
Multiplexed readout of CMB polarimeters

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys.: Conf. Ser. 155 012004

(http://iopscience.iop.org/1742-6596/155/1/012004)

Download details:

IP Address: 132.163.130.218

The article was downloaded on 23/09/2010 at 18:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/155/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


 
 
 
 
 
 

Multiplexed Readout of CMB Polarimeters 

Matt Dobbs1, Mark Halpern2, Kent D. Irwin3, Adrian T. Lee4, J.A.B. Mates5, and 
Benjamin A. Mazin6 
1Department of Physics, McGill University, Montréal, QC, Canada 

Matt.Dobbs@mcgill.ca 

2Department of Physics, Department of Physics and Astronomy, University of British 
Columbia, 6224 Agricultural Road, Vancouver, B.C Canada V6T1Z1 

halpern@physics.ubc.ca 

3National Institute of Standards and Technology, 325 Broadway, Boulder, CO 

irwin@nist.gov 

4Department of Physics, U. California, Berkeley, CA, USA 

Adrian.Lee@berkeley.edu 

3National Institute of Standards and Technology, 325 Broadway, Boulder, CO, and 
Department of Physics, University of Colorado at Boulder, Boulder, CO 80309 

John.Mates@colorado.edu 

6Department of Physics, University of California, Santa Barbara, CA, USA 

bmazin@physics.ucsb.edu 

 

Abstract. This paper describes contributions to the workshop, “Technology Development for a 
CMB Probe of Inflation,” held at NIST in Boulder CO, Aug. 25-28, 2008 concerning 
technologies to read out direct detectors (including bolometers and microwave kinetic 
inductance detectors) in a CMBPol satellite mission. The large number of polarimeters 
required for a satellite mission will likely make it necessary to multiplex the output signals into 
a small number of readout channels at the cold state. We describe both the cryogenic 
components and the present-generation warm readout electronics, consider the benefits and 
challenges of each option, and analyze their technology readiness level and needed additional 
investments. 
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1.  Introduction 
The first technology recommendation of the report of the Task Force for Cosmic Microwave 
Background Research was “technology development leading to receivers that contain a thousand or 
more polarization sensitive detectors, and adequate support for the facilities that produce these 
detectors.” The recommendation also identified that “It is important to keep open a variety of 
approaches until a clear technological winner has emerged. Nevertheless, highest priority needs to be 
given to the development of bolometer-based polarization sensitive receivers.” For arrays of a 
thousand or more bolometer-based polarization-sensitive receivers, constraints on complexity and heat 
load make it difficult to route separate leads from each bolometer to the warm readout electronics. It is 
necessary to multiplex the signal from many bolometers at the cold stage into a smaller number of 
output channels. One of the challenges in fielding a thousand or more bolometer-based polarization 
sensitive receivers is the development of appropriate readout technology. 

 
In this paper, we present an analysis of the state of the art of three leading multiplexed readout 

technologies for polarization-sensitive bolometers: time-division multiplexing (TDM), MHz 
frequency-division multiplexing (FDM), and GHz frequency-division multiplexing with 
superconducting microresonators. All three techniques can be used to read out superconducting 
transition-edge sensor (TES) bolometers [1], and the third can be also used with microwave kinetic 
inductance detectors (MKIDs) [2]. In each case we present a technology overview, an analysis of 
benefits and challenges, and a discussion of technology readiness level (TRL) and needed investment. 

2.  Time-Division SQUID Multiplexers 
Principal section authors: Kent D. Irwin and Mark Halpern 

 
The superconducting transition-edge sensor is a leading bolometer technology for a CMBPol satellite 
mission. The low noise, low power dissipation, and low impedance of Superconducting Quantum 
Interference Devices (SQUIDs) make them the preamplifier of choice for TES bolometers.  

 
In time-division multiplexing (TDM), many SQUID-coupled TES bolometers are read out through 

a single set of wires by turning the SQUIDs on sequentially (Fig. 1a). With proper design, the 
multiplexed SQUID amplifiers do not appreciably contribute to the system noise. SQUID TDM is a 
mature technology that is being deployed in many astronomical instruments with multiplexing factors 
up to 40:1. It is being used in arrays with sizes greater than that required for CMBPol. 

 
Time-division multiplexed (TDM) SQUID amplifiers systems have been developed for TES 

bolometers by NIST, NASA/Goddard Space Flight Center, and the University of British Columbia 
(UBC). The first multiplexed TES bolometer instrument tested on a telescope was the TDM FIBRE 
instrument in 2001[3]. There are now a number of TDM instruments for Cosmic Microwave 
Background (CMB) measurements deployed in the field and in various stages of development. The 
Atacama Cosmology Telescope [4] (ACT), in particular, has acquired a season of data in 2007 with 
900 functioning pixels in one 32 × 32 array, and is observing in 2008 with three 32 × 32 arrays. Other 
instruments for CMB measurements include the SPIDER balloon-borne CMB polarimeter [5], BICEP-
2 [6], the Keck Array [6], and Clover [7]. The X-ray calorimeters that are being developed by NASA 
for the International X-Ray Observatory (IXO) use similar TDM SQUID multiplexers. A full 
complement of SQUID multiplexers has also been tested for the SCUBA-2 submillimeter camera [8], 
which has 10,240 pixels. 

 
The warm readout electronics for TDM has gone through multiple generations of development at 

NASA/GSFC, NIST, and the University of British Columbia. The present generation of control 
electronics is the Multi-Channel Electronics [9][10] (MCE) developed at the UBC (Fig. 1b). Each 
MCE module controls up to 1,280 TES pixels (the 10,240 pixels in SCUBA-2 are controlled by 8 
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MCE modules). The MCE sets the detector biases, controls the SQUID multiplexer stages, and reads 
out the signal from one array of up to 41 × 32 pixels through 32 output channels. The MCE provides 
automatic optimization of operating points for the bolometers and SQUID amplifiers, and implements 
a digital Proportional Integral Differential (PID) servo loop to apply feedback to the switched first-
stage SQUIDs to keep them in a linear regime at optimal gain. The MCE, originally developed for 
SCUBA-2, is also in use in ACT, SPIDER, BICEP-2, the Keck Array, and Clover. 

 

 

Fig. 1. (a) A 32-channel SQUID multiplexer chip. The chip dimension is 3 mm × 20 mm. The 32 
SQUIDs are turned on sequentially and read out through one output channel. (b) A Multi-Channel 

Electronics (MCE) module fabricated by the University of British Columbia. This module can 
instrument up to 32 output channels, and read out up to 1,280 TES bolometer channels. 
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Fig. 2. Circuit diagram for time-division SQUID multiplexer with M × N pixels. The first-stage 
SQUIDs in each column are coupled through a common transformer to the second stage. A single 

common feedback line is used to linearize all of the first-stage SQUIDs in each column. 
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2.1.  SQUID TDM: Technology Overview 
When a superconducting transition-edge sensor is biased at a constant voltage, the current through the 
device drops when optical power is absorbed. In TDM, each TES is instrumented by a separate first-
stage SQUID that measures this current drop. The bandwidth of the TES is limited by a one-pole low-
pass L/R filter formed by the inductance of the SQUID’s input coil (and possibly an extra inductor) 
and the resistance of the TES. A two-dimensional (M rows × N columns) array of pixels is read out by 
sequentially turning on the first-stage SQUIDs in every column, one row at a time (Fig. 2). The row of 
SQUIDs is turned on by a set of M row-select currents (I1… IM) from 0-1V, 14-bit video DACs in the 
address-card (AC) in the MCE. The AC firmware controls up to 41 DACs with user-specifiable order, 
rate, and voltage settings. The typical ‘on’ time in each row is about 1 μs. Thus, in an array with a 41:1 
multiplexing factor, every pixel in the array is revisited with a frequency of about 20 kHz (the ‘frame 
rate’), which is well above the signal frequency in the bolometers.  

 
A ~1 ohm address resistor, RA, shunts each first-stage SQUID. The current through the address 

resistor is inductively coupled to a second-stage SQUID shared by all the first-stage SQUIDs in a 
column. The coupling to the second stage occurs through a transformer coil that is common to all of 
the first-stage SQUIDs. A feedback flux is provided to the switched first-stage SQUIDs to linearize 
them. Since only one SQUID in each column is on at a time, one feedback coil can be common to all 
first-stage SQUIDs in the column (Fig. 2). The feedback current is provided by a PID feedback servo 
loop implemented in firmware in the MCE. The feedback signal in the SQUIDs, which compensates 
for changes in current through the TES bolometers, constitutes a measurement of the optical input 
power to each TES. 
 

The output from each column of SQUIDs is amplified by a series array of SQUIDs (Fig. 2) that can 
be located at either the base temperature or at 4 K, and then by a preamplifier followed by a 14-bit, 50 
MHz video ADC in a readout card (RC) of the MCE. The PID loop is also implemented in the RC. 
Each RC couples to eight columns and handles independent feedback loops for up to 8 × 41 TES 
pixels; each MCE can accommodate 4 RCs. The PID output is based on the reading from the previous 
visit to a given row. It is applied to the first-stage SQUID feedback lines using a 14-bit video DAC 
with 0-1 V range. Since the frame rate of 20 kHz far exceeds the detector bandwidth, a 4-pole 
Butterworth IIR low pass filter with a cutoff consistent with the detector thermal time constant is 
implemented in RC firmware after the signals have been demultiplexed. To aid in diagnosing new 
arrays, the MCE can output unfiltered data at the frame rate of approximately 20 kHz or for short 
bursts at the ADC rate of 50 MHz. 

 
A combination of software and firmware commands has been developed for the MCE that 

autonomously characterizes a 1280 pixel array and chooses optimized biases and feedback currents for 
the full array (about 2100 free parameters) in a few minutes. 

 
A clock card (CC) in each 1,280-pixel MCE module communicates with the computer through a 

dual fiber-optic link. It also dispatches incoming control commands through the backplane to the 
appropriate cards and generates the master clock for the modules. The data-acquisition computer sends 
commands to the MCE through its fiber-optic link and receives data packages. An external controller 
with a 25 MHz clock synchronizes the data acquisition of multiple MCEs. It also provides numeric 
tags that are written to each data frame for data synchronization during analysis. 

 
The power dissipation of an MCE module used to control a 1,280-pixel array is presently about 175 

W. Approximately 40% of this power budget is used to run the video analogue-to-digital converter 
(ADC) in each column. New boards are in production in which these have been replaced with 50 Mhz 
serial video ADCs that consume 15 times less power. 
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2.2.  SQUID TDM: Benefits and Challenges 
 
A. Benefits 
Warm electronics: maturity, power dissipation, and path towards flight qualification 
The warm electronics for SQUID TDM are relatively simple and mature. The MCE uses commercial 
components (DACs, ADCs, and FPGAs) that have been readily available for some time. While a large 
investment was required at UBC to develop the MCE, this was due to the complexity of the firmware, 
not because of challenges in the performance of individual components. The power dissipation of the 
MCE (about 175 W for 1,280 pixels) is also quite low and work is under way to reduce it further. 

 
The MCE operates at 20 kHz frame rates that are extremely fast compared to the bolometer thermal 

response times. In a fully optimized system for CMBPol, it would be possible to operate the warm 
electronics an order of magnitude slower. This would reduce the power dissipation, and also make it 
possible to use legacy electronic components that have already been flight qualified. As part of the 
IXO satellite program, there is already an effort to explore a system that can be flight qualified. 
However, unlike CMBPol, IXO requires high frame rates, so it does not have the potential of using 
legacy components. 

 
The MCE have been tested for cosmic ray induced upsets by exposing them to a neutron flux 

corresponding to a 30-day stratospheric balloon flight. The electronics showed no loss of function 
during the test. 
 
Wiring length 
SQUID TDM has a significant engineering budget for wiring length. This is because the delay time of 
the propagating feedback signal can be longer than the row switching time, since the PID algorithm is 
implemented based on information from the previous frame. Thus, the wiring between the cold stage 
and the warm electronics can be several meters long. 
 
Demonstrated Multiplexing Factor 
TES instruments multiplexed with SQUID TDM have been demonstrated to operate with a 40:1 
multiplexing factor, with no appreciable degradation to the bolometer performance from aliased 
detector noise, amplifier noise, or switching transients. The theoretical limit on the number of channels 
that can be multiplexed in each column is set by bandwidth per pixel, available bandwidth, and by 
aliasing of SQUID noise. Present implementations are very far from these theoretical limits. However, 
unlike superconducting microresonators, practical constraints on geometry are likely to limit the 
multiplexing factor to somewhere near 100:1, so TDM technology will not in the long term be as 
scalable as GHz microresonators. 
 
Low-frequency noise 
SQUID TDM systems tend to be robust against low-frequency noise from SQUIDs and amplifiers. 
Because SQUID noise (but not bolometer noise) is degraded by aliasing during sampling, the TES 
bolometers are significantly overcoupled to the SQUIDs to prevent loss in bolometer performance. 
Thus, even though the amplifier / SQUID low-frequency knee is typically above 10 Hz, when properly 
optimized, the bolometer noise is typically above the amplifier / SQUID noise down to very low 
frequencies (tens of millihertz). 
 
Compact filter elements 
The filter elements in analog cryogenic multiplexers can be the physically largest part of the cryogenic 
multiplexer circuits. However, SQUID TDM has very compact filter elements. In SQUID TDM, the 
bandwidth is limited by a one-pole filter formed by the SQUID inductor and the resistance of the TES. 
Since a TES bolometer used for TDM can be biased at a very low resistance (e.g. 2 mΩ), a bandwidth 
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of 5 kHz can be achieved by a lithographically fabricated 60 nH inductor, which can fit in an area of 
less than 0.1 mm2. 
 

In MHz FDM, the bandwidth is limited by an LC resonant filter, which requires physically larger 
filter components. If the bandwidth is limited to 5 kHz, a simultaneous optimization of the L and C 
elements drives the TES bias resistance to about 0.5 Ω. Then, a 16 μH inductor and 1.6 nF capacitor 
are required for a 1 MHz resonance with 5 kHz bandwidth. The inductor is typically lithographically 
fabricated with an area of about 2 mm2. The capacitor is often a component soldered onto a circuit 
board. 
 

The high operational frequency of GHz superconducting microresonators makes it possible for 
them to use compact resonant filter elements. The frequency band is defined by quarter-wave coplanar 
waveguide stubs that are typically 5-10 mm long, and meandered into a fairly compact configuration. 
 
In-focal-plane multiplexing 
Because the cryogenic filter elements for SQUID TDM are very compact, and the SQUIDs have very 
low power dissipation, it is possible to integrate them into the focal plane (as is done in SCUBA-2). 
This is even more straightforward in superconducting microresonators, since they operate at GHz 
frequencies with relatively small filter elements. In contrast, it would be difficult to integrate the large 
filter elements into the focal plane for SQUID FDM: leads are usually routed out of the focal plane 
from every pixel to the filter elements.  
 
B. Challenges 
SQUID fabrication 
In a TDM SQUID multiplexer circuit, a SQUID must be fabricated and tested for each TES pixel. (In 
contrast, MHz FDM SQUID multiplexers use only one SQUID series array per multiplexed set of 
pixels). However, many TDM SQUID channels are integrated onto each chip, and the fabrication 
challenge for TDM SQUID multiplexers for CMBPol is manageable. There is now a mature process at 
NIST that can fabricate and test sufficient TDM SQUID multiplexer chips for CMBPol. 
 
Power dissipation on the sub-K stage 
In TDM SQUID multiplexers, the SQUID amplifiers dissipate power at the base temperature. In 
contrast, the SQUIDs in MHz FDM SQUID multiplexers are located at a higher temperature stage. 
GHz Superconducting microresonator multiplexers (both MKIDs and microwave SQUID 
multiplexers) dissipate negligible power at the base temperature. 
 

In the present generation of TDM SQUID multiplexers, a power budget of about 10 nW is 
allocated for each multiplexed column of up to 40 SQUIDs. In the case that this power dissipation is 
too high, SQUIDs with much lower power dissipation have already been demonstrated in TDM 
SQUID multiplexer chips, which would drop the power budget to about 1 nW per multiplexed 
column, or about 30 nW per kilopixel. 
 
Achievable Multiplexing Factor 
While a large multiplexing factor is used with TDM SQUID multiplexers (40:1), and while the 
fundamental limit on TDM SQUID multiplexers can be higher than 1000:1, practical constraints are 
likely to limit the multiplexing factor to about 100:1. A 12:1 multiplexing factor has been 
demonstrated with MHz FDM, but this is expected to increase significantly in the future. Because of 
the multi-GHz available bandwidth and resonator quality factor, GHz superconducting microresonator 
multiplexers can potentially be scaled to much higher multiplexing factors than either MHz 
multiplexing technology. 
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2.3.  SQUID TDM: Technology Readiness and Needed Investment 
TDM SQUID multiplexers and the MCE electronics are now at Technology Readiness Level (TRL) in 
the high 4s, having been demonstrated in a relevant environment at the kilopixel scale (e.g. ACT / 
SCUBA-2). It remains to demonstrate TDM SQUID multiplexers in a relevant environment simulating 
a satellite to achieve TRL 5. TDM SQUID multiplexers have attractive advantages, and their 
performance in most ways is already at the level that would be required for a CMBPol satellite 
mission. However, investment is still needed in several areas: 

 
Power dissipation 
Power dissipation at the cold stage (including engineering margin) is presently 10 nW per multiplexed 
column. This power budget can readily be reduced by a factor of 10, if required. Single channels with 
lower power designs have been demonstrated on TDM chips. If a design study indicates the lower 
power is required, a full demonstration should be prioritized. 

 
Yield 
Multiplexer pixel yields of greater than 90% can be routinely achieved. The Atacama Cosmology 
Telescope was populated with 96 TDM 32-channel chips, most of which had a 100% yield. 
Furthermore, over 10,000 TDM pixels have been screened for SCUBA-2. A flight instrument would 
be required to start with 100% yield on all of the multiplexer chips. Some investment in improving the 
yield of the process would improve the rate at which perfect chips could be produced. 
 
SQUID flight qualification 
SQUIDs have already been flight qualified for the Gravity-Probe B experiment. Radiation hardness 
tests should also be conducted on TDM SQUID chips. 
 
Systematic error requirements and magnetic shielding 
The systematic error specifications for a CMBPol mission are extremely stringent. A full systematic 
error budget needs to be developed. The characteristics of the multiplexers are an important part of 
this study. One key issue that must be considered is the sensitivity of the SQUID multiplexers to scan-
synchronous magnetic fields from the instrument. The present generation of TDM SQUIDs are 
gradiometric, and thus insensitive to first order to uniform fields and field gradients. However, 
magnetic shielding is still required. Systematic error concerns are likely to place the strongest 
constraint on the characteristics of the required magnetic shielding, including its weight. 
 
Warm electronics development 
The present warm electronics are based on FPGAs. Although the particular FPGAs used in the MCE 
have been demonstrated to be sufficiently robust for ground-based and balloon operations, they are not 
space qualified.  Non-FPGA designs can be made for three of the MCE cards, but radiation-robust 
solutions based either on older, previously space qualified FPGAs or newly qualified parts must be 
found for the RC and CC functions. 

3.  MHz Frequency Domain SQUID Multiplexers 
Principal section authors: Matt Dobbs and Adrian Lee 
 
A key technology for deploying large format Transition Edge Sensor (TES) bolometer arrays on 
satellite platforms is SQUID-based multiplexed readout systems. The Frequency domain multiplexed 
readout (fMUX) was developed for mm-wavelength observations using large arrays of TES 
bolometers by LBNL, U.C. Berkeley, and McGill.  The system, with its original “analog” backend 
electronics [11][12][13], targeted ground based telescopes and is deployed on the APEX-SZ 
instrument [14] and the South Pole Telescope (SPT) [15]. These instruments have achieved 
unprecedented on-sky noise performance. The analog backend draws too much power for balloon or 
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satellite applications. In the course of the analog system’s development, fast ADCs and FPGAs with 
substantially increased gate-count and reduced power consumption became available. This allowed for 
the development of a new digital backend [16] for the fMUX system that dissipates an order of 
magnitude less power, making it amenable for stratospheric balloon payloads. This Digital fMUX 
(DfMUX) system is being deployed for the EBEX balloon-borne CMB polarimeter [17] and the 
ground-based POLARBEAR [18] instrument. The DfMUX also provides a path to further substantial 
power reductions by grouping many more bolometers together in a multiplexer module. With the 
digital fMUX system, the power consumption is roughly proportional to the number of multiplexer 
modules and not to the number of bolometer pixels. 

The frequency-domain multiplexer reads out many TES bolometers on a single set of wires without 
appreciably contributing to the system noise. The detectors are low impedance (≈½ Ω) devices cooled 
to sub-Kelvin temperature. The sky signals are modulated in the bandwidth 0.05-100 Hz by the motion 
of the telescope or optics. The low-frequency noise specification places strict requirements on all 
aspects of the system and distinguishes the firmware and digital algorithms employed in this system 
from other modulation/demodulation applications such as software-defined radio. The electronics 
system also tunes the detectors to the optimum bias point by adjusting their voltage bias and tunes the 
SQUID pre-amplifiers using bias currents to obtain the best noise performance and dynamic range. 

 
Advantages of the DfMUX system include: (1) bolometer signals are modulated above 

microphonic and low frequency noise, (2) there is no fundamental limit on the number of detectors 
that can be multiplexed in a module, other than available bandwidth, (3) no heat dissipation on the 
sub-Kelvin stage, (4) the system is highly modular, and (5) individual bolometer biases and the 
detector readout bandwidth can be software configured. 

 
The fMUX system is complementary to the time domain multiplexed system [19], [20] developed 

at NIST and UBC. Recently the NIST group began work on a system that frequency-multiplexes 
SQUIDs (rather than bolometers) at microwave frequencies [21][22]. The DfMUX electronics 
described here is a lower frequency version of what is needed for the backend of this future RF-
SQUID multiplexing system. 

3.1.  MHz FDM: Technology Overview 
A. System Description 

The frequency domain multiplexer (DfMUX) is shown schematically in Fig. 3. For the EBEX 
system, the bolometer sensors Rbolo are biased with sinusoidal voltages in the frequency range from 
300 kHz to 1 MHz. Each bolometer is biased at a different frequency.  Intensity variations from the 
sky-signal change the bolometer resistance and amplitude modulate the bolometer current such that 
the sky-signal from each bolometer is transferred to a sideband adjacent to its carrier. Thus, the signals 
from different bolometers within a module are uniquely positioned in frequency space, so they can be 
summed and connected through a single wire to a SQUID preamplifier operating at 4K.  Each 
bolometer is connected through a series resonant LC circuit∗ that defines the bias frequency.  This 
allows the bias frequencies for all bolometers in a module to be applied through a single wire, as the 
tuned circuit selects the appropriate frequency for each bolometer. Only two wires are needed to 
connect the bolometers of a readout module on the sub-Kelvin stage to the 4K stage on which the 
SQUIDs are mounted. The tuned circuits also limit the bandwidth of the bolometer Johnson noise, 
which would otherwise contribute to the noise in all other channels of the module. Refer to [13] for a 
detailed description of the readout system’s cold circuits. 

 
                                                      
∗ The first generation superconducting inductors for this system were fabricated at TRW which has closed its 
superconducting fab facility. The present generation is being fabricated at NIST. The capacitors are off-the-shelf 
ceramic chip devices. 
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Fig. 3: The digital frequency domain multiplexer system is shown schematically. 

 

 
 

Fig. 4: The Digital Multi-Frequency Synthesizer algorithm is shown schematically. 
 
The comb of bias carriers is synthesized with a Digital Multi-Frequency Synthesizer (DMFS). It 

produces a comb of sine waves using an algorithm implemented in firmware. It converts the signal to 
analog using a 16-bit D/A operating at 25 MHz. The DMFS firmware is shown schematically in 
Fig. 4. Each sinusoidal carrier is synthesized using a Direct Digital Synthesizer algorithm [23]. A 
‘comb’ of carriers is created by multiply-and-accumulating the DDS outputs with an amplitude control 
register for each sine wave. The comb is sent to the cryostat as a differential signal on a shielded 
twisted pair cable.  

 
The sky-modulated signals from the bolometers are pre-amplified with a SQUID as it has the 

necessary noise temperature and has low input impedance. To maintain constant voltage bias across 
the TES, the input resistance of the SQUID must be small compared with the TES resistance. This is 
achieved by operating the SQUID with shunt feedback from the output of the room-temperature 
amplifier that follows. The feedback amplifier has a high gain × bandwidth product, so connections 
between the SQUID and the room temperature electronics must be short. Negative feedback also 
linearizes the SQUID response, reducing intermodulation between the bias carriers. 

 
Since the carrier amplitudes are orders of magnitude larger than the sky signals, we cancel the 

carriers at the SQUID input with a second comb (synthesized with a second DMFS), referred to as the 
nulling signal. The nulling comb is an inverted version of the original carrier comb, and serves to 
remove the large carrier signals. It does not affect the carrier sidebands, which contain the information 
of the sky-signals. The use of the nulling signal dramatically reduces the dynamic range requirements 
of the system. Nulling factors of 103 are routinely achieved. 
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Fig. 5: The Digital Multi-Frequency Demodulator algorithm is shown schematically. 

 
The SQUID amplifiers are 100-element series-array devices [24] manufactured by NIST in 

Colorado. Each SQUID device is operated in shunt-feedback with a low-noise bipolar transistor op-
amp located on a custom room temperature SQUID controller circuit board. These boards also include 
digital control electronics and DACs to provide the bias currents and tuning functionality. 

 
After amplification, the comb of sky-signal-modulated carriers output by the SQUID controller is 

transmitted to the Digital Multi-Frequency Demodulator (DMFD) on a twisted pair cable. The comb is 
digitized with a 14-bit A/D converter operating at 25 MHz. The over-sampling improves the resolution 
beyond 14 bits. Since the sky-signals occupy only a small fraction of the waveform's total bandwidth, 
it is not feasible to store the entire waveform on disk. The signals are processed in real time. 

 
Inside the FPGA, the DMFD input data is sent down a set of parallel algorithm pipelines, each of 

which consists of a quadrature mixer, Cascade-Integrator-Comb (CIC) [25] low-pass filter, and a chain 
of band-defining FIR filters. There is one pipeline for each detector channel in the comb. A basic 
schematic of the configuration is shown in Fig. 5. 
 

The low-pass filtering of the waveform is challenging. Low-frequency (typically 0.05-100~Hz) 
signals need to be maintained while filtering and sub-sampling the waveforms by a factor of roughly 
105 to reduce the 25 MHz sampling rate to the ~200 Hz data rate that will be recorded on disk. The 
user can easily change the output data rate and hence the bandwidth of the system by bypassing some 
of the FIR filters with software commands. This is a powerful tool for debugging during the 
integration phase of the instrument’s commissioning, where typically a larger bandwidth is desired to 
measure detector properties such as electrical and thermal time constants. 

 
Four DfMUX modules are contained on a single 6U VME board, shown in Fig. 6. Each 

motherboard can handle 4 multiplexer modules. The digital circuits, including a powerful Xilinx 
Virtex4 LX160 FPGA, reside on this FPGA motherboard, while the low-noise analog converters, 
amplifiers, and filters ride ‘piggy-back’ on two mezzanine boards. The total number of detectors that 
can be demodulated by a single FPGA is determined by its gate count, but this gate count has been 
increasing faster than Moore’s law over the last decade. A SQUID controller board, which is capable 
of handling 8 SQUID modules, forms an intermediary between the cold SQUIDs and the analog 
signals coming from the DfMUX backend. 

 
The electronics attaches timestamps to the bolometer data from either an IRIG-B-encoded GPS 

signal or Manchester-encoded system clock. High-level commands (“set up squids”, “set up 
bolometers”) are encoded as TCP/IP packets and sent to the boards over standard Ethernet. Bolometer 
data is streamed off the board as UDP Ethernet packets. Each board has an embedded processor 
running μCLinux allowing it to run autonomously. It has its own watchdog circuit and temperature 
monitors. A monitoring system is being developed that will recognize configuration bit-flips due to 
single event upsets and correct for them. 

Technology Development for a CMB Probe of Inflation IOP Publishing
Journal of Physics: Conference Series 155 (2009) 012004 doi:10.1088/1742-6596/155/1/012004

10



 
 
 
 
 
 

 
 

Fig. 6: The digital fMUX backend electronics. An FPGA motherboard is shown (large lower blue 
board) with two of its analog converter mezzanine boards attached (smaller upper red boards) and the 

copper convective heat pipe and conductive heat sink. 
 
The SQUID controller and cold components of the system were developed at LBNL/UC Berkeley 

and are described in [14], [15]. The room temperature digital backend electronics developed at McGill 
are described in [16]. The heat dissipation scheme being employed for EBEX was developed at U. 
Minnesota. Performance validation of the digital system in the laboratory can be found in [16] and 
[26]. 

 
B. Channel spacing 
The number of detectors that can be grouped together in a multiplexer comb is defined by the SQUID 
pre-amplifier system bandwidth divided by the carrier spacing. 
 

Our present SQUID system has a bandwidth of just above 1 MHz, limited by phase shifts along the 
wires that connect the 4K SQUID to the room temperature amplifier that forms part of the flux-locked 
loop. There are several suggestions for SQUID systems that could greatly improve this bandwidth 
while maintaining the necessary system loop gain and linearity. One example is the Linearized SQUID 
Array (LISA) that is outlined in [13] and has recently been further developed. Bandwidths of 5-10 
MHz have been achieved with LISA. 

 
The detector time constants define the minimum LCR filter width and ultimately the channel 

spacing. While detectors employed with this system typically have optical time constants >1 ms, the 
TES sensor itself can respond to much faster thermal signals and the filter needs to be wide enough to 
allow stability across the full TES bandwidth. A careful reduction of the TES time constant to just 
wider than the optical time constant would allow closer channel spacing. The system presently uses 
16μH inductors with ½ Ω bolometers, resulting in an L/R bandwidth of 5 kHz.  
 

Once the L/R bandwidth is defined, the frequency spacing of adjacent carriers in the bias comb is 
specified by the requirement that Johnson noise from neighboring channels be attenuated to a 
negligible level. For EBEX, the carriers occupy the bandwidth from 0.3-1 MHz with a spacing of ~50 
KHz, resulting in 12 detectors per multiplexer module. 

 

Technology Development for a CMB Probe of Inflation IOP Publishing
Journal of Physics: Conference Series 155 (2009) 012004 doi:10.1088/1742-6596/155/1/012004

11



 
 
 
 
 
 

It should be emphasized that there is nothing fundamental limiting the module channel count—by 
optimizing the detector time constants and implementing new SQUID technology, a factor of many 
should be achievable without the development of any new technology. A commensurate reduction in 
power consumption and sub-Kelvin heat load would be achieved. If the SQUID to room temperature 
feedback loop can be eliminated, the 4K-300K wire length could be greatly increased, greatly reducing 
the heat load there as well. 

 
C. System configuration for EBEX 
For the EBEX science flight, 12 detectors will be multiplexed per module. The 1536 bolometer system 
has 32 DfMUX backend boards, 16 SQUID controller boards, and 128 SQUIDs. The SQUID 
controllers are mounted in a Faraday cage directly on the receiver cryostat. The DfMUX boards are 
housed in two 6U VME racks. 
 
D. Power and thermal considerations 
The power consumption is about 4W per multiplexed module. For EBEX (12 detectors per multiplexer 
module) the power dissipation is ~500W for 1536 channels. By increasing the number of multiplexed 
detectors per module as described in the channel spacing section, this power consumption could be 
substantially decreased.† 
 

Heat dissipated on the boards is removed through a two-stage system designed by the Hanany 
group at U. Minnesota. Heat is conducted from the board and ICs through thermal grease to a pair of 
crossed rectangular heat pipes made of copper and a convective fluid (Tradename: “Nano Spreader”, 
developed for laptop computers by Celsia Technologies). The heat pipes, visible in Fig. 6, are 
terminated in a copper plug that brings the heat through the backplane to the gondola frame. The 
system has been thermally modeled and the results verified with a thermal-vacuum chamber at 
NASA’s Palestine balloon facility. The heat is radiated away from the instrument using panels 
mounted on the bottom of the gondola. 

3.2.  MHz FDM: Benefits and Challenges 
 

A. Benefits 
Sky signals modulated above microphonics and low frequency electronic noise 
With frequency multiplexing, all detectors are continuously read out without interruption or switching 
transients. Sky-signals are modulated at ~MHz frequencies, greatly reducing susceptibility to 
microphonic pickup and amplifier/SQUID low-frequency noise. 

 
No power dissipation on sub-Kelvin stage 
In the fMUX system, there is one 4K SQUID per multiplexed module (rather than one SQUID per 
detector) and there is no power dissipation from the readout system on the sub-Kelvin stage. 

 
No fundamental limit in the multiplexing factor 
While existing fMUX systems use multiplexing factors of just 8 or 12 channels, there is nothing 
fundamental limiting this number. This number reflects the relatively small investment that has been 
made in this technology to date. A path to substantially larger channel counts using existing 
technology exists. 

 
 

                                                      
† As the detector count goes up, FPGAs with larger gate-counts are needed to handle the demodulation. 
Fortunately the density of this technology is increasing very rapidly. We believe that much more efficient 
demodulation algorithms are possible as well. 
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Modularity 
For the DfMux system, the bias and demodulation functions for a multiplexer module of detectors are 
provided by the same electronics board (e.g. there are no rows of bias and columns of demodulation). 
This provides modularity, such that if an electronics board or cryogenic wire fails, it brings down only 
those combs. Each board is autonomous in its execution of setup scripts, and needs only high level 
commands from a control computer. 

 
Configurable bandwidth 
The configurable firmware demodulator allows the bandwidth of bolometer data recorded to disk to be 
changed by factors of 2 with a simple software command. For EBEX, we plan to record sky data with 
a bandwidth of 180 Hz (381 Hz sampling), but can command the system to record data with a 
bandwidth up to 6 kHz anytime without changing the system tuning. This is useful for mapping out 
the bolometer response functions or debugging the system. 

 
Other advantages of the fMUX system include: 

• bias voltage can be configured for each bolometer separately, 
• the bolometer to SQUID wiring can be interrupted with small resistances (R<< Rbolo) allowing 

the use of connectors with copper contacts, 
• low power dissipation on the 4K stage (one SQUID per multiplexer module). 
• FPGA Vendors such as Xilinx are actively pursing satellite applications and large-gate-count 

devices, similar to the ones used for this system, are already space qualified. 
• DSP power in FPGAs is increasing quickly—faster than Moore’s law by some estimates—this 

will result in even lower power consumption and make processing of drastically higher 
channel counts possible. 

 
B. Challenges 
Stray inductance 
To maintain good voltage bias across the TES, the loop that includes the LC filter, SQUID input, and 
bolometer should be dominated by the bolometer impedance. Stray inductance between the sub-Kelvin 
and 4K stages spoils this voltage bias. For the analog system, low-inductance lead-coated copper strip-
lines are used for the majority of the distance from the SQUIDs to detectors, with a heat-gap created 
by several inches of Nb twisted pairs. The inductance is dominated by the twisted pair. While this 
inductance is low enough for sub-MHz operation, it would not work at substantially higher frequency. 
The short length of twisted pair adds extra heat loading to the sub-Kelvin stage. The Hanany group at 
U. Minnesota are developing Nb superconducting strip-lines for EBEX by rolling thin Nb wire flat 
and suspending the traces between Kapton films. This is expected to provide a simple and cost 
effective solution that is both low inductance and low thermal conductivity. 

 
4K–room temperature wire lengths 
The SQUID flux locked loop, as it is presently implemented, includes a room temperature amplifier in 
the feedback loop. To maintain stability at high loop gain, the wire length between these devices must 
be kept short (<20cm), loading the 4 K stage. We note that a system with cold feedback, like the LISA 
pre-amplifier described above, would remove this constraint. 

 
Readout white noise 
white noise sources that do not modulate the carrier (such as SQUID and readout electronics noise) are 
enhance by a factor √2 post-demodulation. This is true of any AC-biased bolometer system. For a 
system with carefully optimized bolometer parameters, this is usually not an issue, as this noise is, 
even after the enhancement, small compared to other noise sources. 
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Low frequency D/A noise 
The stability of the DMFS waveforms is extremely important to maintain good low frequency 
performance for temperature anisotropy measurements. The DMFS carrier, DMFS nuller, and DMFD 
are all clocked with the same crystal oscillator such that clock jitter cancels out to first order. The 
largest contributor is the low frequency noise from the transistors in the D/A converter output ladder. 
This low frequency transistor noise is modulated up to the carrier tone frequency by the D/A switching 
and appears as sidebands on the tones. While the older analog fMUX system suffered from low 
frequency noise with a low frequency knee typically at 1 Hz, this has been greatly improved for the 
digital system, where the knee sits at ~0.1 Hz. The location of the knee is determined by the amplitude 
of the bolometer bias, and so will be lower yet for low thermal conductivity bolometers such as those 
that will be used on satellite platforms.  

 
Inter-modulation distortion 
Any SQUID system is inherently non-linear. Since the SQUIDs in the fMUX system must handle 
many large carriers, inter-modulation distortion products are produced. Accurate nulling greatly 
reduces this effect. If the carriers were located at arbitrary frequencies, this distortion would create a 
forest of inter-modulation distortion products from these tones. Fortunately, there is some flexibility in 
the specification of the carrier frequency for each LCR resonance. By specifying that every carrier 
frequency is a multiple of (i.e.) 117 Hz, these distortion products are forced to live post-demodulation 
at either DC or a 117 Hz. It is easy to notch out this frequency off line. 

3.3.  MHz FDM: Technology Readiness and Needed Investment 
Overall, MHz FDM is presently at a Technology Readiness Level (TRL) in the high 4s, having been 
demonstrated at close to the kilopixel scale in the South Pole Telescope. The DfMUX system is 
presently at TRL 4. Components have been prototyped and strung together end-to-end in the 
laboratory with TES bolometers to demonstrate performance, including noise [16,26]. Two areas need 
more attention and investment: space qualification for FPGAs, and pre-amplifier bandwidth. 
 
Space qualification for FPGAs 
The system makes heavy use of DSP implemented with Xilinx Virtex-4 FPGAs. The vendor has 
identified satellite and aerospace applications as an important market, and has an active program of 
space qualification. Recently Xilinx announced a new space grade version of the Virtex-4 line called 
Virtex-4QV [27].  This line includes a model that has 25% more processing power than the device 
presently used in the digital backend. 

 
The McGill team has modest funding from the Canadian Space Agency and NSERC to work with 

an industrial partner (COM DEV) to explore technology that corrects configuration bits in FPGAs that 
have been flipped by single event upsets (SEUs). The strategy is to allow and expect SEUs, but 
recognize and correct them quickly. COM DEV has experience in this regime from systems it flew on 
the MAESTRO payload. 

 
Pre-amplifier Bandwidth 
Presently, the number of multiplexed detectors and hence the power consumption and heat load on the 
sub-Kelvin stage is limited by the bandwidth of the SQUID pre-amplifier system. Very little research, 
time, or funding has been invested to improve this bandwidth. A relatively small investment here will 
likely provide substantial returns. The goal is to produce a high-bandwidth (>~10 MHz) SQUID pre-
amplifier system that does not use warm components inside the feedback loop. 

3.4.  Summary and future prospects 
Recent developments in the processing power of FPGAs have allowed for the development of digital 
backend electronics for a SQUID-based frequency domain multiplexer system that operates with large 
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arrays of sub-Kelvin Transition Edge Sensor bolometers. This new technology has sufficiently low 
power consumption to allow for the readout of large focal plane arrays on stratospheric balloon 
platforms. The system will be deployed on the EBEX instrument in 2008/9. 

 
A number of important advantages, discussed above, make this system attractive—while its 

primary disadvantages are addressable with existing technology. 
 
Substantial reductions in power consumption could be achieved by improving the bandwidth of the 

SQUID pre-amplifier flux-locked loop. An increase in bandwidth of a few MHz would result in power 
reduction by a factor of many. Space qualification of the large gate-count Virtex-4 FPGAs employed 
in the system has already been undertaken the vendor, Xilinx. 

 
To bring the system up to the maturity level necessary for satellite platforms, an investment similar 

to that made for the UBC TDM electronics is probably necessary. Fortunately, there are no 
fundamental limits or boundaries that stand in the way of this development—the number of detectors 
grouped together in a multiplexed module is limited only by the bandwidth of the analog electronics 
so large advances are in principle possible. 
 

4.  Frequency-Division Multiplexing for Superconducting Microresonators 
Principal section authors: Benjamin A. Mazin, J.A.B. Mates, and Kent D. Irwin 
 
A large community has converged on the idea of using high quality factor superconducting 
microresonators to achieve dense frequency domain multiplexing at microwave frequencies.  This 
technique uses wide bandwidth high electron mobility transistors (HEMTs) to provide several GHz of 
bandwidth with noise temperatures below 5 Kelvin, potentially allowing thousands of detectors to be 
read out through a single transmission line.  This technique, developed originally for microwave 
kinetic inductance detectors [28], is also applicable to transition edge sensors coupled to resonators 
through rf SQUIDs [22], and Normal-Insulator-Superconductor detectors [29]. 

4.1.  GHz FDM: Technology Overview 
 
In a MKID [2], shown to the right in Figure 7, a high Q (104-106) superconducting resonator with a 
resonant frequency between 1-20 GHz is fabricated lithographically.   Incident photons (panel b) 
change the surface impedance of the superconductor, causing a change in the amplitude (panel c) and 
phase (panel d) of a microwave probe signal send past the resonator at the resonant frequency.  Since 
the transmission far away from the resonance is unity, we can multiplex many MKIDs off a single 
transmission line by setting each MKID’s resonant frequencies to be slightly different with 
lithography.  This is analogous to the different tones produced by different length pipes in a pipe 
organ. Using this approach, groups have recently demonstrated resonator-to-resonator frequency 
scatter below 1 MHz (Figure 2). 
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Figure 7. The mechanics of a MKID. 

 

 

Figure 8.  Transmission past a microwave MKID array. 
 
 

Superconducting transition-edge sensors can also be read out in superconducting microresonators 
by coupling them through an array of microwave SQUIDs. In a microwave SQUID array, each high-Q 
resonator is loaded with a dissipationless rf-SQUID.  The flux-variable inductance tunes the resonance 
frequency without affecting Q.  Any detector that a SQUID can read out can be multiplexed this way, 
in particular the TES.  To linearize the response one can apply flux feedback if the number of 
detectors is small.  If the number of detectors is large one can utilize the SQUID flux periodicity to 
modulate the signal, for example by applying a common flux ramp to all SQUIDs in the array.  This is 
a form of phase modulation and it both linearizes the SQUID response and up-converts the detector 
signal to higher frequencies in the bandwidth of the resonance.  It requires more bandwidth per 
detector and additional room-temperature computation, but makes it possible to modulate above the 
1/f noise of the resonators and the HEMT.  The lithography for defining closely spaced resonances is 
essentially the same as for MKIDs, and the SQUIDs can be fabricated on the same wafer as the TESs. 
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In order to read out an MKID or microwave SQUID array, a comb of frequencies is generated with 
a sine wave at the resonant frequency of each individual resonator.  This comb is then sent through the 
device, where each sensor imprints a record of its illumination on its corresponding sine wave.  The 
comb is then amplified with a cryogenic HEMT and brought outside the cryostat.  The comb is then 
digitized, and the phase and amplitude modulation of each individual sine wave is recovered in room 
temperature electronics.  Aside from a HEMT amplifier, there are no cryoelectronics.  Compared to 
existing low-frequency TES SQUID multiplexers, much of the complexity is moved from the base 
temperature  to room temperature, where the full power of modern microwave electronics is available.  
In the case of the microwave SQUID array, the signal will be entirely in the phase direction, and 
higher readout data rates will be required to sample the external magnetic modulation signal required 
to linearize the SQUID response.   

 
The technique described above, where a comb of frequencies is created, modified, then digitized 

and analyzed, is very common in modern wireless communications, where it is usually referred to as 
software-defined radio (SDR).  An implementation suitable for reading out detectors is shown in Fig. 
9. In this implementation, dual 400 MHz, 16-bit digital to analog converters play back a pre-computed 
waveform to generate the comb.  Since two D/As are used, we can use an IQ modulator, which allows 
us to produce signals within a 400 MHz wide band centered on our LO frequency (usually 2-6 GHz).  
After the comb passes through the detector, it is mixed back down to baseband with another IQ 
modulator, low pass filtered, then digitized with dual 400 MHz, 14-bit analog to digital converters.  
After digitization, the signals are passed to a fast field programmable gate array (FPGA).  There are 
many algorithms that can be run in the FPGA to demodulate the signals.  The simplest is a direct 
digital downconverter (DDC) that simply digitally multiplies the complex input signal by sine wave at 
the desired frequency.  This shifts the frequency of interest to 0 Hz.  A digital filter followed by 
decimation gives the desired output data stream. 

 
 

 

Figure 9.  A block diagram of a SDR readout. 
 
 

4.2.  GHz FDM: benefits and challenges 
 
A SDR readout allows a drastic simplification of the focal plane.  This simplification cascades through 
the system, lowering costs at every stage.  For instance, a MKID based focal plane will only need 
several wires going between 4K and the array, while a TDM TES multplexer will require hundreds. 
This drastically simplifies the construction of the focal plane, and also significantly lowers the cooling 
requirements. 
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 The advantage of moving the readout complexity from 4 Kelvin to room temperature cannot 
be overstated.  The entire hardware set developed to allow SCUBA-2 is extremely powerful, but large 
and very expensive due to the requirement of having one SQUID per pixel.  Also, since these 
multiplexers are completely custom they do not gain much from external developments.  In the two 
years since experimentation on these readouts first started, there has been a factor of 4 improvement in 
the speed of 14-bit A/D converters.  The ability of SDR readout power to scale with Moore’s law 
ensures that they will grow significantly more powerful with time. 

 
 The drawback of these systems for space applications is that they require flying fast, precise 

A/Ds, D/As, and FPGAs.  Flight ready versions of these components tend to lag their ground-based 
counterparts, so the bandwidth of space-based SDR readouts will be lower than ground-based systems.  
The complex signal processing may also consume a significant amount of power at room temperature, 
in the worst case as high at 0.1 Watts/pixel. 

 

4.3.  GHz FDM: Technology Readiness and Needed Investment 
 
The first SDR readout for LTDs was demonstrated in the lab in 2006 [28]. In April 2007, Caltech and 
the University of Colorado brought a SDR readout to the Caltech Submillimeter Observatory (CSO).  
This MKID demonstration camera proved the technology viable for ground-based operations [30].  
This work has brought the readout to a TRL of the low 4s, and has enabled Caltech and Colorado to 
successfully propose to the NSF for a much larger camera for the CSO.  The MKID camera on the 
CSO will read out approximately 2400 pixels in 8 GHz of bandwidth, making it by far the largest 
microwave FDM readout.  This camera will push the readout to a TRL in the high 4s, having 
demonstrated a kilopixel-scale implementation, and lacking a demonstration in a relevant environment 
simulating a satellite to achieve TRL 5. 

5.  Conclusions 
All three multiplexing techniques described in this paper are at a TRL of 4 or higher, and are 
progressing rapidly. Each of them are being deployed in suborbital cameras of the kilopixel scale, and 
both TDM and MHz FDM are being deployed in balloon-borne CMB polarimeter experiments 
(SPIDER using TDM, and EBEX using MHz FDM). If appropriate additional investment is made, we 
do not anticipate that the readout techniques and electronics will be a source of high technological risk 
for a CMBPol space mission. SQUID TDM and FDM are rapidly approaching a level of TRL 5. While 
each has its benefits and challenges, it is likely that either would work well for a CMBPol satellite.  
GHz FDM based on superconducting microresonators are also evolving rapidly, and they promise 
focal-plane simplification and scalability to even larger array sizes.  
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