same
line of reasoning predicts an analytical low density scaling between D and p0 for this class
of systems.

Are density, available space, and self-diffusion connected in the same qualitative way
for inhomogeneous HS fluids? Previous studies have provided some information useful for
addressing this question. For example, it is known that confining the equilibrium HS fluid
between hard walls (while maintaining fixed ξ) significantly increases the average particle
density, i.e. (∂ρh/∂h−1)ξ > 0, over a wide range of ρh and h [2, 3]. Here, ρh = N/(Ah) is
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h

Figure 1. Schematic of an inhomogeneous HS fluid confined between boundaries
in a slit pore geometry. The walls are placed a distance H = h+σ apart, where h
is the length accessible to particle centers. Dark regions indicate hard spheres and
confining walls. Additional particle centers are excluded from the gray (overlap)
region. The white region indicates the volume available for inserting an identical
hard sphere of diameter σ.

average density, N is the total number of particles, A is the area of the interface between
the fluid and one hard wall, and h is the center-accessible width of the slit pore (i.e.,
not including the ‘dead space’ that the particle centers are excluded from due to their
interaction with the boundaries (see figure 1)). The fact that ρh increases upon constant-ξ
confinement initially appeared consistent with earlier kinetic theory predictions that D of
this system would show a corresponding decrease [2]. However, recent simulation data have
demonstrated that the kinetic theory predictions were qualitatively incorrect [3]. That is,
both ρh and D typically increase upon constant-ξ confinement ((∂D/∂ρh)ξ > 0, the fluid
gets ‘denser’ on average and particles diffuse more rapidly), a trend that is the opposite
of what might be expected on the basis of the bulk HS fluid behavior. Interestingly,
confined HS fluids show a different trend when an alternative thermodynamic constraint
is applied. Specifically, if h is held fixed, then increasing ρh has the effect of decreasingD,
i.e., (∂D/∂ρh)h < 0 [3, 11]. This preliminary information illustrates that knowledge of how
ρh changes is not, in and of itself, enough for even qualitatively predicting the implications
of confinement for the dynamics of a fluid. Indeed, in section 4 of this paper, we present
extensive numerical evidence for a variety of confined fluid systems which underscores this
point. We also explore whether adopting a definition of average density based on the total
rather than center-accessible volume of the pore (see also [3, 11]) improves predictions for
how confinement modifies dynamics.

Does available volume show a more reliable correlation to dynamics than average
density? The fractional available volume in an inhomogeneous fluid is inherently a local
quantity, and it is given by p0i(z) = ρi(z) exp[βuw

i (z)]/ξi, where ρi(z) and uw
i (z) represent

the singlet (one-particle) density and the wall–particle interaction potential for species
i, respectively, evaluated at a distance z from one wall [23]–[25]. The volume averaged
quantity can be expressed as

p0i ≡
1

Vc,i

∫
Vc,i

p0i dV (1)

where the integral is over the particle-center-accessible volume Vc,i. For the special case of
a single-component HS fluid confined between smooth hard walls, equation (1) reduces to
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p0 = ρh/ξ. Note that since (∂p0/∂h−1)ξ = ξ−1(∂ρh/∂h−1)ξ, and (∂ρh/∂h−1)ξ > 0 across a
wide range of ρh and h [2, 3], it follows that (∂p0/∂h−1)ξ > 0 for those conditions. This
increase in the fraction of available space with constant-ξ confinement provides a simple
physical explanation for the counterintuitive observation that D increases along the same
thermodynamic path. The density-dependent behavior of the p0 under the constraint
of constant h is also qualitatively consistent with the dynamical trends of the confined
HS fluid. In particular, both (∂p0/∂ρh)h < 0 and (∂D/∂ρh)h < 0. All of this strongly
suggests that p0 is a more relevant static metric for particle mobility than the average
particle density ρh.

In the following sections, we test the generality of these preliminary observations
by carrying out an extensive quantitative comparison of the correlations between self-
diffusivity D and various static measures (density, excess entropy, and fractional available
space) for single-component and binary HS fluids confined to a variety of channels with
different geometries and particle–boundary interactions. The results clarify which of these
static quantities reliably predict the implications of confinement for the self-diffusivity of
the fluid particles.

3. Methods

We study single-component HS fluids of particles with diameter σ both in the bulk and
confined to channels with three kinds of geometries: (i) quasi-two-dimensional slit pores,
(ii) quasi-one-dimensional square channels, and (iii) cylindrical pores. Specifically, we
consider (i) seven slit pores with thickness H/σ = 5, 6, 7, 8, 9, 10 and 15 in the
confining z direction (see figure 1) together with periodic boundary conditions in the
x and y directions, (ii) seven square channels with total x–y cross-sectional dimensions of
H2/σ2 = 25, 36, 49, 64, 81, 100 and 225 together with a periodic boundary condition in
the z direction, and (iii) six cylindrical channels of total diameter H/σ = 6, 7, 8, 9, 10
and 15 together with a periodic boundary condition in the axial z direction.

We take the interaction of a particle with a channel wall uw(s) in all cases to have a
generic square well form:

uSW(s) =

⎧⎪⎨
⎪⎩

∞ s < σ/2

εw σ/2 ≤ s < σ

0 s ≥ σ

(2)

where s is the shortest distance between the particle center and the wall of interest. For
all three geometries, we study the case εw = 0, i.e. smooth hard boundaries. Additionally,
for the slit pore with size H/σ = 5, we investigate cases with εw = 2kBT (a repulsive
shoulder) and εw = −2kBT (an attractive well).

We also consider a binary HS mixture confined between smooth hard walls in a
slit pore of width H/σ1 = 5. For this system, the particle diameter ratio is taken
to be σ2/σ1 = 1.3 and the particle masses are proportional to their volume, i.e.,
m2/m1 = (σ2/σ1)

3. These parameter values closely mimic those examined in recent
experiments of binary colloidal mixtures under confinement [26].

To explore dynamic properties of these fluids, we perform molecular dynamics
simulations using an event-driven algorithm [27] in the microcanonical ensemble with
N = 4000 particles for monodisperse HS systems and N = 3200 for the binary HS
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systems. For bulk systems, we use a cubic simulation cell of volume V . For the confined
systems, we adopt a rectangular parallelepiped simulation cell of volume V = HxHyHz

with appropriate boundary conditions depending on geometry. We extract the self-
diffusivity D by fitting the long-time (t � σ1

√
m1β) mean squared displacement to the

Einstein relation 〈Δr2
dp
〉 = 2dpDt, where 〈Δr2

dp
〉 corresponds to motions in the dp periodic

directions. For the sake of clarity, we reserve the symbol D for the self-diffusivity of
fluids under confinement and Dbulk for the self-diffusivity of the bulk fluid. To obtain
reliable estimates, we average self-diffusivities over four independent trajectories. For
simplification, we report quantities from this point forward implicitly non-dimensionalized
by appropriate combinations of the characteristic length scale, taken to be the HS diameter
of the smallest particle in the fluid σ1, and a characteristic timescale, given by σ1

√
m1β.

Thus, all energies are implicitly per unit kBT , and T is effectively scaled out of the problem
altogether.

We obtain thermodynamic properties using grand canonical transition matrix Monte
Carlo (GC-TMMC) simulation. For pure fluids, we use an algorithm presented by
Errington [28] and for binary mixtures we employ a strategy developed by Shen and
Errington [29], wherein one combines a series of semigrand ensemble simulations to
construct the system’s free energy over a wide range of densities and compositions. We
conduct GC-TMMC simulations in a standard grand canonical ensemble where the volume
V , temperature T , and activities {ξ1, ξ2} are held constant and the particle numbers
{N1, N2} and energy E fluctuate. For notational convenience, we denote the sets {N1, N2}
and {ξ1, ξ2} as N and ξ, respectively, using conventional vector notation. The activity of
component i is defined as ξi = Λ−3

i exp(μi), where μi is the chemical potential and Λi is
the thermal de Broglie wavelength. For the pure component GC-TMMC simulations that
we present here, we set ξ = 1 and adjust the particle-center-accessible volume Vc to make
the total volume V ≈ 1000. Simulations of the binary mixture use V = 125 and 245 for
the bulk and confined fluids, respectively. For the bulk and confined simulations, we set
ξ1 = 173.7 and ξ2 = 381.5.

The key quantity that we extract from the GC-TMMC simulations is the particle
number probability distribution Π(N). Once we obtain this distribution, we use basic
statistical mechanics principles and histogram reweighting [30] to evaluate thermophysical
properties over a range of activity values. First, we use histogram reweighting to deduce
Π(N) at a set of activities ξnew generally different from that of the GC-TMMC simulation
ξsim,

ln Π(N; ξnew) = ln Π(N; ξsim) +
∑

i

Ni(ln ξi,new − ln ξi,sim) (3)

where it is understood that the probability distributions are not normalized. We obtain
average particle numbers 〈N〉 from first-order moments of Π(N),

〈N(ξ)〉 =
∑

NΠ(N; ξ)/
∑

Π(N; ξ). (4)

We calculate ρ and ρh via normalization of 〈N〉 by V and Vc, respectively.
We define excess entropy as the difference between the fluid’s entropy and that of

an ideal gas with the same density profile. The particle number probability distribution
provides the density and composition dependence of the Helmholtz free energy at a given
temperature. Therefore, we combine knowledge of Π(N), average excess configurational
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energies U ex(N), and particle-number-specific spatial density distributions ρ(N, r) to
obtain the total excess entropy Sex [11, 13, 16],

Sex(N) = U ex(N) + ln Π(N)/Π(0)

+
∑

i

{
ln Ni! − Ni ln ξi − Ni ln Ni +

∫
ρi(N, r) lnρi(N, r) dr

}
. (5)

We also predict the thermodynamic quantities of the bulk single-component and
binary HS fluids using the Carnahan–Starling [31] and Boublik–Mansoori–Carnahan–
Starling–Leland [32, 33] equations of state, respectively. We predict the thermodynamic
properties of confined HS fluids using a recent modification [34, 35] of Rosenfeld’s
fundamental measure theory [36]. Fundamental measure theory is a classical DFT
of inhomogeneous fluids that has been shown to accurately predict structure and
thermodynamics of confined HS systems in various restrictive geometries up to very
high densities [37]. For numerical evaluation of the DFT for slit and cylindrical pores,
we use Picard iterations on a grid spacing of 0.005. We update densities according to
[ρ]inn+1 = 0.95[ρ]inn + 0.05[ρ]out

n , where [ρ]inn+1 and [ρ]inn are the input density profiles at
the (n + 1)th and nth iterations, respectively, and [ρ]out

n is the output density profile at
the nth iteration. We stop Picard iterations when the relative change in output density
profile between two successive cycles (1 cycle = 20 iterations) becomes less than 10−5.
For numerical evaluation of the DFT in the square channel geometry, we use the Sandia
National Laboratories Tramonto package [38]. We adopt a grid of 0.05×0.05 for H = 5, 6
and a grid of 0.075 × 0.075 for H > 6. We stop the minimization algorithm when the
relative or absolute change in the grand potential is less than 10−7.

4. Testing structure–property relations for predicting self-diffusivity of
confined fluids

In this section, we explore the accuracy of the following strategy for predicting the self-
diffusivity of confined HS fluids: (1) determine the value of a static quantity x of a confined
fluid believed to be relevant for dynamics (e.g., its density, excess entropy, or fractional
available volume), and (2) input this value into the relationship between self-diffusivity
and that same static quantity for the bulk fluid, Dx

bulk(x), to estimate the confined fluid
self-diffusivity, D. Of course, such a strategy can only provide approximate predictions.
While there is a one-to-one relationship for the equilibrium HS fluid between the self-
diffusivity and any one of the aforementioned static quantities6, the dynamic properties
of the confined fluid generally depend on a larger number of variables (e.g., the dimensions
of the confining geometry, the nature of the particle–boundary interactions, and the
chemical potential). Nonetheless, the hope is that one can discover a static quantity
x whose relationship with D is largely insensitive to the effect of confinement. If so, the
bulk structure–property relationship Dx

bulk can be used to predict D independently of the
other parameters of the confined system. Systematic tests of this idea should give new
insights into the structural properties that are most relevant for single-particle dynamics
of inhomogeneous fluids.

6 This is true if the self-diffusivity is appropriately non-dimensionalized, as it is here, to remove the trivial effect
of the thermal velocity of the particles.
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To investigate the accuracy of predictions by this approach, we use the ‘exact’ results
of molecular simulations to examine the ratio of the bulk fluid self-diffusivity to that of
confined fluids with the same value of x, i.e., Dx

bulk/D. Since one is often interested in
both D and the effective characteristic time associated with diffusive motion (D−1), we
present plots of Dx

bulk/D in this work on a logarithmic scale, a representation for which
overpredictions and underpredictions of D by the same factor appear the same distance
from unity. We also present statistics associated with the relative errors of the predictions
for different x. For each x that we consider here, we analyze roughly 103 state points of
the equilibrium HS fluid confined to the various pore geometries described in section 3.
This data set, when taken as whole, spans approximately four decades in D.

4.1. Confinement in channels with smooth hard boundaries

Here, we examine the ratio Dx
bulk/D for the single-component HS fluid confined to various

geometries by smooth hard boundaries (i.e. εw = 0; see (2)). We begin by testing the
predictions that follow from assuming that x = ρh, the number density averaged over the
particle-center-accessible volume of the pore, is the relevant static metric for dynamics
(see figures 2(a)–(c)). It is immediately clear from the data that ρh does not, in itself,
provide a good basis for prediction. HS fluids confined in slit pore, square channel, and
cylindrical geometries generally exhibit a wide range of D for each ρh, with the fastest
dynamics occurring in the smallest pores. In fact, note that the bulk structure–property
relation Dρh

bulk can underpredict D by nearly a factor of ten for fluids in the most restrictive
geometries. The performance of the bulk structure–property relation using x = ρh is
actually even worse than it appears in figures 2(a)–(c) for the following reason. The
freezing transition occurs at a density of 0.945 for the bulk HS fluid, which provides
an upper limit on values of ρh that can be used for predictions using Dρh

bulk. However,
center-accessible densities for the equilibrium fluid in the smallest square channel and
cylindrical pores can reach as high as ρh ≈ 1.25. Thus, the bulk structure–property
relation Dρh

bulk cannot even make predictions for a significant fraction of the equilibrium
state points for highly confined HS fluids. All of this confirms the preliminary expectation
discussed in section 2 that knowledge of ρh and bulk fluid behavior is not enough for
predicting the self-diffusivity of confined fluids. This conclusion is consistent with the
earlier observations of Mittal et al [11] concerning a smaller set of data for the HS fluid
confined to slit pores.

In figures 2(d), (g) and (j), we again present Dx
bulk/D for the HS fluid confined to

slit pores, but now Dx
bulk is the corresponding bulk fluid relation between diffusivity and

one of three alternative static properties (x): average density based on total pore volume
ρ = ρh(1 − H−1), excess entropy per particle sex, and fraction of available volume p0.
The data in these plots correspond to confined fluid states with packing fractions that
vary from the dilute gas to the freezing transition for pore widths H ≥ 5. As can be
seen, each of these static measures can provide semi-quantitative predictions for confined
fluid diffusivities when used together with the corresponding bulk structure–property
correlation. In fact, for 93% (x = ρ), 97% (x = sex), and 100% (x = p0) of equilibrium
state points for these systems, the predictions provided by Dx

bulk are within 20% of the
‘exact’ MD data for D. Note that the very small fraction of overpredictions based on ρ
or sex that exceed 20% relative error correspond to the high density, low D state points
near the freezing transition.
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Figure 2. Ratio of self-diffusivity of a bulk HS fluid to that of a confined HS
fluid with the same value of a static quantity x, Dx

bulk/D, obtained via molecular
simulations. Data are shown for the fluid confined to slit pore ((a), (d), (g),
(j)), square channel ((b), (e), (h), (k)), and cylindrical pore ((c), (f), (i), (l))
geometries. The static quantity x is indicated in each of the four panels. 20%
bounds on relative error in confined fluid self-diffusivity ‘predictions’ obtained by
using the bulk structure–property relation Dx

bulk are shown by red dash–dotted
lines. The equilibrium fluid states shown here span the density range 0 < ρh < ρ0,
where ρ0 ≈ 0.95 for ((a)–(c)) and 1 < ρ0 < 1.25 for ((d)–(l)), depending on pore
size. Pores shown have confining dimensions of 5 (◦ ), 6 (�
), 7 (♦), 8 (+), 9
(×), 10 (∗), and 15 (�). These dimensions correspond to channel width H for
slit pores and square channels and channel diameter d for cylindrical pores. All
channels have smooth hard boundaries.

It might be tempting to conclude, on the basis of the slit pore data, that total-volume-
based average density ρ tracks dynamics nearly as reliably as sex and p0 for confined
fluids. To provide a more stringent test of this preliminary conclusion, we now examine
Dx

bulk/D for HS fluids confined to quasi-one-dimensional square channel and cylindrical
pore geometries with edge dimensions H ≥ 5 and diameters d ≥ 6, respectively. Fluids
confined in these geometries have a significantly higher percentage of particles near the
boundaries than in the corresponding slit pores, and hence the effects of confinement on
both structure and dynamics should be more pronounced.
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Figures 2(e) and (f) show that for square channel and cylindrical geometries, self-
diffusivity predictions based on Dρ

bulk can be significantly higher than the actual D of a
confined fluid with the same ρ. In fact, for the densest fluid systems studied here, the bulk
structure–property relation Dρ

bulk is between 2 and 4 times larger than D, depending on
H . Furthermore, figures 2(h), (i), (k) and (l) illustrate that Dx

bulk predictions for x = sex

or x = p0 are in the semi-quantitative range for a larger fraction of state points than those
based on x = ρ. Specifically, Dx

bulk is within 20% of D for 46% (x = ρ), 82% (x = sex),
and 95% (x = p0) of the state points. The main differences occur for high density, low D
state points, where predictions based on fractional available volume are significantly more
accurate than those based on excess entropy or density.

Another relevant test case for comparing which of ρ, sex, or p0 most faithfully tracks
dynamics is to vary the degree of confinement while fixing ρ, an idea motivated by an
earlier study by Mittal et al [3]. In particular, Mittal et al demonstrated that D and sex

for a HS fluid oscillate in phase when H for the confining slit pore is varied (for H ≤ 5) and
ρ is held constant. The maxima in D (high particle mobility) and sex (weak interparticle
correlations) occur for integer values of H , geometries which naturally accommodate the
layering of particles near the boundaries. The minima in D (low particle mobility) and sex

(strong interparticle correlations) occur for non-integer values of H , which frustrate this
natural layering pattern. Along similar lines, Goel et al [9] recently demonstrated that
particle–boundary interactions that flatten the density profile of a confined fluid generally
reduce D and sex, while those which increase layering can have the opposite effect. All of
this suggests that excess entropy captures some of the subtle frustration induced effects
that layering has on both interparticle correlations and single-particle dynamics [3]. Does
p0 also capture these effects? A very recent study of Mittal et al [10] suggests that it
might. In particular, the authors of that study showed that the local fraction of available
volume p0(z) and the position-dependent self-diffusivity normal to the boundaries D⊥(z)
of a confined HS fluid are highest in regions of high local density ρ(z).

Figure 3 provides a more direct test of this idea. In particular, it shows the D data
of Mittal et al [3] for a HS fluid confined between hard walls calculated via molecular
dynamics simulations. We have also included on this plot predictions from the three bulk
structure–property relations Dx

bulk, where x = ρ, sex, and p0. Since ρ is fixed here, it is
evident that Dρ

bulk is not able to yield predictions of the oscillatory trends in the dynamics

data. However, note that both Dsex

bulk and Dp0

bulk predict the correct oscillatory behavior.

In fact, the predictions of Dp0

bulk are virtually quantitative over the entire range of H .

Should we expect Dp0

bulk to generally track the dynamics of dense, confined HS fluids
more accurately than Dsex

bulk? In other words, what is more relevant for dynamics of
inhomogeneous fluids: available space or available states? We further explore that
question by examining the behavior of the confined HS mixture discussed in section 3.
Specifically, by studying this binary fluid mixture in a slit pore with H = 5, we are
able to probe confined fluid states with packing fraction φ as high as 0.52 (compared
with the highest packing fraction of 0.46 for a monodisperse HS fluid confined in a
slit pore of H = 5). At φ = 0.52, the fluid already exhibits dynamic signatures of
supercooling, e.g., the emergence of a plateau in the time dependence of the mean squared
displacement. The corresponding D at this packing fraction (=0.002) is an order of
magnitude smaller than the smallest D for the confined monodisperse fluid (=0.02) in the
slit pore geometry.
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Figure 3. Self-diffusivity D of a HS fluid confined in narrow slit pores of width
H = 2–5 by smooth hard boundaries. The density of the confined fluid is fixed
at ρ = (6/π)0.4. We compare molecular dynamics simulation data (◦ ) for the
confined fluid with the self-diffusivity of a bulk HS fluid, Dx

bulk, at the same
value of x = ρ (green dash–dotted line), x = sex (red square), and x = p0 (blue
triangle). Solid lines are shown as a guide to the eye. D and sex, calculated
via molecular dynamics and TMMC simulations, respectively, are taken from
figure 7 of [3]. p0 was calculated via TMMC simulations described in section 3
of the present work.

Figures 4(a) and (b) show the ratio of the bulk self-diffusivity to confined self-
diffusivity, Dx

bulk/D, for the small and large particles of the mixture, respectively. Again,
the comparisons are made to the bulk fluid mixture of the same composition and density
(x = ρ), excess entropy (x = sex), or fractional available volume of the corresponding
species (x = p0i). Note that the bulk structure–property predictions for self-diffusivities
of small and large particles are semi-quantitative (within 20%) for D > 0.1 when based on
any of the three aforementioned static quantities. However, relative errors in predictions
based on ρ or sex begin to increase sharply for D < 0.1. On the other hand, predictions
based on p0i remain semi-quantitative for all D > 0.02 (covering three decades in D), with
significant overpredictions occurring only for the densest three state points investigated.
Thus, it appears that, for single-particle dynamics, fractional available volume is the most
relevant of the three static measures investigated here. The question of whether there
exists an alternative static measure x such that Dx

bulk tracks D for deeply supercooled
mixtures is currently an open one. The answer to that question will likely have important
implications for understanding how confinement shifts the glass transition of fluids.

4.2. Particle–boundary interactions and a generalized measure of available volume

Thus far, we have only considered the geometric (i.e., packing) consequences of
confinement on dynamics. How does the presence of finite particle–boundary interactions
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Figure 4. Ratio of self-diffusivity of (a) small particles and (b) large particles of a
bulk binary HS fluid mixture to that of a corresponding confined HS fluid mixture
with the same value of a static quantity x, Dx

bulk/D, obtained via molecular
simulation. The static quantity used for making predictions is x = ρ (◦ ), x = sex

(�
), and x = p0i (�). Data are shown for the H = 5 slit pore geometry with the
total packing fraction in the range 0.025–0.52. The mole fraction of the small
spheres is 0.75. 20% bounds on relative error in self-diffusivity predictions are
shown by a red dash–dotted line.

affect the picture described in section 4.1? We explore the answer to this question by
studying a monodisperse HS fluid confined to a slit pore geometry by smooth walls
with either square shoulder (repulsive) or square well (attractive) particle–boundary
interactions (for details, see equation (2)).

Figures 5(a) and (b) show the ratio of the bulk to confined self-diffusivity, Dx
bulk/D,

for these two cases, respectively, with comparisons between bulk and confined fluids
being made at the same density (x = ρ), excess entropy (x = sex), and fractional
available volume (x = p0). Clearly, the fractional available volume p0 fails to track the
dynamics of the confined fluid for both cases presented. However, this should perhaps
be expected. Since the interactions of the particles with the boundaries in these cases
are strongly position dependent, all free space is not equally ‘available’ to the particles.
To account for this energetic imbalance, we suggest a generalized available volume (p0w)
that appropriately weights the local available space with the Boltzmann factor of the
particle–boundary interaction,

p0w =

∫
Vc

p0 exp[−uw(s)] dV∫
Vc

exp[−uw(s)] dV
=

ρh(ξ)

ρig
h (ξ)

=
ξig(ρh)

ξ(ρh)
= exp[−{μ(ρh) − μig(ρh)}] (6)

where, in all cases, the superscript ‘ig’ denotes the corresponding quantity for an ideal
gas confined to an identical slit pore. As one can see from the above equation, since this
generalized available volume inherently relates the thermodynamic state of the confined
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Figure 5. Ratio of self-diffusivity of a bulk HS fluid to that of a confined HS
fluid with the same value of a static quantity x, Dx

bulk/D, obtained via molecular
simulation. Data include systems with (a) square shoulder (repulsive) and (b)
square well (attractive) particle–boundary interactions (see equation (2)) with
H = 5 in the slit pore geometry. The static quantity used for making predictions
is x = ρ (◦ ), x = sex (�
), x = p0 (�), and x = p0w (�). 20% bounds on
relative error in self-diffusivity predictions are shown by the red dash–dotted line.
Particle-center-accessible density for the fluid spans the range 0 < ρh < 1.05. p0

overpredicts high diffusivity state points in panel (b) by more than 1000% and
those data points are off the scale of the graph.

fluid to that of an ideal gas, it bears some resemblance to an excess thermodynamic
property.

It is important to point out that this generalized available volume has several
distinguishing features. (i) It reduces to p0 in the limit of fluids confined to smooth
hard boundaries. Thus, all of the results presented earlier in this paper for p0 will remain
unchanged for those systems if one instead uses p0w. (ii) Unlike the case for p0 or density,
there is no arbitrary choice that needs to be made about the volume over which one
should do the averaging. This quantity is the same no matter whether averaging is
carried out over the center-accessible or the total volume of the fluid. Put differently,
this definition removes any arbitrariness as regards the effective ‘diameter’ of the fluid–
boundary interaction. (iii) The quantity p0w can be computed directly from knowledge
of standard thermodynamic and system parameters, namely ρ, ξ, and uw(z). (iv) It is
not limited to HS fluid systems. In fact, the computation of p0w from equation (6) does
not even require information about the particle–particle interactions, as long as the other
thermodynamic quantities can be measured.

How well does this new generalized measure of available volume track self-diffusivity
when finite particle–boundary interactions are present? Figure 5 clearly illustrates that
p0w corrects for the problems that p0 faces in predicting the dynamics in these cases.
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In particular, the maximum error in self-diffusivity predictions based on p0w is 16%
across the entire range of packing fractions investigated, which makes it a more reliable
predictor of single-particle dynamics than either sex or ρ for these systems. As was seen
earlier, diffusivity predictions based on the bulk structure–property relation for p0w are
considerably more accurate than that for ρ or sex when considering high density, low
diffusivity state points (D < 0.1).

5. Using DFT together with bulk structure–property relations to predict dynamics
of confined fluids

Above we have shown that knowledge of Dx
bulk for the bulk HS fluid (x = sex or p0w)

together with the value of x in confinement is enough for a semi-quantitative prediction
of confined (equilibrium) fluid diffusivity, D, across a wide range of parameter space
in these systems. Thus far, we have used TMMC simulations to determine x for each
confined fluid of interest. That raises the following question. Is classical DFT accurate
enough in its predictions of x that one can eliminate the step of simulating the confined
fluid altogether? In this section, we take a first step toward addressing this question.
In particular, we present calculations of the ratio of self-diffusivity of a bulk HS fluid to
that of a confined HS fluid with the same value of x, Dx

bulk/D, where x = sex or p0w.
In each case, x for the confined fluid is obtained directly from predictions of Rosenfeld’s
fundamental measure theory [34, 35], an accurate DFT for these systems.

Figure 6 shows relative errors in self-diffusivity predictions based on sex and p0w,
comparing cases with knowledge of the ‘exact’ value of x in confinement (calculated
via TMMC simulations) and the predicted value of x (calculated via DFT). Selected
cases explored in section 4 involving the three confining geometries (slit pore, cylindrical
pore, and square channel), small and large particles of binary mixtures, and finite fluid–
boundary interactions are presented. In all cases, the Dx

bulk/D curves obtained via the
two routes (TMMC versus DFT) are virtually indistinguishable over the entire density
range of equilibrium fluid, a demonstration of the reliability of DFT for computing the
static properties of these systems. As a result, it is clear that one can use the bulk
structure–property relations discussed above together with predictions of x from DFT
to make semi-quantitative estimates of confined fluid self-diffusivity for a wide variety of
hard-sphere systems.

6. Conclusions

Fluids trapped in small spaces feature prominently in science and technology, and
understanding their properties is key for a number of research areas that range from the
design of membranes to the engineering of microfluidic devices. The static and dynamic
properties of these confined fluids can be very different than those of bulk samples. While
quantitatively accurate theories like DFT are available for predicting static properties
of confined fluids, making even qualitative predictions for dynamics of inhomogeneous
fluids has long been a challenging endeavor. In this paper, we demonstrate how semi-
quantitative (albeit indirect) predictions of self-diffusivity are still possible, even in the
absence of a theory, once one empirically recognizes that certain relationships between
static and dynamic properties are insensitive to confinement.
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Figure 6. Ratio of self-diffusivity of a bulk HS fluid to that of a confined
HS fluid with the same value of a static quantity x, Dx

bulk/D. Here we show
a comparison of Dx

bulk/D with x obtained from the DFT (lines) or TMMC
(symbols) calculations. ((a)–(c)) Data for a monodisperse HS fluid confined by
smooth hard boundaries to a slit pore (H = 5), a cylindrical pore (H = 6), and
a square channel (H = 5) geometry, respectively. ((d), (e)) Data for small and
large particles of a binary HS mixture confined in an H = 5 slit pore, respectively.
((f), (g)) Data for a monodisperse HS fluid confined between the repulsive and
attractive boundaries discussed in the text, respectively, placed at a separation
of H = 5 in slit pore geometry. The density range for the state points shown are
the same as in figure 2 for (a)–(c), figure 4 for (d) and (e), and figure 5 for (f)
and (g). 20% bounds on relative error in self-diffusivity predictions are shown by
the red dash–dotted line.

This study provides a systematic and quantitative investigation of such relationships.
In particular, we present a comprehensive study of the effects of confinement on
correlations between self-diffusivity (D) and various thermodynamic measures for
confined HS fluids: particle-center-accessible-volume-based and total-volume-based
average densities (ρh and ρ, respectively), excess entropy (sex), and two average measures
of fractional available volume (p0 and p0w). Our main findings are as follows. The bulk
structure–property correlation, Dx

bulk, based on the first density measure, x = ρh, severely
underestimates D when ρh for the confined fluid is used as the input. Further, for dense
confined fluids, ρh is often larger than the freezing density of the bulk fluid, eliminating
altogether the possibility of using the corresponding bulk structure–property relation for
predictions. Self-diffusivity predictions based on the relation with total-volume-based
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density x = ρ provide a significant improvement over those involving ρh, substantiating
the earlier idea that ρ might be considered as a more natural measure of density for
predicting dynamics [11].

However, when one considers a wider variety of geometries (slit pore, cylindrical,
square channel), confined fluid mixtures, finite particle–boundary interactions, and a wide
range of packing fractions, one finds that structure–property relations Dx

bulk based on
excess entropy (x = sex) and a new generalized measure of available volume (x = p0w)
provide much more accurate estimates for D than those based on either of ρh or ρ.
Importantly, neither p0w nor sex requires one to arbitrarily define an averaging volume
for the confined system.

We note that predictions about how confinement modifies self-diffusivity based on p0w

become significantly more accurate than those based on sex under conditions of very high
packing fractions (e.g., supercooled fluids) and highly restrictive confining geometries (e.g.,
quasi-one-dimensional channels). The generalized available volume p0w may also be easier
to compute on the basis of experimental quantities than sex, since the former is related
to average density and chemical potential in a simple way (see equation (6)). In the
limit of hard spheres confined between hard walls, p0w reduces to the fraction of available
volume p0, which is a purely geometric quantity. Interestingly, a recent experimental study
has demonstrated that p0 can be measured in hard-sphere colloidal suspensions using
confocal microscopy [39]. Single-particle dynamics in these systems can also be readily
measured [26]. Hence, confined colloidal suspensions appear to represent a promising class
of experimental systems for testing the generality of the results presented here.

Predictions of static properties (x) via classical DFT are sufficiently accurate for
inhomogeneous HS fluids that one can use them, together with the bulk structure–property
relation (Dx

bulk), to make semi-quantitative estimates of confined fluid diffusivities. This
heuristic approach effectively eliminates the need for simulating the confined fluid
altogether, which might be particularly convenient in applications where one needs to
estimate the dynamics of systems across a wide array of parameter space. For example,
in the design of microfluidic systems, one might hope to screen a large range of possible
particle–boundary interactions or confining geometries against design considerations. A
preliminary application of this idea [9] is to use DFT to passively tune the transport
properties of a confined fluid, in a controlled way, by modifying the geometry or boundary–
particle interactions of the confined space.

Can the aforementioned static measures yield predictions of the dynamics of fluids
with continuous intermolecular potentials and/or attractive interactions? As mentioned
earlier, recent data from molecular simulations have shown that there is indeed an
isothermal correlation between the self-diffusion coefficient D and the excess entropy for
a variety of confined fluids (e.g., Lennard-Jones, square well, Weeks–Chandler–Andersen
ones [40]), approximately independent of the degree of confinement for a wide range
of equilibrium conditions [9, 12]. We are currently exploring the viability of using the
generalized available volume for predicting dynamics in these fluids, and we will report
on our findings in a future study.

In terms of other related future directions, we are now beginning to study how
well using the static properties examined in this work we can forecast changes in other
transport properties of fluids (i.e., viscosity and thermal conductivity) under confinement.
We are also studying how aspects of the (static) solvation shell structure surrounding large
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tracer particles relate to their single-particle dynamics. Results of these studies will be
explored in detail in future publications.
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