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Abstract: 

The cyclotron motion of electrons in a magnetic field has historically been a powerful 

probe of the Fermi surface properties of metals and two-dimensional electron systems.  

Oscillations in many measurable properties such as magnetization, thermal conductivity, and 

resistance, all reflect the quantization of closed orbits and the resulting discrete density of states.  

Here we show magneto-oscillations in scanning tunneling spectroscopy of epitaxial graphene as 

a function of both magnetic field and electron energy.  Sharp Landau levels are found in the 

spectra from the topmost layer of multilayer epitaxial graphene grown on SiC(0001 ).  The 

spectra are characteristic of 2-dimensional Dirac electron and hole quasiparticles in single-layer 

graphene. We attribute this to rotational stacking domains that effectively decouple the carbon 

layers electronically, thereby yielding single-layer graphene properties via a large-area growth 

method. 
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A fundamental challenge in the development of new electronics based on a single atomic 

sheet of carbon, known as graphene, is to realize a large area production method that preserves 

the intrinsic properties of a single sheet of graphene.   To this end, multilayer epitaxial graphene 

(MEG) grown on SiC substrates has been proposed as a possible platform (1-3).  A central issue 

is whether MEG can reproduce the properties of single-layer graphene, with the same intrinsic 

electronic properties and electrical transport.  A number of experiments have shown promising 

qualities for MEG such as: high carrier mobility (4), distinct evidence of chiral charge carriers 

(5), the observation of a Dirac-Weyl linear energy spectrum (6-8), and optical transitions 

between graphene-like Landau levels (LL’s) (9). Remarkably, these properties persistent to room 

temperature (10).  Still, a perceived hallmark of graphene (11, 12) is the observed “half-integer” 

quantum Hall effect (QHE), a manifestation of the Landau-level spectrum of chiral Dirac charge 

carriers in a magnetic field.  To date, this has not been observed in multilayer epitaxial graphene 

on SiC.  Possible explanations for the absence of a QHE in MEG range from the multilayer 

nature of the material (13), to the lack of suitable defects for Anderson localization (2, 14). 

In this work, we circumvent the technical challenges of gating the multilayer and 

contacting only a single graphene sheet through non-perturbative methods to measure magneto-

oscillations that are analogous to the well-known Shubnikov-de Haas oscillations (SdHO’s) of 

magnetoresistance.  Using the scanning tunneling microscope (STM) at low temperature, we 

detect oscillations in the tunneling differential conductance (dI/dV) as a function of an applied 

external magnetic field; “tunneling magneto-conductance oscillations” (TMCO’s).  This new 

method is used to map extended portions of the electronic band structure, in contrast to 

traditional magnetic oscillations that probe only the Fermi level.   Conventional scanning 
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tunneling spectroscopy (STS) dI/dV spectra as a function of tunneling bias VB have also been 

acquired at fixed magnetic fields.  These spectra show sharp Landau levels for both electron and 

hole carriers, with line-widths comparable to high mobility semiconductor 2-dimensional 

electron systems that exhibit the QHE (15).  Additionally, we use spatial dI/dV maps of the zero 

index Landau level energy (i.e., the Dirac-point energy ED) to measure local potential variations 

on the top graphene layer, which are shown to be small over hundreds of nanometers.  

The experiments were performed in a custom-built cryogenic ultra-high vacuum STM 

with high-magnetic-field capability at the National Institute of Standards and Technology 

(NIST).  All experiments were performed at 4.3 K.  The MEG sample was grown at the Georgia 

Institute of Technology on hydrogen-etched carbon-face 4H-SiC(0001 ) using a low-vacuum 

induction furnace method (2).  The graphene thickness was (10 ± 1) layers as determined by 

ellipsometry measurements.  The sample was transported to NIST in air and re-heated to 

1250 °C in ultra-high vacuum to remove any contamination.   Iridium probe tips prepared by 

heat treatment and field-evaporation were used for tunneling.  TMCO measurements, described 

below, were performed by sweeping the magnetic field at 0.04 T/min and measuring dI/dV with 

a lock-in amplifier at constant tunneling current and sample bias.   dI/dV spectra as a function of 

tunneling bias were recorded in constant magnetic field with the tip-sample distance held fixed 

and using a root-mean-square modulation voltage of 1 mV superimposed on the sample bias at a 

frequency of 500 Hz.  These two methods are complementary as they each measure a dI/dV slice 

in the 2-dimensional (B,E) plane at either fixed E (TMCO spectra) or fixed B (conventional 

dI/dV(E) spectra). 
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Figure 1A shows a schematic of the low-energy electronic structure for single-layer 

graphene.  Applying a perpendicular magnetic field causes the electron and hole-states to 

condense into LL’s, indicated by the projected circular cross sections intersecting the conical 

dispersion.  Unlike conventional 2D systems with parabolic dispersion, the LL energies En of 

graphene are not equally spaced: sgn( ) * 2  ,    ... 2, 1,0,1,2,...nE n c e B n n   (see Fig. 1A) 

where *c  is the characteristic carrier velocity, e is the elementary charge, and  is Plank’s 

constant divided by 2π.  The unique n=0 LL at 0 DE E  is not present in a conventional 2D 

system, and is at the heart of the half-integer QHE.  The physics of the n=0 LL (LL0) itself  is 

presently under active study theoretically, due to the possibility of novel topological and 

correlated states, and because of its effect on screening (16-18).   

Physical measurements of Landau-quantized systems exhibit characteristic oscillations in 

many properties as the LL’s move through the Fermi level EF with changing magnetic field.  

Figure 1B shows experimental measurement of tunneling magneto-conductance oscillations in 

the dI/dV signal from multilayer epitaxial graphene as the magnetic field is swept from 0 T to 2.0 

T at a tunneling bias of 65 mV  (dI/dV(E, r) is proportional to the sample density of states at 

energy E and position r (19)).  These oscillations are similar to SdHO’s in conventional 

magnetoresistance measurements.  However, TMCO’s are not restricted to EF but are measured 

as a function of energy E, with F BE E eV  determined by the tunneling bias and where EF 

corresponds to VB=0 (Fig. 1A).  As indicated in Fig. 1A, the dI/dV signal will oscillate as the 

density of states due to the LL’s move through the energy position BE eV ; a maximum in dI/dV 

occurs at fields where BnE eV (Fig. 1B).  For SdHO’s, the frequency of oscillations in 1/B is 
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given by, F F( / 2 )B e A , with FA  the cross-sectional area of the Fermi surface in a plane 

normal to the magnetic field (20-22).  In our measurements, the TMCO frequency EB  is given 

by the same expression, except that FA  is replaced by EA , where EA  is the cross-sectional k-

space area at energy BE eV  (Fig. 1A).  This new method allows the energy dispersion to be 

measured with very high accuracy in both energy and crystal momentum as E is varied via the 

tunneling bias.   

For graphene, we assume circular constant-energy contours of area 
2

E EA k , to 

determine the graphene wavevector
1/2

E E(4 / )k e h B .  The inset to Fig. 1B shows a “fan plot” 

of LL index measured from the TMCO peak maxima versus 1/B for different values of tunneling 

bias VB.  This yields a range of oscillation frequencies EB corresponding to different constant 

energy contours EA (see fig. S1 (23)).  This is analogous to changing the gate voltage in 

conventional transport measurements; thus we circumvent the challenge of gating in the MEG 

system.  The fan plot intercepts all fall close to zero indicating a Berry phase of π characteristic 

of graphene (24).  Fig. 1C shows the energy-momentum dispersion determined from the TMCO 

measurements for energies within ± 125 meV of ED .  A fit to the TMCO data determines a 

characteristic velocity of 6 1* (1.070 0.007) x 10  msc  for both electrons and holes (25), with 

the Dirac point energy 29.2 0.6 meV above the Fermi level (the range of observed ED values is 

discussed below).  Note that the dispersion measurement in Fig. 1C includes the unfilled 

electronic states, a regime that is not accessible by photoelectron emission spectroscopy. 
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The Landau quantization of the density of states that gives rise to the TMCO’s can be 

directly measured in the dI/dV spectra at fixed magnetic field.  Figure 2A contains over 20 LL’s 

in the tunneling spectrum obtained on MEG in an applied field of 5 T.   The LL peaks are 

extremely sharp compared with similar spectra from semiconductor 2D electron systems or bulk 

graphite (26-28).  Evidence for massless Dirac-fermions can be easily inferred by the observation 

of the LL0 peak at 7 mV, and the large energy gaps on either side of LL0 with zero differential 

conductance.  Small features in the spectrum near the 0n and 1n  LL remain unexplained; 

these may be due to defect scattering as they vary somewhat with spatial position (see Fig. 3) or 

they may be intrinsic fine structure of the LL state, particularly for the n=0 LL, where the 4-fold 

degeneracy is known to be removed at high magnetic fields (29).  The LL spectrum in Fig. 2A 

fits well to a simple sum of Lorentzian lineshapes convolved with a Gaussian instrument 

function to account for thermal and modulation broadening of fixed 2.8 meV width (i.e., Voigt 

lineshapes).  As shown by the red line in Fig. 2A, the fit accounts for essentially all of the 

original spectral weight in the density of states, i.e. the rising background is dominated by the 

Lorentzian tails of each LL, which are determined by the carrier lifetimes.  To investigate the 

coupling between graphene layers, we fit the LL energies in Fig. 2A to a bilayer model for 

different values of the interlayer coupling γ1 (Fig. 2B inset) (30).   An interlayer coupling of 300 

meV to 400 meV has been measured for Bernal-stacked graphene bilayers (31, 32), yet the best 

fit to the spectrum in Fig. 2A is clearly with zero-interlayer coupling 1( 0) . 

Figure 2B shows a series of dI/dV spectra for different magnetic fields.   The LL peaks 

increase in intensity with increasing energy-separation as the magnetic field is increased.   A 

slight shift of LL0 is also observed with increasing field.  The Dirac point ED lies below the 
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Fermi level at low fields ( 1.8 meV at 1 T ) and shifts to a position of 13.1 meV above EF at 6 T 

(Fig. 2C inset).   Extrapolating the LL0 position to zero field yields a Dirac point  

D 3.7 meVE  at B=0, corresponding to an electron doping of 8 2=8.8 x 10  cmn .  This small 

charge density in the top layer results from the decay in the charge profile through the multilayer 

stack from the highly doped interface layer (33), and is similar to that seen in optical 

measurements (9, 10).  The shift of the Dirac point with field results from the redistribution of 

charge in the multilayer determined by the degeneracy of the available LL’s, and the effective 

screening perpendicular to the graphene planes (33).  The shift of LL0 across the Fermi level is 

not completely understood at present, and could be influenced by the electrostatic potential 

derived from the difference in the probe tip and graphene work functions.  More detailed 

theoretical analysis on the screening properties of the Dirac carriers in the presence of a tip 

potential and a constant magnetic field is required for a complete understanding of these results.   

Further confirmation of single layer electronic structure comes from the scaling of LL 

energies En with magnetic field at high fields.  For the Dirac spectrum, En should scale as B  

(see above) whereas in all other forms, including bilayer graphene and graphite, the LL’s scale 

linearly in B for energies near the Dirac point.  Remarkably, a complete linear collapse of all the 

LL’s energies is obtained by plotting En versus n B   (Fig. 2C).  The degree of linearity of the 

LL dispersion in Fig. 2C is high, confirming Dirac quasiparticles in this MEG system.  Fitting 

both electron and hole branches in Fig. 2C yields a carrier velocity of 

6 1* (1.128 0.004) x 10  msc  in good agreement with the range of values reported for 

graphene (34).  Close inspection of Fig. 2C shows that the electron and hole states actually have 
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slightly different velocities.   Independent fits to the two branches give velocities 

6 1* (1.189 0.007) x 10  msc  for the states below ED and 6 1* (1.044 0.004) x 10  msc  for 

states above ED.  The 6 % difference observed between these values may imply a breakdown of 

electron-hole symmetry.  A similar asymmetry, although two times smaller, was recently 

observed in cyclotron resonance studies of exfoliated graphene (34).  However, some 

contribution to the electron-hole asymmetry observed in Fig. 2C could also be due to the 

screening of the tip electric field (band bending), requiring a small correction to the energy scale 

in Fig. 2C.   Calculations of the multilayer screening by the Dirac carriers in the presence of a tip 

potential and a constant magnetic field indicate such corrections are present to a small degree 

(33).  

Spatial variation of the Landau level energies, particularly the LL0, can be used to map 

fluctuations of the local potential.   Figures 3A and B show a topographic image and 

corresponding spatial map of the LLn energies (vertical) and dI/dV intensities (color scale) for 

(n=0,-1,-2,-3) along the line marked in Fig. 3A.  The average position of ED is 55.2 meV above 

EF, with a variance of 1.9 meV  (Fig. 3C).   By far, the largest variation corresponds to a 

subsurface rotational domain boundary that occurs in the center of the image (the top graphene 

layer is atomically continuous over the boundary).  These variations in LL position show an 

extremely smooth potential variation (and hence carrier density), in contrast to the electron and 

hole puddles observed for exfoliated graphene on SiO2 substrates (35).  In surveying the sample, 

a variation of approximately 25 meV in the ED was observed over distances of many tens of 

microns (see ED differences between Figs. 2 and 3), still considerably smaller than the variations 

seen in exfoliated systems on SiO2.  The large density fluctuations on SiO2 substrates apparently 
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result from charged impurities in the SiO2.  The smooth charge/potential contour of MEG could 

be due to screening of the interface potential fluctuations by the graphene multilayer, and the 

crystalline SiC substrate may be more homogenous than the amorphous SiO2 substrate with 

respect to trapped charges. 

The dI/dV spectra in Fig. 2 agree very well with the LL spectrum expected for massless 

Dirac fermions, implying that the topmost layer of MEG closely approximates an isolated sheet 

of graphene.   We attribute this to electronic decoupling of the graphene layers in MEG grown on 

the carbon-face of SiC as a consequence of rotational stacking faults between layers (36).  A 

variety of rotational stacking angles are found in STM topographic images of the surface of 

MEG (fig. S2) (23).  Slight rotations of one layer with respect to the next create moiré super-

periods superimposed on the atomic lattice (fig. S2) (23, 36). The ≈0.02 nm peak-to-peak height 

modulation originates from periodically-varying alignment of top-layer atoms with those below, 

but the exact source of image contrast is still a subject of debate (37).   Our survey of the carbon-

face grown sample showed moiré patterns of various periods in almost every location examined 

with spectra similar to those seen in Fig. 2.   

In addition to the spatial homogeneity of the LL spectra, we observe that the linewidths 

of the Landau levels are very small.  In particular we measure a Lorenztian linewidth of 1.5 meV 

for LL0 in Fig. 2A, after accounting for instrumental broadening (2.8 meV Gaussian).  

Associating this width with a characteristic scattering time, / E , yields 0.4 ps ; the 

momentum relaxation time, which determines the transport mobility, will be substantially larger 

(38).  We note that these samples are relatively low in defects; the STM topographs indicate a 
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density of ≈ 1 point defect per 100 nm x 100 nm area on the top layer.  It is interesting to discuss 

the sharp Landau quantization observed here with the lack of the QHE in transport measurements 

in this MEG system.  The QHE is similarly absent in suspended exfoliated graphene samples that 

exhibit very high mobility and low defect density (39).  Prior speculation and recent theoretical 

examinations of the QHE in graphene point out the necessity of disorder-induced Anderson 

localization for the observation of the QHE (2, 14).  Our observation of sharp Landau levels, 

with apparently vanishingly small density of localized states, is consistent with the absence of 

the integer QHE in epitaxial graphene.   

In summary, we have measured 1/B oscillations in the tunneling differential conductance 

of multilayer epitaxial graphene from a scanning tunneling microscope probe.  This demonstrates 

that the local STM probe determines the extended electronic structure of this low-density system.  

We have shown the existence of sharp Landau levels in multilayer epitaxial graphene, with 

energy and magnetic field dispersion accurately modeled by the electronic structure of an 

isolated graphene sheet.  Spectroscopic maps over hundreds of nanometers show minimal 

potential fluctuations in the graphene sheets.   These single layer graphene characteristics may be 

useful for carbon electronics based on multilayer epitaxial graphene, which could be easily 

grown over large wafers of silicon carbide. 
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Figure 1: Tunneling magneto-conductance oscillations in epitaxial graphene. (A) Schematic of graphene low energy 
dispersion with quantized Landau levels (LLn) in a magnetic field.  The Dirac point ED locates the common apex of the  
electron and hole cones.  The red dashed line indicates the k-space area AE corresponding to a dI/dV measurement at the 
setpoint energy E=eVB.  (B) TMCO’s in dI/dV(E=-65 meV) as the magnetic field is swept perpendicular to the 
graphene plane.  The largest oscillations originate from the Landau levels sweeping through the energy E.  The inset 
fan plot shows a linear relation in the LL index n from the conductance oscillations vs. 1/B, yielding the TMCO 
frequencies BE. The error in the peak positions is smaller than the symbol size.  Each line corresponds to a separate 
TMCO measurement at different tunneling biases from -95 mV to 140 mV (see fig. S1 (23)).  (C) The energy-
momentum dispersion (symmetrized about k=0) obtained from the TMCO frequencies BE.  A linear fit yields a carrier 
velocity c*=(1.070 ± 0.007) x 106 ms-1 and a Dirac point location of  ED=29.2 ± 0.6 meV above EF (25).
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Figure 2: Direct measurement of Landau quantization in epitaxial graphene (A) Blue data points show the tunneling 
differential conductance spectra vs. sample bias of Landau levels in multilayer graphene at B=5 T. Landau level 
indices are marked.  The red line shows a fit to a series of Voigt lineshapes at the Landau level peak positions, which 
accounts for essentially all the density of states in the spectrum, (tunneling setpoint, VB = 350 mV, I= 100 pA).  
(Inset) LL peak position vs. square root of LL index and applied field from the peak positions in (A).  Errors in peak 
positions are smaller than the symbol size.  Solid lines are fits to a bilayer model with interlayer coupling of (red) 
zero, (black) 150 meV, and (blue) 300 meV.  (B) Landau level spectra for various applied magnetic fields from 0 T to 
6 T.  The curves are offset for clarity, (tunneling setpoint, VB = 350 mV, I= 100 pA).  (C) Landau level peak energies 
for applied fields of 1 T to 8 T, showing a collapse of the data when plotted versus square root of LL index and 
applied field.  The solid line shows a linear fit yielding a characteristic velocity of c*=(1.128 ± 0.004) x 106 ms-1 (25).  
The inset shows the shift in the LL0 peak posistion as a function of applied field (symbols).  The error is smaller than 
the symbol size.  The solid line is a linear fit to the data points. 
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Figure 3: Spatial variation of the surface potential in epitaxial graphene. (A) STM topograph, 50 nm x 400 nm, 
showing a region containing a boundary between two different moiré regions.  Grayscale range 0.3 nm.  The periodic 
features correspond to the moiré (see fig. S2 (23)).  (B) A series of dI/dV spectra obtained along the center horizontal 
line in (A) showing low-lying Landau levels. Image color is the dI/dV intensity (blue -1.5 nS to yellow 2.5 nS), the 
horizontal axis is distance, and the vertical axis is energy.  The Landau level indices are labeled to the right of the 
image.  (C) Variation in the LL0 peak position as a function of distance along the line indicated in (A). Error bars are 
one-sigma error in fitting LL0 peak positions in (B).



Figure S1: (A) Tunneling magneto-conductance oscillations as a function of tunneling bias VB.   Landau level 
indices are indicated above the peaks.  (B) Landau level index n versus 1/B for the three TMCO spectra in (A).  A 
linear fit to the Landau level index n vs 1/B data yields the oscillation frequencies BE used to determine the 
energy-momentum dispersion relation in Fig. 1C.  BE= -3.2, -5.3, and -6.8 T for VB=-45, -55, and -65 mV.  A 
larger collection of similar data is shown in the inset to Fig. 1B. 
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Figure S2: Moiré patterns from rotational stacking of graphene layers. (A) Schematic drawing illustrating the rota-
tion of two hexagonal lattices by a small angle (7 degrees)  which gives rise to a super-periodicity with a large unit 
cell, shown in red.  (B) STM topographic image, 20 nm x 20 nm, showing a moiré pattern with a unit cell length of 
1.9 nm corresponding to a rotation angle of 7.42 degrees.  (C) Zoomed region from the area in (B), 3.8 nm x 3.8 nm, 
showing the graphene hexagonal lattice within the moiré pattern.  (D) STM topographic image, 47 nm x 47 nm, 
showing a double moiré pattern with a small and large unit cell.  The unit cells correspond to rotations between two 
layers of 0.47 degrees, and two other layers of 4.13 degrees.




