Model for the Thermodynamic Properties of a Biodiesel Fuel

Marcia L. Huber, Eric W. Lemmon, Andrei Kazakov, Lisa S. Ott,[†] and Thomas J. Bruno*

Thermophysical Properties Division National Institute of Standards and Technology Boulder, CO

Received February 23, 2009. Revised Manuscript Received May 16, 2009

We present an equation-of-state approach to modeling the thermodynamic properties of a biodiesel fuel. Preliminary Helmholtz-type equations of state were developed with limited experimental data for five fatty acid methyl esters (FAMEs) that are the primary constituents of soy-based biodiesel fuel, namely, methyl palmitate, methyl stearate, methyl oleate, methyl linoleate, and methyl linolenate. These components were combined in a mixture model using ideal mixing to represent the thermodynamic properties of a biodiesel fuel. We performed limited experimental measurements on the density, sound speed, and initial boiling point of two biodiesel fuel samples and compared the results with the model.

Introduction

Biodiesel fuel is a renewable fuel comprised of monoalkyl esters of long chain fatty acids. It can be produced from a variety of feedstocks including common vegetable oils (soybean, cottonseed, palm, peanut, canola, sunflower, safflower, coconut), animal fats (tallow), and even waste cooking oil.¹ In the United States, the predominant feedstock is soybeans.² The most common compounds present in soy-based biodiesels are the fatty acid methyl esters (FAMEs): methyl palmitate, methyl stearate, methyl oleate, methyl linoleate, and methyl linolenate.³ It has recently been suggested that, by optimizing the relative abundance of FAMEs, one could conceivably develop "designer" biodiesel.³ Furthermore, knowing the physical properties of a fuel can aid both in characterizing the fuel⁴ as well as in optimizing engine efficiency.⁵

Biodiesel fuel consisting of primarily FAME constituents is referred to as B100.⁶ This fluid is now typically used only as a blending stock, since most engine manufacturers will not certify engines to operate on B100. Also present in the market are various mixtures of B99, in which there is a small amount of petroleum-based diesel fuel. This is often present merely as a tank contaminant, or it can be found in an intentionally prepared mixture. B99 does not necessarily refer to a measured percentage, but merely a high level of FAME with traces of petroleum diesel fuel. More common mixtures that are sold for light and medium trucking, and the diesel automobile market, are B5 and B20. There are engines that can operate on these fuels without violation of warranty. For biodiesel fuel to replace or extend petroleum-derived diesel fuel on a large scale, it is necessary to be able to substitute the two fuels in a fairly straightforward manner (that is, biodiesel fuel, or mixtures thereof, should ideally be drop-in replacements). As the market accepts the various blends of biodiesel fuel mentioned above, the availability of thermophysical property information will become more critical. It is impractical to measure such properties for all potential biodiesel fuel streams; thus, the development of thermodynamic models is needed to provide such a knowledge base. The goal of this work is to present a preliminary thermodynamic model for biodiesel fuels.

We note that, for the comparisons of our model with the real fuel, we used two separate samples of B100. At present, there are a very limited number of suppliers of B100 blending stocks. In our previous work on compositional and enthalpic variability,⁷ we used four separate fluids for the comparison: three commercial stocks and one that we prepared ourselves from olive oil. One of the commercial stocks was found to be slightly contaminated with petroleum diesel, as we reported. Thus, this stock was not strictly B100, but rather B99. The real fuel comparisons presented in this paper are with the two commercial B100 stocks that contain only FAME constituents.

We proceed by first presenting the experimental measurements on biodiesel fuel samples, then developing equations of state for the pure fluid constituents of the fuel (incorporating previous experimental measurements⁸), formulating a mixture model, and finally comparing the model with the experimental results.

Experimental Section

Two B100 biodiesel samples were obtained from commercial sources. Both had soybean oil feedstocks and were compliant with ASTM D-6751.⁶ The chemical compositions of the samples were determined⁷ by the GC-MS method, and the results are given in Table 1. The estimated uncertainty (2σ) for the mole fractions is 0.001–0.002 mol fraction. The values reported in Table 1 do not sum exactly to unity, due to the presence of heavier FAMEs (methyl myristate, methyl arachidate, methyl behenate, and some heavier FAMEs) that were found in small or trace amounts.

^{*} Corresponding author: e-mail: bruno@boulder.nist.gov; phone: 303-497-5158; fax: 303-497-5927.

[†] Present address: Department of Chemistry and Biochemistry, California State University, Chico CA.

⁽¹⁾ Knothe, G.; Van Gerpen, J.; Krahl, J. *The Biodiesel Handbook*; AOCS Press: Champaign, IL, 2005.

⁽²⁾ Saraf, S.; Thomas, B. Proc. Saf. Envir. Prot. 2007, 85, 360–364.
(3) Knothe, G. Energy Fuels 2008, 22, 1358–1364.

⁽⁴⁾ Castro, M. P. P.; Andrade, A. A.; Franco, R. W. A.; Miranda, P. C. M. L.; Sthel, M.; H., V.; Constantino, R.; Baesso, M. L. *Chem. Phys. Lett.* **2005**, *411*, 18–22.

⁽⁵⁾ Moron-Villarreyes, J. A.; Soldi, C.; Amorim, A. M.; Pizzolatti, M. G.; Mendonca, A. P.; D'Oca, M. G. M. *Fuel* **2007**, *86*, 1977–1982.

⁽⁶⁾ Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels, ASTM Standard D-6751–08. In Book of Standards; ASTM: 2008; Vol. 05–04.

⁽⁷⁾ Ott, L. S.; Bruno, T. J. Energy Fuels 2008, 22, 2861-2868.

⁽⁸⁾ Ott, L. S.; Huber, M. L.; Bruno, T. J. J. Chem. Eng. Data 2008, 53, 2412–2416.

 Table 1. Chemical Composition of Two B100 Biodiesel Fuel

 Samples, in mol Fraction

	commercial sample A	commercial sample B
methyl palmitate	0.139	0.147
methyl stearate	0.087	0.121
methyl oleate	0.302	0.353
methyl linoleate	0.380	0.310
methyl linolenate	0.090	0.066

The densities and speeds of sound of the two fuels were measured concurrently with a commercial instrument equipped with a vibrating U-tube densimeter and pulse-echo velocity of sound measurement cell. Before each measurement, the instrument was calibrated with deionized degassed water at 20 °C; the reproducibility of the sound speed of water was within 0.01% before and after measurements of the biodiesels. After each calibration, the instrument was rinsed at least five times with each of two solvents (acetone and n-hexane), then maintained at 70 °C for 1 h under a stream of forced room air to ensure that the measurement cells were thoroughly cleaned and dried. The measurements were carried out at atmospheric pressure and over a temperature range of 278–333 K.

In earlier work⁸ we measured the density and sound speed of the individual FAME constituents: methyl palmitate, methyl stearate, methyl oleate, methyl linoleate, and methyl linolenate. In the present work, we measured the boiling temperatures of these fluids with the same technique that is used to measure the initial boiling behavior of complex fluids while performing an advanced distillation curve measurement. The apparatus used for this, which has been presented in detail elsewhere, ^{9–13} consists of a distillation flask and head with thermocouples placed in the head and in the fluid. A stirrer is also placed in the fluid. Heating is provided with an aluminum enclosure that is fully insulated to provide uniform temperature control. Temperature control is provided with a programmable, model predictive controller that mimics the shape of a distillation curve. Direct observation through the distillation flask window or through an illuminated borescope facilitates these observations. During the early stages of a measurement the first bubbles will appear intermittently, and this action will quell if the stirrer is stopped momentarily. Sustained vapor bubbling is then observed, which is somewhat intermittent, but it is observable even when the stirrer is momentarily stopped. Finally, the temperature at which vapor is first observed to rise into the distillation head is observed. This is termed the vapor rise temperature. We have demonstrated that this is the actual boiling temperature of a fluid, and the initial boiling temperature of a mixture.

Experimental Results

The density and speed of sound measurements on the B100 fuel samples are reported in Tables 2 and 3. Each measurement of density and speed of sound was repeated four times for each of the biodiesel fuel samples. The expanded total uncertainty (with a coverage factor of k = 2, incorporating both random and systematic uncertainty) in each measurement is given parenthetically after the significant figure to which it applies (for example, 856.1 kg·m⁻³ with an uncertainty of 0.9 kg·m⁻³ is shown as 856.1 (0.9) kg·m⁻³).

The results of the boiling point measurements on the five FAMEs are presented in Table 4. The repeatability of the pressure measurements was 0.1%. The purities of these samples were examined by a gas chromatographic method before the

(12) Smith, B. L.; Bruno, T. J. Ind. Eng. Chem. Res. 2007, 46, 310-320.

Table 2. Density, in kg⋅m⁻³, of Two B100 Biodiesel Fuel Samples Measured at 83 kPa^a

temperature/K	commercial sample A	commercial sample B
278.15	893.23(0.1)	892.37(0.13)
288.15	885.39(0.4)	885.00(0.10)
298.15	878.56(0.06)	877.67(0.01)
308.15	871.27(0.08)	870.36(0.05)
318.15	863.97(0.08)	863.09(0.03)
328.15	856.68(0.06)	855.62(0.41)
333.15	849.41(0.04)	848.58(0.01)

^{*a*} The uncertainty of each measurement, discussed in the text, is the number in parentheses.

Table 3. Speed of Sound, in m·s⁻¹, of the Two Biodiesel Fuel Samples Measured at 83 kPa^a

	-	
temperature/K	commercial sample A	commercial sample B
278.15	1468.42(0.05)	1466.85(0.56)
288.15	1431.53(0.04)	1429.87(0.61)
298.15	1395.34(0.03)	1393.60(0.68)
308.15	1359.84(0.04)	1358.05(0.75)
318.15	1324.99(0.06)	1323.17(0.90)
328.15	1290.75(0.06)	1288.86(0.90)
333.15	1257.19(0.11)	1255.36(0.96)

 $^{\it a}$ The uncertainty of each measurement, discussed in the text, is the number in parentheses.

 Table 4. Boiling Point, in K, of the Constituent FAMEs

 Measured at 83 kPa^a

fluid	temperature/K	pressure/kPa
methyl palmitate	592.9(0.3)	82.82
methyl stearate	619.9(0.3)	82.76
methyl oleate	617.7(0.3)	83.62
methyl linoleate	619.0(0.3)	83.42
methyl linolenate	620.0(0.3)	82.87

^a The uncertainty of each measurement is the number in parentheses.

measurements were made.^{8,14,15} In each case, the purity met or exceeded the stated purity from the supplier: methyl palmitate, 99.6%; methyl stearate, 99.7%; methyl oleate, 99.3%; methyl linoleate, 99.3%; methyl linolenate, 99.0%. Krop et al.¹⁶ present values for the boiling point for several FAMEs, but these cannot be compared directly with our measurements since our measurements were taken at an atmospheric pressure of 83 kPa.

Pure Fluids: Modeling

The modeling approach we used is based on equations of state (EOS). Typically, the use of an equation of state requires the critical point (critical temperature, T_c , pressure, p_c , and density, ρ_c). Experimental values of the critical parameters of the FAMEs are not available, therefore we used estimation methods. The critical temperature and pressure were estimated by use of a novel procedure based on quantitative structure—property relationship (QSPR) methodology. The procedure is described in more detail in ref¹⁷ and is only briefly described here.

As a first step, a large-scale database of evaluated critical properties of individual compounds has been generated. Raw

⁽⁹⁾ Bruno, T. J. Ind. Eng. Chem. Res. 2006, 45, 4371-4380.

⁽¹⁰⁾ Bruno, T. J.; Smith, B. L. Ind. Eng. Chem. Res. 2006, 45, 4381-4388.

⁽¹¹⁾ Smith, B. L.; Bruno, T. J. Ind. Eng. Chem. Res. 2007, 46, 297–309.

⁽¹³⁾ Bruno, T. J. Sep. Sci. Technol. 2006, 41, 309-314.

⁽¹⁴⁾ Bruno, T. J.; Svoronos, P. D. N., *CRC Handbook of Basic Tables for Chemical Analysis*, 2nd ed.; Taylor and Francis CRC Press: Boca Raton, FL, 2004.

⁽¹⁵⁾ Bruno, T. J.; Svoronos, P. D. N., *CRC Handbook of Fundamental Spectroscopic Correlation Charts*; Taylor and Francis CRC Press: Boca Raton, FL, 2005.

⁽¹⁶⁾ Krop, H. B.; Van Velzen, M. J. M.; Parsons, J. R.; Govers, H. A. J. J. Am. Oil Chem. Soc. 1997, 74, 309–315.

⁽¹⁷⁾ Kazakov, A.; Muzny, C. D.; Chirico, R. D.; Diky, V. V.; Frenkel, M. Quantitative Structure-Property Relationship (QSPR) Study of Critical Properties for Pure Compounds Based on a Large Dataset Derived from Experimental Data. In *18th European Conference on Thermophysical Properties*, Pau, France, 2008.

experimental data for critical properties and their uncertainties were drawn from the NIST TRC SOURCE database.¹⁸ For each compound with available critical temperature data, evaluated $T_{\rm c}$ was derived from all available $T_{\rm c}$ data points by use of robust regression with a Lorentzian weighting function¹⁹ (to eliminate the influence of outliers). The evaluated critical pressure, p_c , for a given compound was obtained by use of evaluated $T_{\rm c}$ and all available experimental vapor pressure data (inclusive of boiling and triple points) by performing a 2-5 Wagner equation²⁰ fit, with p_c being one of the fitting parameters. Vaporpressure data were fitted by use of robust regression techniques (MM-estimate approach of Yohai²¹). All evaluations were conducted in a batch fashion via a series of computer programs that directly interact with the database. The end result of this step was a generated database of evaluated critical temperatures for over 900 structurally diverse compounds; among them, over 700 compounds also have evaluated p_c values.

The next step was the generation of three-dimensional (3D) representations for compounds with available critical properties (i.e., compounds from the database produced during the first step) as well as for the target biodiesel components. The 3D molecular structures were obtained via optimization at the semiempirical PM3 level of theory.²² Notable special cases are the compounds that contain long molecular chains (those also included the biodiesel components under consideration). In many practical QSPR studies, long chains in 3D molecular structures are represented with the straight conformations even though it is well-known that lower-energy conformers in such cases are "folded" under the influence of van der Waals interactions. Chain folding has a significant effect on some important molecular properties (for example, moments of inertia), and use of more physically meaningful low-energy conformers is clearly warranted. Although a comprehensive search for the lowest energy conformer was not attempted in the present study (and generally deemed ambiguous), we nevertheless conducted searches for what we term a "representative low-energy conformer." For each compound containing long chains (eight or more carbon atoms), 1000 simulated annealing calculations based on the MM3 forcefield were performed by use of the Tinker molecular mechanics package.23 At the end of each annealing run, the final structure was further optimized by use of a PM3 Hamiltonian, and the final PM3 energy was obtained. The structure with the lowest PM3 energy obtained during the entire sequence of annealing runs was defined as the representative low-energy conformer and retained for further use.

The QSPR molecular descriptor calculations from 3D structures and subsequent correlations were carried out by use of the CODESSA package.²⁴ Although more general nonlinear correlations applicable to a majority of available data were sought elsewhere,¹⁷ here we adopted a simpler but targeted approach. Specifically, for each compound that needs estimates of T_c and p_c , we draw from the database of evaluated critical

Table 5. Estimated Critical Parameters T_c , p_c , and ρ_c of the Five FAME Compounds^{*a*}

	methyl palmitate	methyl stearate	methyl oleate	methyl linoleate	methyl linolenate
$\frac{T_c/K}{p_c/kPa}$ $\rho_c/mol \cdot m^{-3}$	755 (5) 1350 (50) 897 (7.8)	775 (10) 1239 (50) 794.3 (6.7)	782 (10) 1246 (50) 812.85 (7.1)	799 (15) 1341 (50) 808.4 (8.5)	772 (10) 1369 (50) 847.3 (9.2)

^{*a*} The estimated uncertainty of each value is the number in parentheses.

properties a set of 200 compounds that are most structurally similar to this compound. A popular metric of structural similarity used in chemoinformatics is the Tanimoto index,²⁵ which was also used in the present study for similarity rankings. We also note that the size of the data set (200) used here to develop correlations is substantially larger that those considered in similar prior studies.^{26,27}

As expected, the resulting data sets for each FAME were dominated by C/H/O molecular systems of various configurations (that constitute a majority of about 40% of the utilized experimental database). Linear correlations used to estimate properties for a specific compound were developed from the data sets of 200 similar compounds by use of the built-in CODESSA tools (e.g., the CODESSA "heuristic" method). In each case, linear correlations were generated for T_c and T_c/p_c (the ratio of T_c and p_c yields better correlations than p_c itself). High-quality correlations have been obtained in all cases, with R^2 of at least 0.97 and higher in the majority of cases. Up to eight descriptors were used in all T_c correlations, consistent with prior studies,²⁷ whereas three to five descriptors were found to be sufficient for T_c/p_c correlations.

After determining T_c and p_c , we used the TDE computer program¹⁸ to estimate the value of the critical density that incorporated the density at the normal boiling point. The resulting estimates of the critical properties for the main biodiesel compounds are compiled in Table 5. The estimated uncertainties are also presented in Table 5; for comparison, the uncertainty estimates for T_c , p_c , and V_c for the recommended predictive methods, such as those incorporated into the DIPPR database for these fluids, are 5, 10, and 25%, respectively.

The equation of state is formulated in terms of the molar Helmholtz free energy as a function of density and temperature,

$$a(\rho, T) = a^{0}(\rho, T) + a^{r}(\rho, T)$$
(1)

where *a* is the molar Helmholtz energy, $a^0(\rho,T)$ is the ideal-gas contribution to the molar Helmholtz energy, and $a^r(\rho,T)$ is the real fluid molar Helmholtz energy that results from intermolecular forces. All thermodynamic properties can be calculated as derivatives of the Helmholtz energy.²⁸ In practical applications, the functional form used is the dimensionless Helmholtz energy, α , as a function of a dimensionless density and reciprocal temperature. The form of this equation is

$$\frac{a(\rho,T)}{RT} = \alpha(\delta,\tau) = \alpha^{0}(\delta,\tau) + \alpha^{r}(\delta,\tau)$$
(2)

where $\delta = \rho / \rho_c$ and $\tau = T_c/T$. The Helmholtz energy of the ideal gas is given by

- (27) Sola, D.; Ferri, A.; Banchero, M.; Manna, L.; Sicardi, S. Fluid Phase Equilib. **2008**, 263, 33–42.
 - (28) Span, R.; Wagner, W. Int. J. Thermophys. 2003, 24, 1-39.

⁽¹⁸⁾ Frenkel, M.; Chirico, R. D.; Diky, V.; Muzny, C.; Lemmon, E. W.; Yan, X.; Dong, Q. *NIST Standard Reference Database 103, NIST ThermoData Engine: Version 3.0, Standard Reference Data*; National Institute of Standards and Technology: Gaithersburg, MD, 2008.

⁽¹⁹⁾ Press, W. H.; Teukolsky, S. A.; Vetterling, S. A.; Flannery, B. P. *Numerical Recipes: The Art of Scientific Computing*, Third ed.; Cambridge University Press: New York, 2007.

⁽²⁰⁾ Wagner, W. Cryogenics 1973, 13, 470-82.

⁽²¹⁾ Yohai, V. J. Ann. Stat. 1987, 15, 642-656.

⁽²²⁾ Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209-220.

⁽²³⁾ Ponder, J. W. TINKER: Software Tools for Molecular Design, version 4.2.; URL: http://dasher.wustl.edu/tinker. 2004.

⁽²⁴⁾ CODESSA: Comprehensive Descriptors for Structural and Statistical Analysis, Version 2.0 User Manual. Semichem and University of Florida, 1995–1997.

⁽²⁵⁾ Tanimoto, T. T. An Elementary Mathematical Theory of Classification and Prediction; IBM Internal Report, November 17, 1958.

⁽²⁶⁾ Katritzky, A. R.; Mu, L.; Karelson, M. J. Chem. Inf. Comput. Sci. **1998**, *38*, 293–299.

Modeling the Thermodynamic Properties of Biodiesel

$$a^{0} = h_{0}^{0} + \int_{T_{0}}^{T} c_{p}^{0} dT - RT - T \left[s_{0}^{0} + \int_{T_{0}}^{T} \frac{c_{p}^{0}}{T} dT - R \ln \left(\frac{\rho T}{\rho_{0} T_{0}} \right) \right]$$
(3)

where ρ_0 is the ideal-gas density at T_0 and p_0 ($\rho_0 = p_0/T_0R$). The values of T_0 , p_0 , h_0^0 , and s_0^0 are arbitrary and can be chosen based on a user's desired reference values of enthalpy and entropy. The ideal-gas Helmholtz energy is given in a dimensionless form by

$$\alpha^{0} = \frac{h_{0}^{0}\tau}{RT_{c}} - \frac{s_{0}^{0}}{R} - 1 + \ln\frac{\delta\tau_{0}}{\delta_{0}\tau} - \frac{\tau}{R}\int_{\tau_{0}}^{\tau}\frac{c_{p}^{0}}{\tau^{2}}d\tau + \frac{1}{R}\int_{\tau_{0}}^{\tau}\frac{c_{p}^{0}}{\tau}d\tau$$
(4)

where $\delta_0 = \rho_0 / \rho_c$ and $\tau_0 = T_c / T_0$.

Equation 4 requires an expression for the ideal-gas heat capacity c_p^0 of each of the pure fluids. Experimental information was not available; therefore, we used the predictive methods in the TDE computer program¹⁸ to estimate values of the ideal-gas heat capacity. Values for the ideal-gas heat capacity were estimated by use of the method of Joback and Reid²⁹ with group parameters re-evaluated at NIST/TRC³⁰ and then fitted to the following "Planck–Einstein" form used in reference equations of state:^{31,32}

$$c_p^0 = c_0 T^{c_1} + c_2 \frac{(c_3/T)^2 \exp(c_3/T)}{[1 - \exp(c_3/T)]^2} + c_4 \frac{(c_5/T)^2 \exp(c_5/T)}{[1 - \exp(c_5/T)]^2} + c_6 \frac{(c_7/T)^2 \exp(c_7/T)}{[1 - \exp(c_7/T)]^2}$$
(5)

In eq 5, the temperature is in units of K, and c_p^{0} is in units of J·mol⁻¹·K⁻¹. This form can extrapolate reliably to high temperatures that may be of interest in fuels applications and is superior to common polynomial fits that often have unphysical behavior when extrapolated beyond the range over which they were fitted. The resulting values of the coefficients for eq 5 are given in Table 6; the estimated uncertainty of c_p^{0} calculated with eq 5 and these coefficients is 10%, due mainly to the uncertainty associated with the method of Joback and Reid.²⁹

One of the most common functional forms used for the residual Helmholtz energy equation of state for a pure fluid is

$$\alpha^{\mathrm{r}}(\delta,\tau) = \sum n_k \delta^{i_k} \tau^{j_k} + \sum n_k \delta^{i_k} \tau^{j_k} \exp(-\delta^{l_k}) \qquad (6)$$

where the summation is over the polynomial and exponential terms in the equation, and where each summation typically contains 4-20 terms. The form used in this work has 13 terms plus additional Gaussian bell-shaped terms similar to the Lemmon et al. equation of state for propane,³³

(29) Joback, K. G.; Reid, R. C. Chem. Eng. Commun. 1987, 57, 233-243.

- (31) Wagner, W.; Pruβ, A. J. Phys. Chem. Ref. Data 2002, 31, 387-535.
- (32) Lemmon, E. W.; Jacobsen, R. T. J. Phys. Chem. Ref. Data 2005, 34, 69–108.
- (33) Lemmon, E. W.; McLinden, M. O.; Wagner, W. , J. Chem. Eng. Data 2009, in press.

$$\alpha^{r}(\delta,\tau) = \sum_{k=1}^{5} N_{k} \delta^{d_{k}} \tau^{t_{k}} + \sum_{k=6}^{10} N_{k} \delta^{d_{k}} \tau^{t_{k}} \exp(-\delta^{t_{k}}) + \sum_{k=11}^{13} N_{k} \delta^{d_{k}} \tau^{t_{k}} \exp(-\eta_{k}(\delta-\varepsilon_{k})^{2} - \beta_{k}(\tau-\gamma_{k})^{2})$$
(7)

This form can represent not only the vapor pressure and density, but also other properties, such as the speed of sound (which can have a noticeable impact on injection timing for the pump-line-nozzle fuel-injection systems used on some diesel engines).³⁴ All of these thermodynamic properties can be expressed in terms of the Helmholtz energy. The development of the functional form of the equation is described by Lemmon.³⁵

Another feature of this particular formulation is that although uncertainty in the critical values propagates directly into the uncertainty of the critical region of the equation of state, it will not greatly affect properties outside of the critical region that are based on regressing experimental data. This is in contrast to some of the simple equations of state that have parameters expressed in terms of the critical parameters; these can be much more sensitive to the values of the critical parameters used.

Typically, the Helmholtz-energy form requires a large amount of high-quality experimental data in order to determine the multiple parameters of the equation. A feature of the new form of the Helmholtz energy equation and the regression procedure³⁵ is that a significant number of thermodynamic constraints are imposed that allow even very limited experimental data to be used to develop a well-behaved equation that extrapolates in a physically reasonable manner. Since the coefficients of the equation are empirical, in cases with very limited data it is possible to obtain a set of coefficients that results in unphysical behavior (such as negative heat capacities at low temperatures) in regions where data are unavailable. The use of appropriate constraints in the regression removes this problem.

In an earlier work⁸ we performed an extensive literature survey to locate experimental data that included data compilations such as the DIPPR database³⁶ and the TDE database.¹⁸ The experimental data are summarized in Table 7; the uncertainties for the properties are those ascribed by the TDE program. Details on the procedure for obtaining these uncertainty estimates are in ref 30.

Pure Fluids: Results

The experimental data given in Table 7 were used in a multiproperty regression procedure to obtain the coefficients and

- (39) Verkade, P. E.; Coops, J. Biochem Z. 1929, 206, 468-481.
- (40) Spizzichino, C. J. Rech. C. N. R. S. **1956**, 34, 1–24.
- (41) Sauer, J. C.; Hain, B. E.; Boutwell, P. W. Org. Synth. **1940**, 20, 67.
- (42) Swern, D.; Knight, H. B.; Jordan, E. F. Biochem. Prep. 1960, 7, 84.
- (43) Niemann, C.; Wagner, C. D. J. Org. Chem. 1942, 7, 227.
- (44) Meer, W. A.; Jannke, P. J. J. Pharm. Soc. 1961, 50, 204–207.
 (45) Whitmore, F. C.; Sutherland, L. H.; Cosby, J. N. J. Am. Chem. Soc. 1942, 64, 1360–1364.
 - (46) Rose, A.; Supina, W. R. J. Chem. Eng. Data 1961, 6, 173.
 - (47) Norris, F. A.; Terry, D. E. Oil Soap 1945, 22, 41-46.

⁽³⁰⁾ Frenkel, M.; Chirico, R. D.; Diky, V.; Yan, X. J.; Dong, Q.; Muzny, C. J. Chem. Inf. Model. **2005**, 45, 816–838.

⁽³⁴⁾ Tat, M. E.; Van Gerpen, J. H. Measurement of Biodiesel Speed of Sound and Its Impact on Injection Timing, Report NREL/SR-510-31462; National Renewable Energy Laboratory: Golden, CO, 2003.

⁽³⁵⁾ Lemmon, E. W. Fitting 14-Term Equations of State with Just Two Data Points, paper 597. In *17th International Symposium on Thermophysical Properties*: Boulder CO, 2009.

⁽³⁶⁾ Rowley, J. R., Wilding, W. V., Oscarson, J. L., Rowley, R. L. *DIADEM, DIPPR Information and Data Evaluation Manager*, version 3.0, sponsor release Aug. 2008; Brigham Young University: Provo, UT, 2004.

⁽³⁷⁾ Haller, A.; Youssofian, A. C.R. Acad. Sci. **1906**, 143, 803–806.

⁽³⁸⁾ Scott, T. A.; Macmillan, D.; Melvin, E. H. *Ind. Eng. Chem.* **1952**, 44, 172–175.

Table 6. Value of the Coefficients c_0-c_7 in Eq 5 for the Five FAMEs

	methyl palmitate	methyl stearate	methyl oleate	methyl linoleate	methyl linolenate
<i>c</i> ₀	120.529	247.115	90.2385	190.986	79.5913
<i>c</i> ₁	0.080 1627	-0.091 6606	0.146 118	0.020 213	0.214 648
C_2	345.62	276.94	234.797	437.371	290.379
<i>c</i> ₃	2952.37	556.17	613.529	3052.11	1213.24
C4	289.038	408.997	335.768	287.222	81.4323
C5	734.653	1311.85	1405.31	746.631	578.752
C ₆	301.639	472.702	431.66	321.956	474.881
C7	1593.55	2825.71	2867.76	1624.33	2799.79

exponents given in Tables 8 and 9. The regression procedure includes thermodynamic consistency constraints in addition to constraints on the shapes and limiting behavior of various curves obtained from taking derivatives of the Helmholtz energy (details are in given by Lemmon³⁵). Average absolute deviations $(AAD = 100 \times abs[\theta_{exp} - \theta_{calc}]/\theta_{exp})$, where θ is the property of interest, are given in Table 7 for each property for each fluid. The quantity of experimental data for all of the FAMEs investigated was limited; methyl palmitate, methyl stearate, and methyl oleate had the most data, whereas methyl linoleate and methyl linolenate had extremely sparse data sets. In addition, there often were large deviations between different sources that exceeded the estimated uncertainty of the data; this was especially true for vapor-pressure data. Figure 1 demonstrates this problem for the vapor pressure of methyl palmitate. For temperatures above 400 K, the equation of state represents the data to within the uncertainty bands of most of the experimental data; however, the uncertainties are rather large. Below 400 K, there are two data sets^{40,57} that disagree significantly. Additional experimental data can help resolve these differences; however, at such low temperatures it is very difficult to obtain vaporpressure data with low uncertainties. To help remedy this situation, our regression procedure uses other types of data when available, such as heats of vaporization and heat capacity, along with thermodynamic consistency, to guide the behavior of the vapor-pressure curve at low temperatures.

- (48) Vederame, F. D.; Miller, J. G., III J. Phys. Chem. 1962, 66, 2185-2188.
- (49) Althouse, P. M.; Hunter, G. W.; Triebold, H. O. J. Am. Oil Chem. Soc. 1947, 24, 257–259.
- (50) Klykov, V. N.; Serebrennikova, G. A.; Perobrazhenskii, N. A. Z. Org. Khim. **1966**, 2, 1782–1785.
- (51) Bonhorst, C. W.; Althouse, P. M.; Triebold, H. O. Ind. Eng. Chem. 1948, 40, 2379.
- (52) Goodwin, S. R.; Newsham, D. M. T. J. Chem. Eng. Data 1975, 20, 180.
- (53) Dauben, W. G. J. Am. Oil Chem. Soc. 1948, 70, 1376.
- (54) Cason, J.; Wolfhagen, H. J.; Targey, W.; Adams, R. E. J. Org. Chem. 1949, 14, 147-154.
- (55) Zhang, G. S. Synth. Commun. 1998, 28, 1159–1162.
- (56) Cason, J.; Allinger, N. L.; Summrell, G.; Williams, D. E. J. Org. Chem. 1951, 16, 1170–1176.
- (57) Van Genderen, A. C. G.; van Miltenburg, J. C.; Van Bommel, M. J.; van Ekeren, P. J.; van den Berg, G. J. K.; Oonk, H. A. J. *Fluid Phase Equilibria* **2002**, *202*, 109–120.
- (58) Nevin, C. S.; Althouse, P. M.; Triebold, H. O. J. Am. Oil Chem. Soc. 1951, 28, 325–327.
- (59) Eykman, J. F. Natuurkd. Verh. Hollandsche Maatschappij Wet. Haarlem 1919, 8, 438–555.
- (60) Gouw, T. H.; Vlugter, J. C. J. Am. Oil Chem. Soc. 1964, 41, 142-145.
- (61) Drake, N. L.; Spies, J. R.; Cotton Resin, I. I. I. J. Am. Chem. Soc. **1935**, *57*, 184–187.
- (62) Rusling, J. F.; Bertsch, R. J.; Barford, R. A.; Rothbart, H. L. J. Chem. Eng. Data **1969**, *14*, 169–173.
- (63) Gaikwad, B. R.; Subrahmanyam, V. V. R. J. Ind. Chem. Soc. 1988. 65, 266–268.
- (64) Gros, A. T.; Feuge, R. O. J. Am. Oil Chem. Soc. 1952, 29, 313.
 (65) Lipkind, D.; Kapustin, Y.; Umnahanant, P.; Chickos, J. S. Thermochim. Acta 2007, 456, 94–101.
- (66) van Miltenburg, J. C.; Oonk, H. A. J.; Van Bommel, M. J. J. Chem. Eng. Data **2004**, 49, 1036–1042.

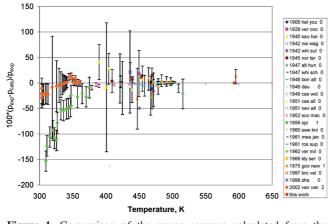
Mixture Model. For calculations of the thermodynamic properties of mixtures, we use a mixture model explicit in Helmholtz energy that can utilize any equation of state, provided that it can be expressed in terms of the Helmholtz energy.⁸⁶ This form of model has been used successfully for refrigerant mixtures⁸⁶ and for natural gas mixtures.⁸⁷ Details on the mixture model are given in refs 86 and 88. The pure fluid equations of state and the mixture model were implemented into the REFPROP⁸⁹ computer program. We are unaware of any other equation-of-state-based approaches that focused on thermodynamic properties of biodiesel such as density and sound speed, although there have been recent equation-of-state-based approaches to modeling the solubility of water in biodiesel.⁹⁰

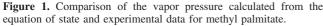
The basic idea is to represent the molar Helmholtz energy, a, of a mixture as a sum of an ideal contribution, a^{id} , and an excess contribution, a^{excess} , according to:

$$a = a^{\rm id} + a^{\rm excess} \tag{8}$$

$$a^{\rm id} = \sum_{j=1}^{m} x_i [a_i^0(\rho, T) + a_i^{\rm r}(\delta, \tau) + RT \ln x_i]$$
(9)

$$a^{\text{excess}} = RT \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} x_i x_j F_{ij} \sum_{k} N_k \delta^{d_k} \tau^{t_k} \exp(-\delta^{l_k}) \quad (10)$$


where ρ and T are the mixture molar density and temperature; δ and τ are the reduced mixture density and temperature; m is


- (67) Gouw, T. H.; Vlugter, J. C. J. Am. Oil Chem. Soc. 1964, 41, 524–526.
- (68) Murray, K. E.; Schoenfeld, R. J. Am. Oil Chem. Soc. 1952, 29, 416–420.
- (69) Menzel, W.; Berger, A.; Nikuradse, A. Verhalten von Fettsaureestern in Electrischen Entladungen Chemische Berichte- Recueil **1949**, 82, 418–425.
- (70) Boelhouwer, J. W. M.; Nederbragt, G.; Verberg, G. W. Appl. Sci. Res. Sect. A. 1950, 2, 249.
- (71) Rose, A.; Schrodt, V. N. J. Chem. Eng. Data 1964, 9, 12-16.
- (72) Greaves, W. S.; Linstead, R. P.; Shepard, B. R.; Thomas, S. L. S.; Weedon, B. C. L. J. Chem. Soc. (London) **1950**, 332, 6–3330.
- (73) Mumford, S. A.; Phillips, J. W. C. J. Chem. Soc. (London) 1950, 75-84.
- (74) Shreve, O. D.; Heether, M. R.; Knight, M. R.; Swern, H. B. Anal. Chem. 1950, 22, 1498.
- (75) Mitrofanova, T. K.; Gusev, V. D.; Preobrazhenskii, N. A.; Investigations in the field of lipids, X. L. J. Org. Chem. U.S.S.R. **1966**, 2, 1748–1750.
- (76) Hosman, B. B. A.; Van Steenis, J.; Waterman, H. I. Recl. Trav. Chim. Pays-Bas 1949, 68, 939.
- (77) Liew, K. Y.; Seng, C. E. J. Am. Oil Chem. Soc. 1992, 69, 734–740.
- (78) Cueto, M. J. M.; Vallejo, M. G.; Luque, V. F. Grasas Aceites (Seville) 1991, 42, 14–21.
 - (79) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1959, 81, 4256.
 - (80) Bridgman, P. W. Proc. Am. Acad. Arts Sci. 1932, 67, 1-27.
- (81) Knegtel, J. T.; Boelhouwer, C.; Tels, M.; Waterman, H. I. J. Am. Oil Chem. Soc. 1957, 34, 336–337.
- (82) Keffler, L.; McLean, J. H. J. Soc. Chem. Ind. 1935, 54, 178–185.
 (83) Albert, O. Z. Phys. Chem. (Munich) 1938, 182, 421.
- (84) Wheeler, D. H.; Riemenschneider, R. W. Oil Soap 1939, 16, 207–209.
 - (85) Fuchs, R.; Peacock, L. A. Can. J. Chem. 1980, 58, 2796.

reference	nati					f Experimental Data for FAN			te/leD-	11800 01	
	npts	<i>T</i> /K	<i>p</i> /kPa	unc.%		reference	npts	<i>T/</i> K	p/kPa	unc. %	AAD,
Vapor Pressure			a.	Summary	of Expe	rimental Data for Methyl Palmitate					
Haller and Youssofian ³⁷	1	469	2	40	12.2	Scott et al. ³⁸	7		0.01-0.8	1 - 4	4.0
Verkade and Coops ³⁹	1	450	1.2	45	16.6	Spizzichino ⁴⁰	17		$1 \times 10^{-5} - 0.01$	20	66.9
Sauer et al. ⁴¹	3	390-455		25 - 30	25.8	Swern et al. ⁴²	1	435	0.5	53	7.7
Viemann and Wagner ⁴³	1 1	436	0.7	20 81	17.3	Meer and Jannke ⁴⁴	1	439 467-516	0.7	81 8-30	10.5
Whitmore et al. ⁴⁵ Norris and Terry ⁴⁷	5	436 409-470	0.7 0.1-2.7	2-23	18.8 8.2	Rose and Supina ⁴⁶ Verderame and Miller ⁴⁸	12 1	467-510	1.9-9.3	3-30 35	4.1 27.8
Althouse et al.49	1	409-470	0.1-2.7	2-23 52	0.2 15.2	Klykov et al. ⁵⁰	1	407	0.1	126	8.5
Sonhorst et al. ⁵¹	7	422-475		$\frac{32}{2-19}$	3.5	Goodwin and Newsham ⁵²	6	464-497		8-22	4.5
Dauben ⁵³	1	406	0.04	30	162.4	Krop et al. ¹⁶	3	447-595		14-60	21.1
Cason et al.54	1	439	0.5	24	13.8	Zhang ⁵⁵	1	450	0.7	85	49.5
Cason et al.56	1	436	0.5	56	6.5	van Genderen et al.57	31		1e-5-0.005	5-100	10.8
Jevin et al.58	2	421-458	0.3-1.3	20 - 48	7.1	this work	1	593	83	0.1	0.04
Density											
ykman ⁵⁹	1	354	sat	0.2	0.24	Gouw and Vlugter ⁶⁰	1	313	sat	0.1	0.23
Drake and Spies ⁶¹	1	293	sat	0.1	1.44	Rusling et al. ⁶²	1	298	sat	0.6	1.99
onhorst et al. ⁵¹	3	311-372	101	0.6	0.05	Gaikwad and Subrahmanyam ⁶³	5	333-353		0.6	0.06
Bros and Feuge ⁶⁴	1	348	sat	0.1	0.28	Ott et al. ⁸	7	308-338	83	0.1	0.04
leat of Vaporization ipkind et al. ⁶⁵	1	298	sat	1	1.8						
leat Capacity	1	298	sat	1	1.0						
an Miltenburg et al.66	5	310-350	101	0.3	1.9						
ound Speed	5	510 550	101	0.0	1.9						
ouw and Vlugter67	1	313	101	0.14	0.26	Ott et al. ⁸	7	308-338	83	0.1	0.04
			b	. Summar	y of Expo	erimental Data for Methyl Stearate					
apor Pressure aller and Youssofian ³⁷	1	488	2	41	9.3	Nevin et al.58	2	441-481	0.27-1.33	20-48	9.2
Verkade and Coops ³⁹	1	476	1.5	45	22.7	Murray and Schoenfeld ⁶⁸	1	425	0.13	20 48 25	29.6
Viemann and Wagner ⁴³	1	439	0.2	25	2.2	Scott et al. ³⁸	12		0.02-0.80	1-4	1.8
lorris and Terry ⁴⁷	5	428-495		2 - 23	8.7	Spizzichino ⁴⁰	18		$2 \times 10^{-5} - 0.01$	31-44	21.0
lthouse et al.49	1	447	0.27	52	11.5	Swern et al.42	1	454	0.53	55	20.2
onhorst et al.51	6	443-480	0.27-1.33	4 - 20	6.6	Meer and Jahnke44	1	456	0.67	81	30.6
Ienzel ⁶⁹	1	436	0.07	30	157.2	Rose and Supina ⁴⁶	11	477-513		6-14	4.2
oelhouwer et al.70	1	452	0.4	60	5.1	Rose and Schrodt ⁷¹	12		0.11-1.74	6-92	5.5
reaves et al. ⁷²	2		0.01-0.04	30	31.8	Klykov et al. ⁵⁰	1	421	0.08	113	9.4
lumford and Phillips ⁷³	1	473	1.3	20	25.0	Krop et al. ¹⁶	2	493-620		10 - 80	14.4
hreve et al. ⁷⁴	1	453	0.5	25	23.9	Zhang ⁵⁵	1	474	0.93	68	10.0
² ason et al. ⁵⁶ Iitrofanova ⁷⁵	1 1	454 474	0.5 1.2	56 13	14.0 14.7	van Gederen et al. ⁵⁷ this work	14 1	620	$1 \times 10^{-5} - 0.001$ 83	10 - 100 0.1	7.0 0.01
Density	1	4/4	1.2	15	14./	ulis work	1	020	85	0.1	0.01
Sonhorst et al. ⁵¹	3	310-372	sat	0.6	0.08	Gouw and Vlugter ⁶⁰	1	313	sat	0.1	0.07
Iosman et al. ⁷⁶	1	313	sat	0.6	0.05	Gaikwad and Subrahmanyam ⁶³	5	333-353		0.6	0.11
oelhouwer et al.70	5	323-513		0.1	0.19	Ott et al. ⁸	5	318-338		0.1	0.02
Bros and Feuge64	1	348	sat	0.1	0.01	Liew and Seng ⁷⁷	9	313-353	101	0.78	0.02
Cueto et al.78	1	313	sat	0.1	2.04	-					
leat of vaporization											
lipkind et al.65	1	298	sat	1	1.62						
Ieat Capacity											
an Miltenburg et al. ⁶⁶	4	320-350	101	0.3	2.24						
Sound Speed	5	210-220	02	0.1	0.07	Gouw and Vlugter67	1	212	101	0.12	0.20
ott et al. ⁸	5	318-338					1	313	101	0.13	0.29
apor Pressure				c. Summa	ry of Exp	erimental Data for Methyl Oleate					
	1	486	2	40	0.35	Rose and Schrodt ⁷¹	38	429-487	0.13-1.9	2-5	8.95
aller and Youssofian ³⁷		448	0.7	80	72.9	Klykov et al.50	1	405	0.03	260	6.1
	1			2 - 22	6.3	Krop et al. ¹⁶			101		17.6
Vhitmore et al. ⁴⁵ forris and Terry ⁴⁷	5	426-491					1	619		25	
Whitmore et al. ⁴⁵ forris and Terry ⁴⁷ hreve et al. ⁷⁴	5 1	453	0.5	25	7.6	Lipkind et al.65	4	300-450	$8 \times 10^{-7} - 0.37$	20-25	27.29
Vhitmore et al. ⁴⁵ forris and Terry ⁴⁷ hreve et al. ⁷⁴ cott et al. ³⁸	5 1 10	453 401-458	0.5 0.03-0.63	25 2-4	7.6 0.93	Lipkind et al. ⁶⁵ this work	4 1	300-450 618	0.083	20-25 0.1	27.29 0.0
/hitmore et al. ⁴⁵ forris and Terry ⁴⁷ hreve et al. ⁷⁴ cott et al. ³⁸ immons and Smith ⁷⁹	5 1	453	0.5	25	7.6	Lipkind et al.65	4	300-450		20-25	27.29 0.0
Vhitmore et al. ⁴⁵ forris and Terry ⁴⁷ hreve et al. ⁷⁴ cott et al. ³⁸ immons and Smith ⁷⁹ ensity	5 1 10 1	453 401–458 403	0.5 0.03-0.63 0.05	25 2-4	7.6 0.93 62.1	Lipkind et al. ⁶⁵ this work Mitrofanova et al. ⁷⁵	4 1 1	300-450 618 411	0.083 0.02	20-25 0.1 80	27.29 0.01 62.20
Vhitmore et al. ⁴⁵ forris and Terry ⁴⁷ hreve et al. ⁷⁴ cott et al. ³⁸ immons and Smith ⁷⁹ ensity ridgman ⁸⁰	5 1 10 1 25	453 401-458 403 273-368	0.5 0.03-0.63 0.05 98-980665 ^a	25 2-4 166	7.6 0.93 62.1 0.91	Lipkind et al. ⁶⁵ this work Mitrofanova et al. ⁷⁵ Ott et al. ⁸	4 1 1 7	300-450 618 411 278-338	0.083 0.02 83	20-25 0.1 80 0.1	27.29 0.01 62.20 0.02
Vhitmore et al. ⁴⁵ lorris and Terry ⁴⁷ hreve et al. ⁷⁴ cott et al. ³⁸ immons and Smith ⁷⁹ bensity tridgman ⁸⁰ (negtel et al. ⁸¹	5 1 10 1 25 1	453 401-458 403 273-368 293	0.5 0.03-0.63 0.05 98-980665 ^a 101	25 2-4 166	7.6 0.93 62.1 0.91 0.11	Lipkind et al. ⁶⁵ this work Mitrofanova et al. ⁷⁵ Ott et al. ⁸ Keffler and McLean ⁸²	4 1 1 7 4	300-450 618 411 278-338 288-303	0.083 0.02 83 101	20-25 0.1 80 0.1 0.1	27.29 0.01 62.20 0.02 0.01
Vhitmore et al. ⁴⁵ lorris and Terry ⁴⁷ hreve et al. ⁷⁴ cott et al. ³⁸ immons and Smith ⁷⁹ bensity irridgman ⁸⁰ inegtel et al. ⁸¹ iouw and Vlugter ⁶⁰	5 1 10 1 25	453 401-458 403 273-368 293 293-313	$\begin{array}{c} 0.5 \\ 0.03 {-} 0.63 \\ 0.05 \end{array}$ $\begin{array}{c} 98 {-} 980665^a \\ 101 \\ 101 \end{array}$	25 2-4 166 0.15 0.1	7.6 0.93 62.1 0.91 0.11 0.04	Lipkind et al. ⁶⁵ this work Mitrofanova et al. ⁷⁵ Ott et al. ⁸ Keffler and McLean ⁸² Mitrofanova et al. ⁷⁵	4 1 1 7 4 1	300-450 618 411 278-338	0.083 0.02 83 101 101	20-25 0.1 80 0.1 0.1 0.1	27.29 0.01 62.20 0.02 0.01 1.9
Ialler and Youssofian ³⁷ Vhitmore et al. ⁴⁵ Jorris and Terry ⁴⁷ hreve et al. ⁷⁴ cott et al. ³⁸ immons and Smith ⁷⁹ Density Fridgman ⁸⁰ Cnegtel et al. ⁸¹ Jouw and Vlugter ⁶⁰ Jibert ⁸³ leat of vaporization	5 1 10 1 25 1 2	453 401-458 403 273-368 293	$\begin{array}{c} 0.5 \\ 0.03 {-} 0.63 \\ 0.05 \end{array}$ $\begin{array}{c} 98 {-} 980665^a \\ 101 \\ 101 \end{array}$	25 2-4 166	7.6 0.93 62.1 0.91 0.11	Lipkind et al. ⁶⁵ this work Mitrofanova et al. ⁷⁵ Ott et al. ⁸ Keffler and McLean ⁸²	4 1 1 7 4	300-450 618 411 278-338 288-303 297	0.083 0.02 83 101 101	20-25 0.1 80 0.1 0.1	0.02 0.01 62.26 0.02 0.01 1.9 0.01
Vhitmore et al. ⁴⁵ forris and Terry ⁴⁷ hreve et al. ⁷⁴ cott et al. ³⁸ immons and Smith ⁷⁹ vensity ridgman ⁸⁰ inegtel et al. ⁸¹ fouw and Vlugter ⁶⁰ lbert ⁸³ leat of vaporization	5 1 10 1 25 1 2	453 401-458 403 273-368 293 293-313	$\begin{array}{c} 0.5 \\ 0.03 {-} 0.63 \\ 0.05 \end{array}$ $\begin{array}{c} 98 {-} 980665^a \\ 101 \\ 101 \end{array}$	25 2-4 166 0.15 0.1	7.6 0.93 62.1 0.91 0.11 0.04	Lipkind et al. ⁶⁵ this work Mitrofanova et al. ⁷⁵ Ott et al. ⁸ Keffler and McLean ⁸² Mitrofanova et al. ⁷⁵	4 1 1 7 4 1	300-450 618 411 278-338 288-303 297	0.083 0.02 83 101 101	20-25 0.1 80 0.1 0.1 0.1	27.29 0.01 62.20 0.02 0.01 1.9 0.01
/hitmore et al. ⁴⁵ orris and Terry ⁴⁷ hreve et al. ⁷⁴ cott et al. ³⁸ immons and Smith ⁷⁹ ensity ridgman ⁸⁰ negtel et al. ⁸¹ ouw and Vlugter ⁶⁰ lbert ⁸³ leat of vaporization uchs and Peacock ⁸⁵ ound Speed	5 1 10 1 25 1 2 4	453 401-458 403 273-368 293 293-313 293-453 298	0.5 0.03-0.63 0.05 98-980665 ^a 101 101 101 sat	25 2-4 166 0.15 0.1 0.6 2	7.6 0.93 62.1 0.91 0.11 0.04 0.24 0.15	Lipkind et al. ⁶⁵ this work Mitrofanova et al. ⁷⁵ Ott et al. ⁸ Keffler and McLean ⁸² Mitrofanova et al. ⁷⁵ Wheeler and Riemenschneider ⁸⁴ Lipkind et al. ⁶⁵	4 1 7 4 1 2 1	300-450 618 411 278-338 288-303 297 293-298 298	0.083 0.02 83 101 101 101 sat	20-25 0.1 80 0.1 0.1 0.1 0.6 1.5	27.29 0.01 62.20 0.02 0.01 1.9 0.01
⁷ hitmore et al. ⁴⁵ orris and Terry ⁴⁷ hreve et al. ⁷⁴ cott et al. ³⁸ immons and Smith ⁷⁹ ensity ridgman ⁸⁰ negtel et al. ⁸¹ ouw and Vlugter ⁶⁰ lbert ⁸³ eat of vaporization uchs and Peacock ⁸⁵ ound Speed	5 1 10 1 25 1 2 4	453 401-458 403 273-368 293 293-313 293-453 298	0.5 0.03-0.63 0.05 98-980665 ^a 101 101 101 sat	25 2-4 166 0.15 0.1 0.6	7.6 0.93 62.1 0.91 0.11 0.04 0.24	Lipkind et al. ⁶⁵ this work Mitrofanova et al. ⁷⁵ Ott et al. ⁸ Keffler and McLean ⁸² Mitrofanova et al. ⁷⁵ Wheeler and Riemenschneider ⁸⁴	4 1 7 4 1 2 1	300-450 618 411 278-338 288-303 297 293-298	0.083 0.02 83 101 101 101 sat	20-25 0.1 80 0.1 0.1 0.1 0.6	27.29 0.01 62.20 0.02 0.01 1.9 0.01
/hitmore et al. ⁴⁵ orris and Terry ⁴⁷ hreve et al. ⁷⁴ cott et al. ³⁸ immons and Smith ⁷⁹ ensity ridgman ⁸⁰ negtel et al. ⁸¹ ouw and Vlugter ⁶⁰ lbert ⁸³ leat of vaporization uchs and Peacock ⁸⁵ ound Speed	5 1 10 1 25 1 2 4 1	453 401-458 403 273-368 293 293-313 293-453 298	0.5 0.03-0.63 0.05 98-980665 ^{<i>a</i>} 101 101 101 sat	25 2-4 166 0.15 0.1 0.6 2 0.1	$7.6 \\ 0.93 \\ 62.1 \\ 0.91 \\ 0.04 \\ 0.24 \\ 0.15 \\ 0.11$	Lipkind et al. ⁶⁵ this work Mitrofanova et al. ⁷⁵ Ott et al. ⁸ Keffler and McLean ⁸² Mitrofanova et al. ⁷⁵ Wheeler and Riemenschneider ⁸⁴ Lipkind et al. ⁶⁵	4 1 7 4 1 2 1 7	300-450 618 411 278-338 288-303 297 293-298 298	0.083 0.02 83 101 101 101 sat	20-25 0.1 80 0.1 0.1 0.1 0.6 1.5	27.29 0.01 62.20 0.02 0.01 1.9 0.01
Vhitmore et al. ⁴⁵ iorris and Terry ⁴⁷ hreve et al. ⁷⁴ cott et al. ³⁸ immons and Smith ⁷⁹ rensity ridgman ⁸⁰ inegtel et al. ⁸¹ iouw and Vlugter ⁶⁰ libert ⁸³ leat of vaporization uchs and Peacock ⁸⁵ ound Speed iouw and Vlugter ⁶⁷	5 1 10 1 25 1 2 4 1 2	453 401-458 403 273-368 293 293-313 293-453 298 293-313	0.5 0.03-0.63 0.05 98-980665 ^{<i>a</i>} 101 101 101 sat 101 d.	25 2-4 166 0.15 0.1 0.6 2 0.1 Summary	7.6 0.93 62.1 0.91 0.11 0.04 0.24 0.15 0.11 v of Expe	Lipkind et al. ⁶⁵ this work Mitrofanova et al. ⁷⁵ Ott et al. ⁸ Keffler and McLean ⁸² Mitrofanova et al. ⁷⁵ Wheeler and Riemenschneider ⁸⁴ Lipkind et al. ⁶⁵ Ott et al. ⁸ rimental Data for Methyl Linoleate	4 1 7 4 1 2 1 7	300-450 618 411 278-338 288-303 297 293-298 298 278-338	0.083 0.02 83 101 101 101 sat 83	20-25 0.1 80 0.1 0.1 0.1 0.6 1.5 0.1	27.29 0.01 62.20 0.02 0.01 1.9 0.01 0.43 0.02
Vhitmore et al. ⁴⁵ lorris and Terry ⁴⁷ hreve et al. ⁷⁴ cott et al. ³⁸ immons and Smith ⁷⁹ rensity ridgman ⁸⁰ inegtel et al. ⁸¹ louw and Vlugter ⁶⁰ libert ⁸³ leat of vaporization uchs and Peacock ⁸⁵ ound Speed iouw and Vlugter ⁶⁷ Yapor Pressure lorris and Terry ⁴⁷	5 1 10 1 25 1 2 4 1 2 5	453 401-458 403 273-368 293 293-313 293-453 298 293-313 423-488	$\begin{array}{c} 0.5 \\ 0.03 - 0.63 \\ 0.05 \end{array}$ $\begin{array}{c} 98 - 980665^{a} \\ 101 \\ 101 \\ 101 \\ \text{sat} \\ 101 \\ 0.1 - 2.7 \end{array}$	25 2-4 166 0.15 0.1 0.6 2 0.1 Summary 2	7.6 0.93 62.1 0.91 0.11 0.04 0.24 0.15 0.11 v of Expe 18.9	Lipkind et al. ⁶⁵ this work Mitrofanova et al. ⁷⁵ Ott et al. ⁸ Keffler and McLean ⁸² Mitrofanova et al. ⁷⁵ Wheeler and Riemenschneider ⁸⁴ Lipkind et al. ⁶⁵ Ott et al. ⁸ rimental Data for Methyl Linoleate Krop et al. ¹⁶	4 1 7 4 1 2 1 7 5 1	300-450 618 411 278-338 288-303 297 293-298 298 278-338 619	0.083 0.02 83 101 101 101 sat 83 101	20-25 0.1 80 0.1 0.1 0.1 0.6 1.5 0.1 25	27.29 0.01 62.20 0.02 0.01 1.9 0.01 0.43 0.02
Vhitmore et al. ⁴⁵ forris and Terry ⁴⁷ hreve et al. ⁷⁴ cott et al. ³⁸ immons and Smith ⁷⁹ tensity ridgman ⁸⁰ inegtel et al. ⁸¹ fouw and Vlugter ⁶⁰ lbert ⁸³ leat of vaporization uchs and Peacock ⁸⁵ ound Speed fouw and Vlugter ⁶⁷ 'apor Pressure forris and Terry ⁴⁷ cott et al. ³⁸	$5 \\ 1 \\ 10 \\ 1 \\ 25 \\ 1 \\ 2 \\ 4 \\ 1 \\ 2 \\ 5 \\ 10 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	453 401-458 403 273-368 293 293-313 293-453 298 293-313 423-488 392-458	$\begin{array}{c} 0.5 \\ 0.03-0.63 \\ 0.05 \\ \end{array}$ $\begin{array}{c} 98-980665^{a} \\ 101 \\ 101 \\ 101 \\ \end{array}$ sat $\begin{array}{c} 101 \\ 0.1-2.7 \\ 0.01-0.65 \\ \end{array}$	25 2-4 166 0.15 0.1 0.6 2 0.1 Summary 2 1.5	7.6 0.93 62.1 0.91 0.11 0.04 0.24 0.15 0.11 v of Expe 18.9 0.85	Lipkind et al. ⁶⁵ this work Mitrofanova et al. ⁷⁵ Ott et al. ⁸ Keffler and McLean ⁸² Mitrofanova et al. ⁷⁵ Wheeler and Riemenschneider ⁸⁴ Lipkind et al. ⁶⁵ Ott et al. ⁸ rimental Data for Methyl Linoleate Krop et al. ¹⁶ Lipkind et al. ⁶⁵	4 1 7 4 1 2 1 7 5 1 4	300-450 618 411 278-338 288-303 297 293-298 298 278-338 619 300-450	0.083 0.02 83 101 101 101 sat 83 $^{101}5 \times 10^{-7} - 0.2$	20-25 0.1 80 0.1 0.1 0.1 0.6 1.5 0.1 25 20-30	27.29 0.01 62.20 0.02 0.01 1.9 0.01 0.43 0.02
Vhitmore et al. ⁴⁵ lorris and Terry ⁴⁷ hreve et al. ⁷⁴ cott et al. ³⁸ immons and Smith ⁷⁹ bensity Gridgman ⁸⁰ .negtel et al. ⁸¹ douw and Vlugter ⁶⁰ .lbert ⁸³ leat of vaporization uchs and Peacock ⁸⁵ ound Speed iouw and Vlugter ⁶⁷ Yapor Pressure lorris and Terry ⁴⁷ cott et al. ³⁸ Clykov et al. ⁵⁰	5 1 10 1 25 1 2 4 1 2 5	453 401-458 403 273-368 293 293-313 293-453 298 293-313 423-488	$\begin{array}{c} 0.5 \\ 0.03 - 0.63 \\ 0.05 \end{array}$ $\begin{array}{c} 98 - 980665^{a} \\ 101 \\ 101 \\ 101 \\ \text{sat} \\ 101 \\ 0.1 - 2.7 \end{array}$	25 2-4 166 0.15 0.1 0.6 2 0.1 Summary 2	7.6 0.93 62.1 0.91 0.11 0.04 0.24 0.15 0.11 v of Expe 18.9	Lipkind et al. ⁶⁵ this work Mitrofanova et al. ⁷⁵ Ott et al. ⁸ Keffler and McLean ⁸² Mitrofanova et al. ⁷⁵ Wheeler and Riemenschneider ⁸⁴ Lipkind et al. ⁶⁵ Ott et al. ⁸ rimental Data for Methyl Linoleate Krop et al. ¹⁶	4 1 7 4 1 2 1 7 5 1	300-450 618 411 278-338 288-303 297 293-298 298 278-338 619	0.083 0.02 83 101 101 101 sat 83 101	20-25 0.1 80 0.1 0.1 0.1 0.6 1.5 0.1 25	27.29 0.01 62.20 0.02 0.01 1.9 0.01 0.43 0.02
Vhitmore et al. ⁴⁵ lorris and Terry ⁴⁷ hreve et al. ⁷⁴ cott et al. ³⁸ immons and Smith ⁷⁹ bensity inagtel et al. ⁸¹ iouw and Vlugter ⁶⁰ .lbert ⁸³ leat of vaporization uchs and Peacock ⁸⁵ ound Speed iouw and Vlugter ⁶⁷ Vapor Pressure lorris and Terry ⁴⁷ cott et al. ³⁸ .lykov et al. ⁵⁰	5 1 10 1 2 5 1 2 4 1 2 4 1 2 5 10 1	453 401-458 403 273-368 293 293-313 293-453 298 293-313 423-488 392-458 409	0.5 0.03-0.63 0.05 98-980665 ^{<i>a</i>} 101 101 101 sat 101 d. 0.1-2.7 0.01-0.65 0.03	25 2-4 166 0.15 0.1 0.6 2 0.1 Summary 2 1.5 243	7.6 0.93 62.1 0.91 0.11 0.04 0.24 0.15 0.11 v of Expe 18.9 0.85 39.8	Lipkind et al. ⁶⁵ this work Mitrofanova et al. ⁷⁵ Ott et al. ⁸ Keffler and McLean ⁸² Mitrofanova et al. ⁷⁵ Wheeler and Riemenschneider ⁸⁴ Lipkind et al. ⁶⁵ Ott et al. ⁸ rimental Data for Methyl Linoleate Krop et al. ¹⁶ Lipkind et al. ⁶⁵ this work	4 1 1 7 4 1 2 1 7 7 9 7 9 1 4 1	300-450 618 411 278-338 288-303 297 293-298 298 278-338 619 300-450 619	0.083 0.02 83 101 101 101 sat 83 $^{101}_{5 \times 10^{-7}-0.2}$	$20-25 \\ 0.1 \\ 80 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.6 \\ 1.5 \\ 0.1 \\ 25 \\ 20-30 \\ 0.1 \\ 0.$	27.29 0.01 62.20 0.02 0.01 1.9 0.01 0.43 0.02 17.6 87.4 0.0
Vhitmore et al. ⁴⁵ lorris and Terry ⁴⁷ hreve et al. ⁷⁴ cott et al. ³⁸ immons and Smith ⁷⁹ rensity ridgman ⁸⁰ inegtel et al. ⁸¹ louw and Vlugter ⁶⁰ libert ⁸³ leat of vaporization uchs and Peacock ⁸⁵ ound Speed louw and Vlugter ⁶⁷ Capor Pressure lorris and Terry ⁴⁷ cott et al. ³⁸ lykov et al. ⁵⁰ ensity louw and Vlugter ⁶⁰	$5 \\ 1 \\ 10 \\ 1 \\ 25 \\ 1 \\ 2 \\ 4 \\ 1 \\ 2 \\ 5 \\ 10 \\ 1 \\ 1 \\ 1 \\ 2 \\ 5 \\ 10 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	453 401-458 403 273-368 293 293-313 293-453 298 293-313 423-488 392-458	0.5 0.03-0.63 0.05 98-980665 ^{<i>a</i>} 101 101 101 sat 101 d. 0.1-2.7 0.01-0.65 0.03	25 2-4 166 0.15 0.1 0.6 2 0.1 Summary 2 1.5	7.6 0.93 62.1 0.91 0.11 0.04 0.24 0.15 0.11 v of Expe 18.9 0.85	Lipkind et al. ⁶⁵ this work Mitrofanova et al. ⁷⁵ Ott et al. ⁸ Keffler and McLean ⁸² Mitrofanova et al. ⁷⁵ Wheeler and Riemenschneider ⁸⁴ Lipkind et al. ⁶⁵ Ott et al. ⁸ rimental Data for Methyl Linoleate Krop et al. ¹⁶ Lipkind et al. ⁶⁵	4 1 7 4 1 2 1 7 5 1 4	300-450 618 411 278-338 288-303 297 293-298 298 278-338 619 300-450	0.083 0.02 83 101 101 101 sat 83 $^{101}_{5 \times 10^{-7}-0.2}$	20-25 0.1 80 0.1 0.1 0.1 0.6 1.5 0.1 25 20-30	27.29 0.01 62.20 0.02 0.01 1.9 0.01 0.43 0.02
/hitmore et al. ⁴⁵ orris and Terry ⁴⁷ hreve et al. ⁷⁴ cott et al. ³⁸ immons and Smith ⁷⁹ ensity ridgman ⁸⁰ negtel et al. ⁸¹ ouw and Vlugter ⁶⁰ lbert ⁸³ (eat of vaporization uchs and Peacock ⁸⁵ ound Speed ouw and Vlugter ⁶⁷ apor Pressure orris and Terry ⁴⁷ cott et al. ³⁸ lykov et al. ⁵⁰ ensity ouw and Vlugter ⁶⁰ (eat of vaporization	5 1 10 1 25 1 2 4 1 2 4 1 2 5 10 1 2	453 401-458 403 273-368 293 293-313 293-453 298 293-313 423-488 392-458 409 293-313	$\begin{array}{c} 0.5 \\ 0.03 - 0.63 \\ 0.05 \\ \end{array}$ $\begin{array}{c} 98 - 980665^{a} \\ 101 \\ 101 \\ 101 \\ \end{array}$ sat $\begin{array}{c} 101 \\ 0.1 - 2.7 \\ 0.01 - 0.65 \\ 0.03 \\ \end{array}$ $\begin{array}{c} 101 \\ \end{array}$	25 2-4 166 0.15 0.1 0.6 2 0.1 Summary 2 1.5 243 0.1	7.6 0.93 62.1 0.91 0.11 0.04 0.24 0.15 0.11 v of Expe 18.9 0.85 39.8 0.14	Lipkind et al. ⁶⁵ this work Mitrofanova et al. ⁷⁵ Ott et al. ⁸ Keffler and McLean ⁸² Mitrofanova et al. ⁷⁵ Wheeler and Riemenschneider ⁸⁴ Lipkind et al. ⁶⁵ Ott et al. ⁸ rimental Data for Methyl Linoleate Krop et al. ¹⁶ Lipkind et al. ⁶⁵ this work	4 1 1 7 4 1 2 1 7 7 9 7 9 1 4 1	300-450 618 411 278-338 288-303 297 293-298 298 278-338 619 300-450 619	0.083 0.02 83 101 101 101 sat 83 $^{101}_{5 \times 10^{-7}-0.2}$	$20-25 \\ 0.1 \\ 80 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.6 \\ 1.5 \\ 0.1 \\ 25 \\ 20-30 \\ 0.1 \\ 0.$	27.29 0.00 62.20 0.00 1.9 0.00 0.43 0.02 17.6 87.4 0.0
/hitmore et al. ⁴⁵ orris and Terry ⁴⁷ hreve et al. ⁷⁴ cott et al. ³⁸ immons and Smith ⁷⁹ ensity ridgman ⁸⁰ negtel et al. ⁸¹ ouw and Vlugter ⁶⁰ lbert ⁸³ ceat of vaporization uchs and Peacock ⁸⁵ ound Speed ouw and Vlugter ⁶⁷ apor Pressure orris and Terry ⁴⁷ cott et al. ³⁸ lykov et al. ⁵⁰ ensity ouw and Vlugter ⁶⁰ easity ouw and Vlugter ⁶⁰ easity ouw and Vlugter ⁶⁰	5 1 10 1 2 5 1 2 4 1 2 4 1 2 5 10 1	453 401-458 403 273-368 293 293-313 293-453 298 293-313 423-488 392-458 409	0.5 0.03-0.63 0.05 98-980665 ^{<i>a</i>} 101 101 101 sat 101 d. 0.1-2.7 0.01-0.65 0.03	25 2-4 166 0.15 0.1 0.6 2 0.1 Summary 2 1.5 243	7.6 0.93 62.1 0.91 0.11 0.04 0.24 0.15 0.11 v of Expe 18.9 0.85 39.8	Lipkind et al. ⁶⁵ this work Mitrofanova et al. ⁷⁵ Ott et al. ⁸ Keffler and McLean ⁸² Mitrofanova et al. ⁷⁵ Wheeler and Riemenschneider ⁸⁴ Lipkind et al. ⁶⁵ Ott et al. ⁸ rimental Data for Methyl Linoleate Krop et al. ¹⁶ Lipkind et al. ⁶⁵ this work	4 1 1 7 4 1 2 1 7 7 9 7 9 1 4 1	300-450 618 411 278-338 288-303 297 293-298 298 278-338 619 300-450 619	0.083 0.02 83 101 101 101 sat 83 $^{101}_{5 \times 10^{-7}-0.2}$	$20-25 \\ 0.1 \\ 80 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.6 \\ 1.5 \\ 0.1 \\ 25 \\ 20-30 \\ 0.1 \\ 0.$	27.29 0.00 62.20 0.00 1.9 0.00 0.43 0.02 17.6 87.4 0.0
/hitmore et al. ⁴⁵ orris and Terry ⁴⁷ hreve et al. ⁷⁴ cott et al. ³⁸ immons and Smith ⁷⁹ ensity ridgman ⁸⁰ negtel et al. ⁸¹ ouw and Vlugter ⁶⁰ lbert ⁸³ ieat of vaporization uchs and Peacock ⁸⁵ ound Speed ouw and Vlugter ⁶⁷ apor Pressure orris and Terry ⁴⁷ cott et al. ³⁸ lykov et al. ⁵⁰ ensity ouw and Vlugter ⁶⁰ leat of vaporization ipkind et al. ⁶⁵ ound Speed	5 1 10 1 25 1 2 4 1 2 4 1 2 5 10 1 2	453 401-458 403 273-368 293 293-313 293-453 298 293-313 423-488 392-458 409 293-313	0.5 0.03-0.63 0.05 98-980665 ^{<i>a</i>} 101 101 101 sat 101 d. 0.1-2.7 0.01-0.65 0.03 101 sat	25 2-4 166 0.15 0.1 0.6 2 0.1 Summary 2 1.5 243 0.1	7.6 0.93 62.1 0.91 0.11 0.04 0.24 0.15 0.11 v of Expe 18.9 0.85 39.8 0.14	Lipkind et al. ⁶⁵ this work Mitrofanova et al. ⁷⁵ Ott et al. ⁸ Keffler and McLean ⁸² Mitrofanova et al. ⁷⁵ Wheeler and Riemenschneider ⁸⁴ Lipkind et al. ⁶⁵ Ott et al. ⁸ rimental Data for Methyl Linoleate Krop et al. ¹⁶ Lipkind et al. ⁶⁵ this work	4 1 1 7 4 1 2 1 7 7	300-450 618 411 278-338 288-303 297 293-298 298 278-338 619 300-450 619	0.083 0.02 83 101 101 101 sat 83 $^{101}_{5 \times 10^{-7}-0.2}$ 83	$20-25 \\ 0.1 \\ 80 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.6 \\ 1.5 \\ 0.1 \\ 25 \\ 20-30 \\ 0.1 \\ 0.$	27.29 0.00 62.20 0.00 1.9 0.00 0.42 0.00 17.6 87.4 0.00 0.00
Vhitmore et al. ⁴⁵ lorris and Terry ⁴⁷ hreve et al. ⁷⁴ cott et al. ³⁸ immons and Smith ⁷⁹ rensity ridgman ⁸⁰ inegtel et al. ⁸¹ iouw and Vlugter ⁶⁰ lbert ⁸³ leat of vaporization uchs and Peacock ⁸⁵ ound Speed douw and Vlugter ⁶⁷ apor Pressure lorris and Terry ⁴⁷ cott et al. ³⁸ lykov et al. ⁵⁰ rensity iouw and Vlugter ⁶⁰ leat of vaporization ipkind et al. ⁶⁵ ound Speed	5 1 10 1 25 1 2 4 1 2 4 1 2 5 10 1 2 1 2 1	453 401-458 403 273-368 293 293-313 293-453 298 293-313 423-488 392-458 409 293-313 298	0.5 0.03-0.63 0.05 $98-980665^{a}$ 101 101 101 sat 101 d. 0.1-2.7 0.01-0.65 0.03 101 sat 83	25 2-4 166 0.15 0.1 2 0.1 Summary 2 1.5 243 0.1 1 0.1	7.6 0.93 62.1 0.91 0.11 0.04 0.24 0.15 0.11 v of Expe 18.9 0.85 39.8 0.14 0.09 0.04	Lipkind et al. ⁶⁵ this work Mitrofanova et al. ⁷⁵ Ott et al. ⁸ Keffler and McLean ⁸² Mitrofanova et al. ⁷⁵ Wheeler and Riemenschneider ⁸⁴ Lipkind et al. ⁶⁵ Ott et al. ⁸ rimental Data for Methyl Linoleate Krop et al. ¹⁶ Lipkind et al. ⁶⁵ this work Ott et al. ⁸ Gouw and Vlugter ⁶⁷	4 1 1 7 4 1 2 1 7 7 9 9	300-450 618 411 278-338 288-303 297 293-298 298 278-338 619 300-450 619 278-338	0.083 0.02 83 101 101 101 sat 83 $^{101}_{5 \times 10^{-7}-0.2}$ 83	$20-25 \\ 0.1 \\ 80 \\ 0.1 \\ 0.1 \\ 0.6 \\ 1.5 \\ 0.1 \\ 25 \\ 20-30 \\ 0.1 \\ 0.1 \\ 0.1$	27.29 0.0 62.20 0.00 1.9 0.0 0.4 0.0 17.6 87.4 0.0 0.0
Vhitmore et al. ⁴⁵ lorris and Terry ⁴⁷ hreve et al. ⁷⁴ cott et al. ³⁸ immons and Smith ⁷⁹ bensity ingetel et al. ⁸¹ iouw and Vlugter ⁶⁰ libert ⁸³ leat of vaporization uchs and Peacock ⁸⁵ ound Speed lorris and Terry ⁴⁷ cott et al. ³⁸ Jykov et al. ⁵⁰ bensity iouw and Vlugter ⁶⁰ leat of vaporization ipkind et al. ⁶⁵ ound Speed Ott et al. ⁸	5 1 10 1 25 1 2 4 1 2 4 1 2 5 10 1 2 1 2 1	453 401-458 403 273-368 293 293-313 293-453 298 293-313 423-488 392-458 409 293-313 298	0.5 0.03-0.63 0.05 $98-980665^{a}$ 101 101 101 sat 101 d. 0.1-2.7 0.01-0.65 0.03 101 sat 83	25 2-4 166 0.15 0.1 2 0.1 Summary 2 1.5 243 0.1 1 0.1	7.6 0.93 62.1 0.91 0.11 0.04 0.24 0.15 0.11 v of Expe 18.9 0.85 39.8 0.14 0.09 0.04	Lipkind et al. ⁶⁵ this work Mitrofanova et al. ⁷⁵ Ott et al. ⁸ Keffler and McLean ⁸² Mitrofanova et al. ⁷⁵ Wheeler and Riemenschneider ⁸⁴ Lipkind et al. ⁶⁵ Ott et al. ⁸ rimental Data for Methyl Linoleate Krop et al. ¹⁶ Lipkind et al. ⁶⁵ this work Ott et al. ⁸	4 1 1 7 4 1 2 1 7 7 9 9	300-450 618 411 278-338 288-303 297 293-298 298 278-338 619 300-450 619 278-338	0.083 0.02 83 101 101 101 sat 83 $^{101}_{5 \times 10^{-7}-0.2}$ 83	$20-25 \\ 0.1 \\ 80 \\ 0.1 \\ 0.1 \\ 0.6 \\ 1.5 \\ 0.1 \\ 25 \\ 20-30 \\ 0.1 \\ 0.1 \\ 0.1$	27.29 0.01 62.20 0.02 0.01 1.9 0.01 0.43 0.02 17.6 87.4 0.0
<i>Thitmore et al.</i> ⁴⁵ orris and Terry ⁴⁷ hreve et al. ⁷⁴ cortis and Terry ⁴⁷ hreve et al. ⁷⁴ distribution of the second s	5 1 10 1 25 1 2 4 1 2 4 1 2 5 10 1 2 1 2 1	453 401-458 403 273-368 293 293-313 293-453 298 293-313 423-488 392-458 409 293-313 298 293-313	0.5 0.03-0.63 0.05 $98-980665^{a}$ 101 101 101 sat 101 d. 0.1-2.7 0.01-0.65 0.03 101 sat 83	25 2-4 166 0.15 0.1 2 0.1 Summary 2 1.5 243 0.1 1 0.1 Summary	7.6 0.93 62.1 0.91 0.11 0.04 0.24 0.15 0.11 v of Expe 18.9 0.85 39.8 0.14 0.09 0.04	Lipkind et al. ⁶⁵ this work Mitrofanova et al. ⁷⁵ Ott et al. ⁸ Keffler and McLean ⁸² Mitrofanova et al. ⁷⁵ Wheeler and Riemenschneider ⁸⁴ Lipkind et al. ⁶⁵ Ott et al. ⁸ rimental Data for Methyl Linoleate Krop et al. ¹⁶ Lipkind et al. ⁶⁵ this work Ott et al. ⁸ Gouw and Vlugter ⁶⁷	4 1 1 7 4 1 2 1 7 7 9 9	300-450 618 411 278-338 288-303 297 293-298 298 278-338 619 300-450 619 278-338 293-313	0.083 0.02 83 101 101 101 sat 83 $^{101}_{5 \times 10^{-7}-0.2}$ 83	$20-25 \\ 0.1 \\ 80 \\ 0.1 \\ 0.1 \\ 0.6 \\ 1.5 \\ 0.1 \\ 25 \\ 20-30 \\ 0.1 \\ 0.1 \\ 0.1$	27.29 0.0 62.20 0.00 1.9 0.0 0.4 0.0 17.6 87.4 0.0 0.0

Table 7. Continued											
reference	npts	<i>T</i> /K	<i>p/</i> kPa	unc.%	AAD, %	reference	npts	<i>T</i> /K	<i>p/</i> kPa	unc. %	AAD, %
Krop et al. ¹⁶ Density	1	620	101	25	18.12						
Gouw and Vlugter ⁶⁰ Heat of Vaporization	2	293-313	101	0.1	0.13	Ott et al. ⁸	7	278-338	83	0.1	0.03
Lipkind et al. ⁶⁵ Sound Speed	1	298	sat	1	0.64						
Ott et al. ⁸	7	278-338	83	0.1	0.05	Gouw and Vlugter ⁶⁷	1	293-313	101	0.1	0.10

^a Measurements were obtained as relative volumes; data above atmospheric pressure not used in development of correlation.

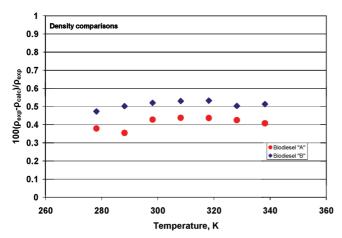


Figure 2. Comparison of the density calculated from the equation of state mixture model and experimental data for B100 biodiesel fuel samples.

Table 8. Coefficients for Gaussian Bell-shaped Terms in the
Equation of State, Eq 7

k	η_k	eta_k	γ_k	ϵ_k
11	1.1	0.90	1.14	0.79
12	1.6	0.65	0.65	0.90
13	1.1	0.75	0.77	0.76

the number of components; a_i^0 is the ideal-gas Helmholtz energy of component *i*; a_i^t is the residual (or real-fluid) Helmholtz energy of component *i*; the x_i are the mole fractions of the constituents

(86) Lemmon, E. W.; Jacobsen, R. T. J. Phys. Chem. Ref. Data 2004, 33, 593-620.

(88) Lemmon, E. W.; McLinden, M. O. Method for Estimating Mixture Equation of State Parameters, In *Thermophysical Properties and Transfer Processes of New Refrigerants Conference*, Paderborn Germany, 2001; International Institute of Refrigeration, Commission B1: Paderborn, Germany, 2001; pp 23–30.

Table 9. Coefficients and Exponents of the Equation of State,Eq 7, for FAMEs

	24 /, 101 1			
k	N_k	t_k	d_k	l_k
	a. Methyl Pal			
1	$0.428\ 282\ 1 \times 10^{-01}$	1	4	0
2	$0.244\ 316\ 2 \times 10^{+01}$ $0.275\ 754\ 0 \times 10^{+01}$	0.36	1	0
3 4	$-0.3757540 \times 10^{+01}$ -0.1588526	1.22 1.45	$\frac{1}{2}$	0
5	$-0.138\ 832\ 0$ $0.405\ 599\ 0 \times 10^{-01}$	0.7	3	0
6	$-0.152\ 409\ 0 \times 10^{+01}$	3	1	2
7	-0.768 616 7	3.9	3	2
8	$0.1799950 \times 10^{+01}$	2.2	2	1
9	$-0.159\ 096\ 7 imes 10^{+01}$	2.9	2	2
10	$-0.1267681 imes 10^{-01}$	1.25	7	1
11	$0.219\ 834\ 7 imes 10^{+01}$	2.6	1	2
12	-0.773 721 1	3.0	1	2
13	-0.431 452 0	3.2	3	2
1	b. Methyl St $0.205.062.5 \times 10^{-01}$		4	0
1 2	$\begin{array}{c} 0.395\ 963\ 5\times 10^{-01}\\ 0.246\ 665\ 4\times 10^{+01} \end{array}$	1 0.3	4 1	0 0
3	$-0.3895950 \times 10^{+01}$	1.25	1	0
4	-0.1167375	1.25	2	0
5	$0.4127229 \times 10^{-01}$	0.8	$\frac{2}{3}$	0
6	$-0.140\ 373\ 4\times10^{+01}$	3.1	1	2
7	-0.646 526 4	3.4	3	$\frac{2}{2}$
8	$0.193\ 467\ 5 imes 10^{+01}$	2.3	2	1
9	$-0.160\ 812\ 4 \times 10^{+01}$	3.8	$\frac{2}{2}$	2
10	$-0.1113813 \times 10^{-01}$	1.2	7	1
11	$0.212\ 532\ 5\times\ 10^{+01}$	3.2	1	2
12	-0.777 267 1	3.8	1	2
13	-0.418 368 4	3.8	3	2
	c. Methyl O	leate		
1	$0.459\ 612\ 1 imes10^{-01}$	1	4	0
2	$0.229\ 540\ 0 imes 10^{+01}$	0.34	1	0
3	$-0.355\ 436\ 6 imes 10^{+01}$	1.14	1	0
4	-0.229 167 4	1.4	2	0
5	$0.685\ 453\ 4 \times 10^{-01}$	0.6	3	0
6	$-0.153\ 577\ 8 \times 10^{+01}$	3.3	1	2
7	-0.733 469 7	4.1	3	2
8	$0.171\ 270\ 0 \times 10^{+01}$	1.9	2	1
9	$-0.147\ 139\ 4\times10^{+01}$	3.8	2	2
10	$-0.1724678 \times 10^{-01}$	1.3	7	1
11	$0.211\ 547\ 0 \times 10^{+01}$	3.4	1	2 2
12 13	$-0.755\ 537\ 4$ $-0.413\ 426\ 9$	3.8 4	1 3	2
15	d. Methyl Lir	-	3	2
1	$0.318\ 318\ 7\ \times\ 10^{-01}$	1	4	0
2	$0.1927286 \times 10^{+01}$	0.2	1	Ő
3	$-0.368\ 505\ 3 \times 10^{+01}$	1.2	1	Ő
4	0	1	2	2
5	$0.8449312 \times 10^{-01}$	1	3	3
6	-0.9766643	2.2	1	1
7	-0.4323178	2.5	3	3
8	$0.2000470 \times 10^{+01}$	1.8	2	2
9	$-0.1752030 \times 10^{+01}$	1.92	2	2
10	$-0.1726895 \times 10^{-01}$	1.47	7	7
11	$0.2116515 \times 10^{+01}$	1.7	1	1
12	-0.7884271	2.3	1	2
13	-0.3811699	2.1	3	2
	e. Methyl Lin			0
1	$0.407\ 0.000\ 9 \times 10^{-01}$	1	4	0
2	$\begin{array}{c} 0.241\ 237\ 5\times10^{+01}\\ -0.375\ 619\ 4\times10^{+01} \end{array}$	0.15	1	0
3 4	-0.1526466	1.24	2	0
5	$0.152\ 040\ 0$ $0.468\ 291\ 8 \times 10^{-01}$	1.6 1.28	3	0
6	$-0.147\ 0.95\ 8 \times 10^{+01}$	2.9	1	2
7	-0.7645500	3.15	3	$\frac{2}{2}$
8	$0.190\ 896\ 4 \times 10^{+01}$	2.16	2	1
9	$-0.1629366 \times 10^{+01}$	2.10	$\frac{2}{2}$	2
10	$-0.124\ 207\ 3 \times 10^{-01}$	1.4	7	1
11	$0.218\ 070\ 7 \times 10^{+01}$	2.5	1	2
12	-0.7537264	3	1	2
13	-0.434 778 1	3.1	3	2

⁽⁸⁷⁾ Kunz, O.; Klimeck, R.; Wagner, W.; Jaeschke, M. *The GERG-2004 Wide-Range Reference Equation of State for Natural Gases and Other Mixtures*; GERG Technical Monograph; Fortschr.-Ber. VDI, VDI-Verlag: Düsseldorf Germany, 2007.

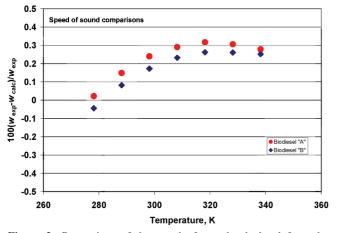


Figure 3. Comparison of the speed of sound calculated from the equation of state mixture model and experimental data for B100 biodiesel fuel samples.

of the mixture; d_k , t_k , l_k , and N_k are coefficients found from fitting experimental data; and F_{ij} is an interaction parameter. Mixing rules are used to determine the reducing parameters ρ_{red} and T_{red} for the mixture, which are defined as

τ

$$\delta = \rho / \rho_{\rm red} \tag{11}$$

$$=T_{\rm red}/T$$
 (12)

$$\rho_{\rm red} = \left[\sum_{i=1}^{m} \frac{x_i}{\rho_{\rm c_i}} + \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} x_i x_j \xi_{ij}\right]^{-1}$$
(13)

$$T_{\rm red} = \sum_{i=1}^{m} x_i T_{\rm c_i} + \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} x_i x_j \varsigma_{ij}$$
(14)

where ξ_{ij} and ζ_{ij} are binary interaction parameters that define the shapes of the reducing temperature and density curves.

The model has a total of three binary interaction parameters— ξ_{ij} , ζ_{ij} , and F_{ij} —that can be determined by fitting experimental data, when available. For the binary mixtures in this work, binary mixture data were unavailable. However, the FAMEs studied here are similar in chemical structure, and as a first approximation we set all binary interaction parameters to a default value of zero. Future work on binary mixtures of FAMEs can explore the validity of this assumption.

Mixture Model Results. After normalizing the compositions for the two B100 biodiesel fuel samples given in Table 1, we calculated the density and speed of sound at a pressure of 83 kPa (the local atmospheric pressure in Boulder, Colorado, USA). Figures 2 and 3 compare the model and experimental B100 data for density and speed of sound, respectively. The calculated density is within 0.6% of the experimental values, and the calculated sound speed is within 0.4% of the experimental values. Although this exceeds the experimental uncertainty of 0.1%, we feel these results demonstrate that the modeling approach is very promising. Future work on binary mixtures

may improve the representation of the density and sound speed by permitting the use of binary interaction parameters determined from regressing experimental data. However, as all of the constituent FAMEs used in the model are similar in size and chemical nature, we do not expect large contributions from binary interactions.

In addition, we calculated the bubble point temperature at 83 kPa. The bubble point temperature⁹¹ is the temperature of the saturated liquid phase at a given pressure, when the very first "bubble" of vapor is about to form. The model calculated a bubble point of 614.4 K (at 83.2 kPa) for biodiesel sample "A" and 614.2 K (at 83.5 kPa) for sample "B". This compares well with experimental values⁷ of 616.6 K (at 83.2 kPa) for sample A and 615.6 K (at 83.5 kPa) for sample B. However, when we calculated the entire distillation curve, we observed that our calculations were systematically low compared to the experimental values,⁷ and the deviations became greater as the distillation progressed. We cannot presently explain the inability of our model to represent the full distillation curve; work to resolve this issue is in progress. It is possible that the distillation curve is particularly sensitive to heavy components that occur in small amounts that we have not included in our analysis. It is also possible that some dimerization occurs at the higher temperatures encountered in the later stages of the distillation curve.92 Such a chemical change cannot at present be accounted for in the model.

Conclusions

We developed preliminary equations of state based on limited experimental data for methyl palmitate, methyl stearate, methyl oleate, methyl linoleate, and methyl linolenate. The equations behave in a physically reasonable manner at extrapolated conditions and can be used for temperatures to 700 K and pressures to 50 MPa. These equations were used in a mixture model to calculate the density, sound speed, and bubble point of two samples of commercial B100 biodiesel fuels and compared well with our experimental measurements. The density is represented to within 0.6% and the sound speed to within 0.4%, demonstrating the applicability of the model. The bubble point is predicted to within 0.4%. The model presented here allows one to predict the themodynamic properties of any biodiesel fuel whose composition can be expressed in terms of the five FAMEs: methyl palmitate, methyl stearate, methyl oleate, methyl linoleate, and methyl linolenate. Future work is planned to explore the properties of additional biodiesel samples, the modeling of the full distillation curve, and binary mixtures of the constituent FAMEs. In particular, we must address the issue of compositional variability, which is an important factor in all fuels research. This can be done as additional orthogonal fuel samples become available for study.

Acknowledgment. We gratefully acknowledge the financial support of the NASA/Glenn Research Center under agreement NNC98 VB55P.

EF900159G

⁽⁸⁹⁾ Lemmon, E. W.; Huber, M. L.; McLinden, M. O. *NIST Standard Reference Database 23, NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP)*, version 8.0, Standard Reference Data; National Institute of Standards and Technology: Gaithersburg, MD, 2007.

⁽⁹⁰⁾ Oliveira, M. B.; Varanda, F. R.; Marrucho, I. M.; Queimada, A. J.; Coutinho, J. A. P. *Ind. Eng. Chem. Res.* **2008**, in press.

⁽⁹¹⁾ Himmelblau, D. M., Basic Principles and Calculations in Chemical Engineering, Third ed.; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1974. (92) Waynick, J. A. Characterization of Biodiesel Oxidation and Oxidation Products, Task 1 Results, Technical Literature Review, SwRI Project no. 08–10721; National Renewable Energy Laboratory, NREL/ TP-540–39096: Golden, CO, 2005.