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The tensile creep rate of most commercial grades of Si3N4
increases strongly with stress. Although the usual power-
law functions can represent the creep data, the data often
show curvature and systematic variations of slope with
temperature and stress. In this article, we present a new
approach to understanding the creep of ceramics, such as
Si3N4, where a deformable second phase bonds a deforma-
tion-resistant major phase. A review of experimental data
suggests that the rate of formation and growth of cavities in
the second phase controls creep in these materials. The
critical step for deformation is the redistribution of the
second phase away from the cavitation site to the surround-
ing volume. The effective viscosity of the second phase and
the density of active cavities determine the creep rate. As-
suming that the hydrostatic stresses in pockets of the sec-
ond phase are normally distributed leads to a model that
accurately describes the tensile creep rate of grades of
Si3N4. In this model, the creep rate increases exponentially
with the applied stress, is independent of Si3N4 grain size, is
inversely proportional to the effective viscosity of the de-
formable phase, and is proportional to the cube of the vol-
ume fraction of the deformable phase.

I. Introduction

RESEARCHERShave collected a substantial body of tensile
creep data on commercial grades of Si3N4.1–6Most of them

have summarized their creep data by the Norton equation:7

«̇s = «̇0S s

s0
Dn

expS−
DH

RTD (1)

where«̇s is a secondary or minimum creep rate,s the applied
tensile stress,T the temperature in kelvin, and«̇0, n, and H
empirical constants of the fit. The stress exponent,n, and the
activation enthalpy,H, are usually given a physical interpreta-
tion. Linear processes,n 4 1, are usually interpreted as result-
ing from diffusional8–10 or solution–precipitation11 mecha-
nisms. Quadratic processes,n 4 2, usually result from
interface-reaction-controlled diffusional mechanisms12–14 or
from linear mechanisms with a threshold stress.15 More
strongly nonlinear creep processes in metals and geologic ce-
ramics, but not structural ceramics, for whichn > 3, are usually
interpreted as resulting from dislocation processes.16

Equation (1) often does not fit tensile creep data for Si3N4
well. Recent studies on commercial Si3N4

§ (NT154, Saint-
Gobain/Norton Industrial Ceramics Corp., Northboro, MA;5,17

SN-88, NGK Insulators, Ltd., Nagoya, Japan;18 and AS800,

AlliedSignal, Torrence, CA19) have shown curvature in
log(strain rate)–log(stress) plots. For some of these materials,n
increases from∼2 to as much as 5 (Ref. 5) or 6 (Ref. 18) with
increasing stress. Becausen varies, some authors have sug-
gested that the mechanism of creep deformation differs at high
and low stresses.3 Other authors20 have suggested that the Nor-
ton equation does not fit the creep data well, because defor-
mation is not a consequence of creep mechanisms that lead to
a power-law dependence on stress.

Gasdaska20 suggested that a hyperbolic sine function of ap-
plied stress and temperature, which follows from Eyring’s21

theory of the viscosity of fluids, describes the tensile creep
behavior better than does the Norton equation:

«̇s = AsT sinhSVss

RTD expS−
DHs

RTD (2)

where Vs and DHs are the apparent activation volume and
energy, respectively. For stresses greater than∼50 MPa, Eq. (2)
simplifies to an exponential function:

«̇s = AsT expS−DHs + Vss

RT D (3)

Gasdaska attributed the rate-limiting step in the deformation
process to sliding of Si3N4 grains aided by the amorphous,
siliceous layer separating them, and accommodated by diffu-
sion and cavitation of the silicate phase, located at multigrain
junctions. At high stresses, breakdown of the structure of the
residual glass on Si3N4 boundaries leads to shear thinning and
a nonlinear dependence of creep rate on stress.

Li and Reidinger22 applied Wakai’s14 step model of solu-
tion–precipitation creep to Si3N4 to arrive at an inverse expo-
nential form:

«̇s = Asm

s2/3

T
expS−

DHsm

RT D expS−
L

RTsD (4)

whereL is a term involving the height of the grain-boundary
step on which Si3N4 molecules are attaching and the energy of
the step per unit length.

This article presents a new model for describing the tensile
creep of ceramics. Although its focus is on Si3N4, the model
applies in general to materials comprising a creep-resistant ma-
jor phase bonded by a more easily deformed second phase.

Instead of a sliding process, we argue that the cavity forma-
tion in and subsequent redistribution of silicate phase limits the
creep rate. We begin by summarizing the important experimen-
tal observations of the creep of Si3N4. We then discuss the
limitations of a model for creep based on sliding of the Si3N4
grains. Finally, we develop a model based on silicate redistri-
bution and discuss its predictions and limitations.

II. Summary of Experimental Observations
and Inferences

(1) Structure of Si3N4

Typically, liquid-phase-sintered Si3N4 is made by adding
small quantities of rare-earth oxides (e.g., Y2O3, Yb2O3, and
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La2O3), Al2O3, or alkaline-earth oxides (e.g., SrO and MgO) to
a fine-graineda-Si3N4 powder. These sintering aids react with
the SiO2 present on the surface of the starting powder to form
a low-melting glass that allows densification,a-Si3N4 to
b-Si3N4 transformation, and grain growth during hot-pressing,
hot isostatic pressing (HIPing), and gas-pressure sintering. The
final product comprises a network of elongatedb-Si3N4 grains,
typically 5mm long and 1mm wide, whose interstices are filled
with a mixture of submicrometerb-Si3N4 grains and the re-
sidual silicate. These interstitial pockets of silicate are con-
nected via triple-junction channels. An amorphous, siliceous
phase,23–25 usually ∼1–2 nm thick, separates the grains of
Si3N4. This amorphous interfacial phase typically does not
crystallize during processing or high-temperature exposure. In
contrast, the sintering aid remaining at multigrain junctions,
which forms its own interconnected network, usually can be
crystallized to rare-earth silicate phases.

(2) Experimental Observations
Numerous studies of creep of Si3N4 have revealed common

features:
(i) Si3N4 creeps much faster in tension than in compres-

sion.5,20,26–32Figure 1 illustrates this behavior, where the loga-
rithm of the minimum creep rate for several different silicon

nitrides is plotted as a function of the logarithm of the applied
stress. At the same stress, the tensile creep rate is anywhere
from 10 to 100 times greater than the compressive creep rate.
At low stresses, extrapolations of the two curves converge.
Asymmetric creep also occurs in siliconized SiC,33 Al2O3,28

and glass-ceramics.34 All of these materials are composed of a
deformation-resistant major phase (Si3N4, Al2O3, or SiC) and
an easily deformed minor phase at the grain boundaries and
multigrain junctions. In contrast, single-phase Al2O3

35 exhibits
equal tension and compression creep rates.

(ii) Figure 2 shows that the curvature in the tensile creep
rate of Si3N4 evident in Fig. 1 is captured by expressing the
creep rate as an exponential function of the applied stress and
temperature. This behavior occurs in at least five grades of
Si3N4.5,18–20,32,36,37In comparison, the compressive creep rate
is a power-law function of the applied stress; values ofn gen-
erally range from∼15,27,28,30,38–47to ∼2.39,40,48–51

(iii) Cavity formation produces the bulk of the tensile
creep strain in Si3N4. In studies on seven different silicon ni-
trides (see Fig. 3),5,18–20,52–54the cavity volume fraction in-
creases linearly with the tensile creep strain, with a slope rang-
ing from ∼0.8 to 1. Although cavitation can also occur in
compression,5,39,40the volume fraction of cavities is typically
much less than that observed in tension5 under similar stress

Fig. 1. Comparison of creep behavior of several silicon nitrides in tension and compression: (a) AY-6, a SiC-whisker-reinforced Si3N4
27 tested

at 1200°C; (b) SN-88, a gas-pressure-sintered Si3N4
18 tested at 1400°C; (c) NT154, a HIPed Si3N4

5 tested at 1430°C; and (d) SN220M, a sintered
Si3N4

28 tested at 1200°C.
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and strain. When the stress exponent for compression creep is
near unity, there is no cavitation.5,27,39–41,46,48,55Cavitation ac-
companies compression creep only in cases whenn > 2.39–41

(iv) Cavities nucleate and grow primarily in the interstitial
pockets of silicate located at multigrain junctions (see Fig.
4).5,17,20,22,56,57Once the silicate phase has completely left the
pocket, the cavity stops growing.5 A study using small-angle
X-ray scattering has shown that the continuous addition of new
cavities, rather than the growth of existing cavities, dominates
the volume addition.5 Although some studies2,5,6,17,58 have

shown that Hull–Rimmer-style cavities59 sometimes form on
Si3N4 grain boundaries, these interfacial cavities do not con-
tribute greatly to the overall cavity volume.5

(v) Most experimental evidence suggests that disloca-
tions are not active during tensile,5,26 compression,40–42,46,48,55

or flexural60 creep. Even when dislocations are observed,22

there appears to be no difference in dislocation structure be-
tween the as-received and the deformed material. Only rarely
do researchers note a change in dislocation density61,62 after
creep.

Fig. 3. Volume fraction of cavities as a function of strain for six silicon nitrides ((h) NT154, (j) NT154, annealed to produce larger grains,52

(d) GN-10,53 (L) SN-88,18 (n) Gasdaska’s20 experimental Si3N4, (s) AS-800,19 and (*) PY-654). Volume fraction of cavities increases linearly
with strain, independent of temperature. Solid line has a slope of unity.

Fig. 2. Creep data for two silicon nitrides: (a) SN-88, a gas-pressure-sintered material18 and (b) NT154, a HIPed material.36 Solid lines are the
fits to the data of a function (Eq. (20)) with an exponential stress dependence. Note that the stress axis is linear, rather than logarithmic.
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(3) Inferences
The above observations lead to the following conclusions

about possible creep mechanisms:
(i) The usually linear or parabolic dependence of compres-

sive creep rate on stress and the existence of the nanometer-
thick amorphous layers on two-grain boundaries are evidence
that a diffusional creep mechanism on the boundaries,10 such as
solution–precipitation creep,11 controls compressive creep.
Si3N4 dissolves from boundaries under compression, diffuses
through the amorphous layer, and precipitates onto tensile
boundaries.

(ii) Diffusional creep of Si3N4 cannot contribute signifi-
cantly to the tensile creep strain. Diffusional creep is symmet-
ric in stress;8–10 therefore, the creep rate in tension and com-
pression would be equal if solution–precipitation of Si3N4
controlled both creep processes. Because tensile creep can be
as much as 100 times faster than compressive creep,5,20,26–28,63

some other mechanism must produce the tensile creep defor-
mation of Si3N4.

(iii) If neither diffusional transport of Si3N4 nor dislocation
motion within Si3N4 grains occurs during tensile deformation,
then there is no mechanism by which Si3N4 grains can change
their shape during deformation.5 Therefore, Si3N4 behaves as a
granular solid, similar to a soil:64 the grains of Si3N4 are rigid

relative to the deformation process. Only the network of grains
changes shape during deformation. Because of the close-
packed nature of the grains, the network must dilate during the
deformation process.65

(iv) The linear increase of cavity volume fraction with
creep strain (Fig. 3) suggests that tensile creep of Si3N4 is
linked to the process of interstitial pocket cavitation. Stresses
build up locally during the deformation process as a conse-
quence of the applied stress and the relative motion of the
grains. The formation of a cavity in an interstitial pocket re-
lieves that stress, but the pocket remains connected to other
stressed interstitial pockets via the triple-junction network. Sili-
cate from the cavitated pocket must redistribute to surrounding
pockets in response to this stress gradient.

III. Model Development for Tensile Creep

(1) Review of Cavitation Creep Models in Structural
Ceramics

Researchers have long recognized the importance of cavities
in the high-temperature rupture process in structural ceramics.
Much of that cognition has gone into developing theories of the
linkage of individual cavities into the macro-flaws whose ul-
timate extension causes failure, as a way to develop life-
prediction models.66–69 Most often, the focus of these models
has been on the nature of the damage and not the resulting
creep behavior. Other models have focused on the difficult and
important question of the origin of the large stresses needed to
nucleate cavities,66,70–72instead of predicting the overall creep
rate of the loaded body. All of these aspects are certainly im-
portant in understanding creep rupture, but our focus is on the
relation between the cavitation process and the resulting creep
rate.

Few models have explicitly attempted to derive a form for
the creep rate when cavities play an important role in the pro-
cess. Evans and Rana,68 as part of a life-prediction model for
creep rupture of structural ceramics, have developed a model in
which the creep strain results from the elastic opening of facet-
sized microcracks.

Suresh and Brockenbrough73 extended the model. Several
experimental studies56,74 have applied the model to Si3N4
creep. Although the model does give power-law dependence of
the creep rate on stress, the resulting elastic strains are very
small, even for cracks (as opposed to cavities), and the possible
strains are much smaller than the usual strains in creeping
Si3N4.

Morrell and Ashbee34 have developed a model for tensile
creep of glass ceramics in which viscous flow of the inter-
granular phase produces the deformation. To explain the
power-law dependence of strain rate on stress, they have pos-
tulated that cavitated regions shed load to uncavitated regions;
the local deformation remains linear-viscous, butn can be >>1.
Arons and Tien75 and Kossowskyet al.26 have applied the
model to Si3N4, and Ferber and Jenkins6 have promoted a
model of similar form.

Lange76 has developed a simple model for creep of Si3N4
where he argues that deformation of the material by flow of the
second phase on two-grain boundaries must proceed by the
viscous growth of a cavity. Non-Newtonian creep of the body
must result from non-Newtonian rheology of the two-grain
boundary material. Typically, two-grain-boundary cavities,
such as appear in Lange’s model, do not occur in Si3N4, and the
model neglects the effect of the constraint77 of the surrounding
uncavitated regions.

Drydenet al.78 have developed and extended79,80 a similar
model for deformation by flow of the two-grain-boundary ma-
terial. The model, which they have used to model the early
stages of creep in Si3N4,80,81 does not explicitly involve cavi-
tation but does seem to be a good candidate to rationalize the
creep behavior at very small strains. As with Lange,76 any
non-Newtonian creep would have to result from the non-

Fig. 4. Interstitial cavities in (a) NT154, a HIPed Si3N4,
5 crept for

689 h at 1430°C under 75 MPa to a failure strain of 0.020, and (b)
SN-88, a gas-pressure-sintered Si3N4,

18 crept for 477 h at 1400°C
under 100 MPa to a failure strain of 0.042. References 20 and 56 show
micrographs of similar cavities in other silicon nitrides.
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Newtonian rheology of the two-grain-boundary material. Re-
cently, Deyet al.82 have developed a model for creep similar to
Drydenet al., but which incorporates the idea of load shedding
of cavitated regions to noncavitated regions (a` la Morrell and
Ashbee34) to explain the nonlinearity of the overall creep de-
formation. Because the thickness of the amorphous, siliceous,
two-grain boundaries in Si3N4 is less than several nanom-
eters,23–25 this mechanism must cease after very small (« <
0.001) strains.

These existing models for creep, with the exception of the
model of Gasdaska20 discussed in the Introduction, do not cap-
ture the behavior of Si3N4 outlined in Section II(2). The infer-
ences of Section II(3) suggest three possible rate-limiting steps
for creep: cavity nucleation; Si3N4 grain-boundary sliding as
the structure dilates to accommodate the silicate redistribu-
tion; or flow of the silicate phase through the Si3N4 network
from the cavitating pocket. In an earlier paper, we concluded83

that cavity nucleation could not be the rate-limiting step of
the creep process. Classical nucleation theory predictsn >
104 (in Eq. (1)), or much larger than then values of 3–
101,3,6,20,27,28,75,84–86that current silicon nitrides exhibit.
Therefore, in the remainder of this article, we examine only
grain-boundary sliding or redistribution of the silicate phase
from the cavity as possible rate-limiting steps for deformation.
Both of these must occur during creep,5 but the slower of the
two controls the creep process.

Tensile deformation of Si3N4 requires the redistribution of
the second phase from cavities to the interstitial volume in the
neighborhood of the cavity (Fig. 5). Because Si3N4 is normally
fully dense, there is no room for redistribution unless the net-
work of Si3N4 grains surrounding the cavity dilates to increase
the interstitial volume to accommodate the silicate phase leav-
ing the cavity. Without dilation, the surrounding, undeformed
material exerts a back stress to constrain further cavity growth,
a process that Dyson77 first recognized. The volume increase
caused by the dilation is equal to the volume of the cavity and
occurs within a region defined by spacing between active cavi-
ties. Si3N4 grain-boundary sliding accommodates the dilation.
Because the redistribution of silicate takes place, in general,
over a volume comprising many Si3N4 grains, calculating the
creep rate of the body requires calculating the creep rate of a
volume of material encompassing a single cavity and the vol-

ume over which its silicate redistributes. For simplicity, con-
sider this volume to be a cube with sides of lengthL (see Fig.
5). The spacing between active cavities is then alsoL.

Experimental observations have shown that cavitation dur-
ing tensile creep of Si3N4 produces strain primarily in the axial
direction of the specimen, rather than uniform outward expan-
sion. This is easily demonstrated from the following argu-
ments.57 The change in density,Dr/r, can be related to the
principal components of strain:

−
Dr

r
=

DV

V
= 2«33 + «11 (5)

whereDV/V is the relative change in volume,«33 the lateral
strain, and«11 the axial strain. For most silicon nitrides char-
acterized,5,18,19,530.8 «11 < DV/V < 1.1 «11, yielding a lateral
strain in the range 0.1 >«33 > −0.05. Siliconized SiC87,88

behaves similarly. In only one study was the calculated lateral
strain in the Si3N4 larger than reported above; i.e.,«33 4 0.2.20

For simplicity in the model development below, we assume
that, during tensile deformation, the axial strain is equal to the
volume fraction of cavities; i.e.,DV/V 4 «11 and«33 4 0.

(2) Grain-Boundary Sliding as the Rate-Limiting Step
for Creep

If grain-boundary sliding is the rate-limiting step for the
creep process, we can imagine the cube of Si3N4 surrounding
the cavity to be crossed by many slip planes along which the
deformation occurs (Fig. 6). If all grain boundaries slide, then
the separation between planes,l, is the grain size; if groups of
grains slide, thenl is larger than the grain size. The resistance
to intergranular sliding is then the resistance to sliding of the
nanometer-thick, amorphous, siliceous layer that separates
Si3N4 grains.

Assume the amorphous, siliceous layer separating sliding
Si3N4 boundaries has thicknessd and viscosityh and that sets
of sliding boundaries lie a distancel apart, inclined to the
loading axis at an angleu (Fig. 6). The shear stress,t, along a
sliding boundary ist 4 s cosu sin u. The shear strain rate,g

.
,

in the siliceous layer isg
.

4 t/h. The overall strain rate,«̇, is
then

«̇ =
d

l

s

h
sin2 u cos2 u (6)

For u 4 p/4, the plane that has the greatest shear stress,

«̇ =
1

4

d

l

s

h
(7)

Equation (7) predicts that the strain rate increases linearly
with stress, in contradiction to exponential-like dependence
that actually occurs.5,18,20,28Gasdaska20 has suggested that the
viscosity of the siliceous material at the grain boundaries may
decrease with increasing applied stress and, thus, be respon-
sible for the extreme sensitivity of the creep rate on stress.

Li and Uhlmann89 first observed such non-Newtonian flow
of a glass during fiber drawing of a homogeneous
0.08Rb2O?0.92SiO2 glass at stresses >300 MPa. They used the
Eyring21 equation to fit their data:

h =
t

AT
expSE0

RTD sinhS−
tV0

2 RTD (8)

whereA is a constant,t the shear stress,E0 the height of the
potential barrier to flow, andV0 4 A0a0 the shear volume. In
the Eyring formalism, the parameterA0 is the cross section of
the molecule or other molecular unit of the glass undergoing
slip anda0 the slip distance. The shear volume,V0, obtained by
fitting Eq. (8) to the viscous flow data was about 5 times larger
than the molar volume of 28 cm3/mol of the glass.22 Although
Li and Uhlmann questioned how physically reasonable such a
large shear volume might be, the Eyring theory does have the
correct form to rationalize the creep data shown in Fig. 1.

Fig. 5. Silicate phase from an interstitial cavity flows from the cavity
through the triple-junction network to other interstitial pockets. Grain-
boundary sliding of Si3N4 accommodates the expansion of the inter-
stitial pockets. Experimental evidence indicates that the strain pro-
duced is primarily axial.
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Substituting Eq. (8) forh into Eq. (7) gives an expression for
the overall specimen creep rate:

«̇ =
A

2

d

l
expS−

DH

RTD sinhS−
sV

RTD (9)

whereV 4 V0/4 andDH 4 E0.
In the years since Li and Uhlmann’s observation, there have

been other observations of new-Newtonian flow in silicate
glasses (see, for example, Webb’s review90). Although a de-
tailed atomistic description of the transition to non-Newtonian
flow does not exist, all the silicates studied show the transition
at viscosities whose relaxation times approach that of Si−O
bond exchange.90 The inverse of the Maxwell relation,

«̇R =
G`

h
(10)

defines a relaxation strain rate,«̇R, in terms of the viscosity and
unrelaxed shear modulus,G`. Silicate melts, regardless of
composition,91 deviate from Newtonian viscosity only at strain
rates greater than«̇R/1000.

The best estimate of the strain rate of the interfacial amor-
phous silicate in creeping Si3N4 is several thousand times less
than this rate, even for the most relaxed assumptions about
stress and composition. If we assume that the siliceous material
on Si3N4 grain boundaries behaves as a silicate glass, then we
can estimate, using Eq. (7), its strain rate during creep to as-
certain whether it might be expected to show nonlinear viscos-

ity. Consider the creep of NT154 Si3N4
5 at 1430°C and 150

MPa, where the secondary creep rate is 3.2 × 10−7 s−1. This
creep rate is almost the maximum observed for this material. In
the neighborhood of these conditions,n ≈ 8, placing the ma-
terial well into the non-Newtonian regime. The thickness,d, of
the amorphous, siliceous layer is∼1 nm,5,17 and the grain size,
l, is ∼1 mm.5,17 From Eq. (7), an upper-bound estimate for the
strain rate of the interfacial amorphous layer is (l/d)«̇ 4 3.2 ×
10−4 s−1. The corresponding relaxation strain rate for pure
silica-glass, which is perhaps the most viscous of glasses and
certainly much more viscous that the impurity-laden glass ac-
tually present on the boundaries, is 206 s−1, assuming an un-
relaxed shear modulus of 43 GPa92 and viscosity,h, of 2.08 ×
108 Pa?s.93 The viscosity of pure silica, then, should only just
begin to deviate from linearity at rates of∼0.2 s−1, or 1000
times faster than the fastest possible strain rate observed in
practice. The presence of any of the sintering cations should
significantly reduce the viscosity of the interfacial glass, with a
concomitant increase of the relaxation rate. Based on the cur-
rent understanding of the phenomenology of nonlinear viscos-
ity in silicate glass, the interfacial amorphus silicate is not a
likely source of the exponential increase of tensile creep rate
with stress in Si3N4.
(3) Redistribution of Silicate as the Rate-Limiting Step
for Creep

Because the possibility of nonlinear viscosity of the amor-
phous, siliceous material on the Si3N4 grain boundaries does
not seem to be a good candidate for explaining the exponential
dependence of tensile creep rate on stress, we now turn to the
redistribution step as a possible rate-limiting mechanism. If the
redistribution of the silicate through the intergranular channels
controls the creep rate, then the size and spacing of channels,
the effective viscosity of the silicate phase, and the spacing of
the cavities are the important factors that must be considered in
developing a creep model. Engineers and geologists interested
in the flow of fluids through packed beds have treated this
problem by generalizing the Hagen–Poiseuille equation for vis-
cous flow through a narrow tube94–96by substituting a hydrau-
lic radius for the radius of the tube. The hydraulic radius is
defined as the ratio of the cross-sectional area of the bed avail-
able for flow to its wetted perimeter.97 The Carman–Kozeny
equation97,98 relates the superficial velocity (i.e., at the en-
trance to the bed) of a fluid,v0, of effective viscosityh, to the
decrease in pressureDP, across a bed of lengthL, packed with
particles of mean diameterD, with volume fraction of voidsF:

v0 =
1

k0

DP

L

D2

h

F3

~1 − F!2 (11)

wherek0 is a geometrical term. Because it is the silicate phase
that is transported during tensile creep,F refers the volume
fraction of silicate rather than the volume fraction of cavities.
The viscosity,h, is really an effective viscosity that describes
the temperature dependence of the deformation of the crystal-
line silicate phase. It is not the viscosity of the interfacial
amorphous silicate.

Equation (11) is the basis for the creep-rate model. As
the silicate phase leaves the cavity and flows through the
intergranular network of silicate channels, the network of
Si3N4 grains dilates to accommodate the increase in volume.
Flow occurs on a local scale; the silicate phase from each
cavity flows no more than one-half the distance between cavi-
ties. In accord with the experimentally observed volume
changes,5,18–20,52–54we assume that flow occurs primarily in
the direction of loading. Silicate phase from the cavity flows
into a volume of the specimen defined by a boxL on a side
(Fig. 5). As the silicate flows from the cavity, the volume
increases in length at a ratev0 to accommodate the silicate
phase, yielding an overall creep rate of«̇ 4 v0/L. Once a cavity
forms, the stress within the interstitial pocket is almost zero,
while the stress on the end of the box that surrounds the cavity
is equal to the applied stress,s. The termDP in Eq. (11) can

Fig. 6. Model for sliding-limited creep. Model assumes that the
creep rate is limited by the rate at which the grains can slide over one
another as the material elongates. For simplicity, the sliding elements
are assumed to lie at 45° to the applied stress, and the planes along
which sliding occurs are spaced a distancel apart.
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be replaced by the hydrostatic stress,sh 4 s/3. These substi-
tutions transform Eq. (11) to

«̇ =
s

3k0h
SD

LD2 F3

~1 − F!2 (12)

where the creep rate depends on the applied stress,s, the
effective viscosity of the silicate phase,h, the grain size,D, the
distance between cavities,L, and the volume fraction of silicate
phase,F.

As with the model for sliding (Eq. (7)), the linear stress
dependence for the strain rate predicted by the flow-limited
model (Eq. (12)) is in conflict with observed exponential stress
dependence for Si3N4. For the model to be consistent with the
creep behavior, other variables in Eq. (12) must also depend on
stress, i.e.,h or L. In this section we show that the stress
dependence of the creep rate can be correctly predicted by
assuming that the spacing,L, between actively growing cavities
decreases with increasing stress. Although the model is largely
phenomenological, it yields an exponential dependence of
creep rate on applied stress, in agreement with experimental
data.

The applied load stresses each interstitial silicate pocket to a
different magnitude, depending on the local configuration of
the grains. The stress in some silicate pockets is large enough
to nucleate cavities, while in others it is almost zero. Measure-
ments of residual tensile and compressive stresses >1 GPa in
cermets99,100 support this assumption. Cavity nucleation also
certainly requires such high stresses, which the applied load
must generate.

There are many choices for the shape of the distribution of
stresses in the interstitial pockets. Theoretical calculations of
residual stresses resulting from thermal expansion anisotro-
py101predict that the stresses should be normally distributed. In
the derivation that follows, we assume that the hydrostatic
stress in the pockets,sh, follows a normal distribution with a
mean stress,sm, proportional to the applied stress (sm 4 s/3)
and constant standard deviation,s. A cavity nucleates in an
interstitial pocket when its hydrostatic stress exceeds a critical
value,sc. The fraction of interstitial pockets with stress greater
than the critical stress for cavity nucleation is the area of the
upper tail of the normal distribution:

Q~x! = 1 −
1

=2p
*−`

x
e−t2/2 dt (13)

wherex ≡ (sc − sm)/s. For any close packing of grains, there is
about one interstitial pocket per grain; therefore, the number of
intersitial pockets per unit volume,Nn, with sh > sc is

Nv~x! =
Q~x!

D3 =
1

D3 S1 −
1

=2p
*−`

x
e−t2/2 dtD (14)

An increase in applied stress shifts the entire distribution to
higher stresses; i.e.,sm increases as the applied stress increases.
The area under the tail of the distribution curve increases, and
a greater fraction of pockets is cavitated.

Calculating the instantaneous creep rate, then, amounts to
calculating the distance between active cavities and substitut-
ing the result into the expression for the strain rate (Eq. (12)).
The distanceL between active cavities is simply the inverse
cube root of the number per unit volume:

L 4 Q(x)−1/3 D (15)

Substituting the expression forL (Eq. (15)) into the expression
for the creep rate (Eq. (12)) yields an expression for the creep
rate:

«̇s =
1

3k0

s

h

F3

~1 − F!2 Q~x!2/3 (16)

from which the grain size,D, has dropped out.

Although we assume that the stress distribution function is
constant in time, stresses within the specimen change both
spatially and temporally as the specimen is deformed. Stress
concentrations build up locally as a consequence of grain-
boundary sliding. As the stress within a pocket reaches the
critical stress,sc, a cavity forms, decreasing the local stress to
a value that is determined by the surface tension,g, of the
silicate phase and the effective radius,r, of the cavity (s 4 g/r
≈ 1 MPa for a 1mm cavity). The fraction of the applied stress
that was formerly carried by the silicate pocket is redistributed
to other locations, which creates new stress concentrations and
promotes continuous cavitation.

Evaluation of the creep rate,«̇s, requires the evaluation of
Q(x) from the normal probability density function. Unfortu-
nately, there is no closed-form solution for the integral of this
function. However, forx > 1.4, the tail of the distribution can
be approximated by102

Q~x! =
~4 + x2!1/2 − x

2

1

=2p
expS−

x2

2D (17)

For x > 3, the terms before the exponential are almost constant
with x; therefore,

Q~x! ≈ b expS−
x2

2D (18)

Assuming that the effective viscosity follows an Arrhenius
form and substituting forQ(x) into Eq. (16) yields an expres-
sion for the creep rate as a function of stress and temperature:

«̇s =
b2/3

3k0

s

h0
expS−

DH

RTD F3

~1 − F!2 expF−
~sc − s/3!2

3s2 G (19)

We have not been successful at evaluating all four indepen-
dent parameters in Eq. (19) (DH, sc, s, and the constant term).
Because the experimental data lie so far from the critical stress,
sc, and the curvature associated with the squared term in the
exponential is so small, the uncertainties associated withsc and
s are larger than their values. For the purposes of representing
creep data, it is useful to further simplify Eq. (19). Expanding
the stress term in the exponential, realizing that

2scs

9s2 ..
s2

27s2

and deleting the constant −s2
c/3s2 term from the exponential

function transforms Eq. (19) to a simpler form that can be used
to represent creep data:

«̇s = As expS−
DH

RTD F3

~1 − F!2 exp~as! (20)

where

a ≈
2sc

9s2

andA contains all the constant terms. If the volume fraction of
silicate,F, is constant or unknown, it, too, can be included in
the constant term,A. Figure 2 shows that Eq. (20) captures the
curvature inherent in the creep data for Si3N4.

(4) Predictions of the Model
Equation (19) separates the stress, temperature, and micro-

structure dependence of the creep rate into discrete compo-
nents. The temperature dependence of creep rate is entirely
contained within the effective viscosity (or diffusivity) of the
intergranular silicate phase. The apparent activation energy for
creep of Si3N4, then, should equal the activation energy for
deformation of the silicate phase. Although we have retained
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the “viscosity” term in Eq. (19) for congruence with the flow
model, the deformation of the silicate may occur by dislocation
creep, dissolution of silicate into the interfacial, amorphous
layer followed by reprecipitation in neighboring interstitial
pockets, or by many other mechanisms. It is possible, however,
that the critical stress for cavity formation,sc, may depend on
temperature. If this is the case, then the apparent activation
energy for creep no longer represents that for deformation of
the silicate phase.

The derivation of Eq. (19) assumes that the microstructure
has an inexhaustible supply of sites for cavitation and that
creep continuously rearranges the microstructure so that the
stress distribution on the interstitial sites remains temporally
constant, although the stress on an individual interstitial pocket
may change with time. That assumption allows us to calculate
the instantaneous creep rate and equate it to the material creep
rate. In practice, however, cavitation during creep may exhaust
the supply of available sites as the cavity-prone sites are con-
sumed. In this case, the creep rate decreases with increasing
strain, as many have observed for Si3N4.1–3,5,6,18,20,22,26,27,56,75

Alternatively, Si3N4 grain contact may impede the sliding that
accommodates the redistribution of silicate material and carry
part of the load that the silicate pockets originally carried,
in effect changing the stress distribution. Hiranoet al.58

have attributed the thousand-fold increase in tensile creep re-
sistance of a Si3N4/SiC “nanocomposite” to suppression of
grain-boundary sliding by submicrometer-sized SiC parti-
cles on grain boundaries. Transmission electron microscopy
(TEM) investigations of Si3N4 crept in tension,22,31 compres-
sion,39–42,50,55and flexure60,103 have often showed “strain
whorls” caused by large elastic stresses at Si3N4 grain contacts.
In this case, the interstitial pockets do not experience the com-
plete load, leading to a smaller fraction of them able to cavitate.

Equation (19) also predicts that the creep rate does not ex-
plicitly depend on the Si3N4 grain size. There has been little
systematic study of the grain-size dependence of the tensile
creep rate in Si3N4, and the results to date are contradictory.
Haig et al.86,104,105and Whalenet al.50 produced grain size
variants of a Y2O3–MgAl2O4-based Si3N4. In compression,50

the large-grained material crept 30 times more slowly than a
finer-grained material, in which the grains were roughly one-
fifth as large. Preliminary experiments in tension86 on a one-
and coarse-grained material prepared from different billets of
material indicated better creep resistance for the coarse-grained
material. However, a more complete study, in which Haiget
al.105prepared the coarse-grained material by further annealing
of one-half of the billet that supplied the one-grained material,
indicated no statistically significant difference in the tensile
creep rates between the two grain sizes. Frenchet al.106 tested
a Yb2O3-based Si3N4

107,108in which the large-grained material
was also prepared by long-term annealing of a small-grained,
sintered starting material. The large-grained material, which
had a microstructural scale∼4 times that of the fine-grained
material, crept faster than the one-grained material. In com-
pression, however, the large-grained material crept more
slowly than the small-grained material, as expected. Luecke
and Wallace52 prepared materials of various grain sizes based
on a commercial HIPed Si3N4 (NT154, Norton Co., Northboro,
MA).5 Although the interspecimen scatter was large, the larg-
est-grained material crept faster in tension than the small-
grained materials. Unlike the previous two studies, however,
annealing the base material to promote grain growth did not
result in significantly larger grains. Instead, with increased an-
nealing time, the fine fraction of grains disappeared, but the
largest grains did not grow significantly.

These seemingly contradictory results can be understood in
light of the model in several ways. First, the act of annealing
the materials at high temperature to promote Si3N4 grain
growth may have changed the impurity and/or second-phase
distribution. In other words, besides changing the grain distri-
bution, the anneal also may have changed the deformability (h
in Eq. (19)) of the silicate phase. In this sense, the observed

change in creep behavior with increasing grain size is an arti-
fact, rather than a real correlation. Second, the derivation of the
creep equation implicitly assumes that the size and tortuosity of
the channels through which the silicate must flow during creep
is uniquely related to the grain size of the Si3N4 throughk0. If
grain growth alters this relation, then the model does not cap-
ture the grain-size dependence of the creep. Third, changing the
grain-size distribution also undoubtedly changes the distribu-
tion of stresses in the interstitial pockets. In the formalism of
Eq. (19), this amounts to changing either or bothsc or s. It is
even possible that changing the grain-size distribution might
introduce a multimodal distribution of stresses in the interstitial
pockets, further complicating the analysis.

The model predicts an almost cube dependence on the sec-
ond-phase fraction. Given the difficulty in assessing the effect
of Si3N4 grain size on creep without introducing artifacts, it
seems equally difficult to test this prediction.

Until this point, we have assumed that the cavitation mecha-
nism is the only one that produces strain. Figure 1 indicates
that the tensile and compressive creep rates converge at
low stresses. If diffusional creep of Si3N4 does control the
compressive creep rate, then, at very low stresses, it may domi-
nate the tensile creep rate as well. In this case, it is necessary
to add a term that expresses the contribution of solution–
precipitation creep to the overall rate (Eq. (19)). For very small
strains, it is also necessary to include the contribution of
the anelastic strains, which can range up to several tenths of
percent.5,20,104,105,109

IV. Summary

This paper is an analysis of the tensile creep of Si3N4. Ten-
sile creep data from many silicon nitrides support the idea that
Si3N4 deforms by the formation of cavities in the silicate-filled
multigrain pockets that lie at the interstices of the Si3N4 grains.
As these cavities grow, the silicate phase flows through the
network of triple junctions of Si3N4 grains to other pockets.
Dilation of the network of Si3N4 grains accommodates the
volume of the silicate phase displaced by the cavity formation.
An analysis of the deformation based on the Carman–Kozeny
equation, which describes the flow of fluids through packed
beds, leads to a model for tensile creep that depends exponen-
tially on applied stress. The effective viscosity of the silicate
phase determines the temperature dependence of the creep rate,
whereas the cavity spacing determines the stress dependence.
The hydrostatic stresses within the silicate pockets,sh, are
assumed to be normally distributed about a mean hydrostatic
stress,sm. Above a critical hydrostatic stress,sc, cavities form;
the number of cavities depends on the portion of the probability
distribution curve that lies above a critical stress for cavitation.
Increasing the applied stress shifts the distribution of interstitial
pocket stresses to higher stresses, forming more cavities. This
model naturally leads to an exponential dependence of creep
rate on applied stress, and is consistent with the observed
asymmetry in tensile and compressive creep rates, the forma-
tion of cavities only in tension, and the linear increase of cavity
volume fraction with strain.
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