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Executive Summary

Results from as early as Fingerprint Vendor Test 2003 clearly demonstrate that one of the
most significant factors affecting biometric accuracy is that of quality. Test and evaluations
demonstrate time and again that many algorithms perform well on high quality biometric
samples, but what set them apart is how algorithms perform on poor quality samples. Al-
though only a small fraction of input data are of poor quality, the bulk of recognition errors
can be attributed to poor quality samples. Poor quality samples decrease the likelihood of
a correct verification and/or identification, while extremely poor-quality samples might
be impossible to verify and/or identify.

Biometric quality analysis is a technical challenge because it is most helpful when the mea-
sures reflect the performance sensitivities of one or more target biometric matchers. NIST
addressed this problem in August 2004 when it issued NIST Fingerprint Image Quality
(NFIQ) algorithm. NFIQ is a fingerprint quality measurement tool; it is implemented as
open-source software; and is used today in U.S. government and commercial deployments.
Its key innovation is to produce a quality value from a fingerprint image that is directly
predictive of expected matching performance, and has been designed to be matcher in-
dependent. There is now international consensus in industry, academia, and government
that a statement of a biometric sample’s quality should be related to its recognition perfor-
mance.

If quality can be improved, either by sensor design, by user interface design, or by stan-
dards compliance, better performance can be realized. For those aspects of quality that
cannot be designed-in, an ability to analyze the quality of a live sample is needed. This is
useful primarily in initiating the reacquisition from a user, but also for the real-time selec-
tion of the best sample, and the selective invocation of different processing methods. Ac-
cordingly, quality measurement algorithms are increasingly deployed in operational bio-
metric systems. U.S. Visitor and Immigrant Status Indicator Technology (US-VISIT), U.S.
governmentś Personal Identity Verication (PIV) program, the U.S. Department of Home-
land Security’s Transportation Worker Identication Credential (TWIC), and EU Visa Infor-
mation System (VIS) each mandate the measurement and reporting of quality scores of
captured images. With the increase in deployment of quality algorithms, the need to stan-
dardize an interoperable way to store and exchange biometric quality scores increases.

Recognizing this need, the Department of Homeland Securityś Science and Technology
Directorate initiated a program with the National Institute of Standards and Technology
to develop:

. open source software to compute quality score of biometric samples,

. tools and guidance on the wider use of quality measures in biometric systems in-
cluding but not limited to quality summarization, examining methods of assessing
how effective a quality algorithm is in predicting performance, and role of quality
measures in multimodal biometric systems, and
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. international standard that establishes an interoperable way of storing and exchang-
ing biometric quality scores.

This document describes NIST’s activities on biometric sample quality research and stan-
dardization. The main points of this document are summarized below.

Quality measurement plays vital role in improving biometric system accuracy and effi-
ciency during the capture process (as a control-loop variable to initiate reacquisition), in
database maintenance (sample update), in enterprise-wide quality assurance surveying,
and in invocation of quality-directed processing of samples. Neglecting quality measure-
ment will adversely impact accuracy and efficiency of biometric recognition systems (e.g.,
verification and identification of individuals).
Chapter 2

Biometric Quality Assessment (BQAM ) algorithms shall produce quality scores that predict
performance metrics such as either false match or false non-match. Thus, quality scores
should reflect the sensitivities and failure modes of the matching algorithm. The term
quality should not be solely attributable to the acquisition settings of the sample, such as
image resolution, dimensions in pixels, grayscale/color bit depth, or number of features.
Though such factors may affect sample utility and could contribute to the overall quality
score.
Chapter 1

In January 2006, the Biometrics Subcommittee (SC 37) of Joint Technical Committee (JTC
1) initiated work on ISO/IEC 29794, a multipart standard that establishes quality require-
ments for generic aspects (Part 1), fingerprint image (Part 4), facial image (Part 5), and,
possibly, other biometrics later. Part 1 of multipart ISO/IEC 29794 draft standard requires
quality scores to be predictive of performance metrics such as either false match or false
non-match, and defines a binary record structure for the storage of a sampleś quality data.
Chapter 3

Recommend the use error vs. reject curves as a mean of evaluating (BQAM )s. The goal is
to state how efficiently rejection of low-quality samples results in improved performance.
This models the operational case in which quality is maintained by reacquisition after a
low-quality sample is detected.
Chapter 5

Recommend a procedure to annotate the samples of a reference corpus with quality val-
ues. Quality-annotated corpus could be used for quality algorithm development, quality
calibration, and conformity of quality scores to a standard.
Chapter 6

Review NIST Fingerprint Finger Image Quality and recommend procedures for NFIQ
summarization. The motivation for NFIQ summarization is to monitor quality variation
over time, across different acquisition settings and/or application.
Chapter 7

Tabassi and Grother 11
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Chapter 1

What is Meant by Quality?

Broadly, a sample should be of good quality if it is suitable for automated matching. This
viewpoint may be distinct from the human conception of quality. If, for example, an ob-
server sees a fingerprint with clear ridges, low noise, and good contrast, then he might
reasonably say it is of good quality. However, if the image contains few minutiae, then a
minutiae-based matcher would underperform. Likewise, if a human judges a face image
to be sharp, but a face recognition algorithm benefits from slight blurring of the image,
then the human statement of quality is inappropriate. Thus the term quality should not
be used to refer to the fidelity of the sample, but instead to the utility of the sample to an
automated system. The assertion that performance is ultimately the most relevant goal of
a biometric system implies that a Biometric Quality Assessment Method (BQAM ) should
reflect the sensitivities and modes of the matching algorithm. For fingerprint minutiae al-
gorithms, this could be the ease with which minutiae are detected. For face algorithms, it
might include how readily the eyes are located. The definition of quality as prediction of
performance was first introduced by NIST when the agency released the NIST Fingerprint
Image Quality (NFIQ ) reference in August 2004 [7,8]. There is now international consensus
in industry [3], academia [4], and government [5] that a statement of a biometric sample’s
quality should be related to its recognition performance. That is, a quality measurement
algorithm takes a signal or image, x, and produces a scalar, q = Q(x), which is related
monotonically to the performance of biometric matchers, under the constraint that at least
two samples with their own qualities (as opposed to a pairwise quality) are being com-
pared. A quality measure could be tuned to predict the performance of one matcher (the
more common and useful case) or the more difficult case of one that generalizes to other
matchers or classes of matchers.
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1.1 Aspects of Quality

Source of quality impairments can be classified in the following four categories:

. Character The character of an image indicates the richness of identifying features
and attributes affecting image processing, for example, extreme pupil dilation for
iris recognition;

. Behavior The behavior of an image is a measure of optimality of user interaction
with the capture device, for example, positioning, forcing of failures, etc.;

. Imaging The character of an image indicates image properties and characteristics,
for example, resolution, focus, compression, distortion, etc.; and

. Environment The character of an image quality indicating aspects attributed to the
acquisition settings, for example, illumination, background, etc.

Clearly many factor could affect each of the above quality aspects. Figure 1.1 shows images
with specific quality impairments.

Taking proper action to improve quality of an acquired sample is possible only if the source
of quality impairment is known. If a biometric sample is of low character (e.g., scar on a
fingertip), recapture will not improve quality, but perhaps invoking different or extra pro-
cessing methods (e.g., image enhancement or fusion) would improve the utility of the
sample. If the cause of quality imperfection is subject behavior (e.g., a non-frontal facial
image), a recapture with appropriate feedback to the subject (to directly look into the cam-
era, for example) will result in acquisition of a better quality sample.

A scalar quality score reflects the predicted positive or negative contribution of an individ-
ual sample to the overall performance of a biometric system. However, it does not provide
fine grade knowledge of the likely causes of quality imperfection. To make quality “ac-
tionable” by providing needed feedback to users, operators, or processing algorithms, an
ability to track the source of quality imperfection to the four aspects of quality (charac-
ter, behavior, imaging and environment) is desired. However, currently it is an extremely
challenging problem, at least because of the following two reasons: a) sensitivity and be-
havior of capture devices and matching algorithms to the above mentioned quality aspects
are not fully known and b) lack of proper data (samples with single specific defect) makes
devising and implementing metrics to assess quality components of each aspect very dif-
ficult.

1.2 Scalar vs. Vector Quality

We have thus far suggested that biometric quality scores are scalars, as opposed to vectors,
for example. Operationally the requirement for a scalar is not necessary: a vector could
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(a) (b)

(c) (d)

Figure 1.1: Examples of (a) a low-character fingerprint due to poor skin condition, (b) a
poor-quality facial image due to poor user behavior (non-frontal pose), (c) a poor-quality
fingerprint due to unclean platen with residual fingerprint on it, and (d) a low-quality (out
of focus) facial image because of imperfect acquisition setting.
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be stored and could be used by some predictor. The fact that quality has historically been
conceived of as scalar is a widely manifested restriction. For example, BioAPI [16, 17] has
a signed single byte value, BioAPI QUALITY; and the headers of the ISO/IEC biometric
data interchange format standards [18] have one byte for storing quality score. However,
vector quality quantities could be used to specifically direct reacquisition attempts (e.g.,
camera settings) or direct enhancement of image (e.g., contrast adjustment). This is simi-
lar to the subject of “actionable” quality discussed above, with the exception that quality
components are not restricted to character, behavior, imaging and environment.

Vector of quality components have been considered (e.g., the defect fields of [3]), and their
practical use would require application of a discriminant function.

Quality scores are most often computed from a set of measurements made on that sample.
The measurements, which can form the elements of a vector, are typically quantitative
statements of how good specific properties of the image or signal data are. So, for example,
the overall quality and utility of a facial image might be derived from measurements of
geometric properties such as size of the face and pose angle, photometric properties such
as optical resolution, compression, and saturation, and behavioral aspects such as facial
expression and facial hair.

In the general case, the set of quality-related features that are germane to sample quality
assessment are specific to the biometric modality and in some cases to the intended bio-
metric matching algorithm. Thus, as discussed elsewhere, fingerprint quality may well
be a function of the ability to distinguish true minutiae from spurious ones, and thus a
quality vector might be comprised of elements such as local noise, compression ratio, con-
tinuity of ridge flow, area of the imaged impression, and number of minutiae. Similarly for
iris recognition, quality related measurements might summarize area of the exposed iris,
focus, gaze direction, and motion blur.

For any given modality, there will be a common set of specific quality problems that will
degrade the accuracy of all of the biometric recognition algorithms. For example, if an
image is massively compressed, all face recognition algorithms will fail. Similarly if an
eyelid occludes 90% of an iris, the matching accuracy will be poor. However, the detailed
behavior of matching algorithms will depend on specific factors. Thus one iris recognition
algorithm may be sensitive to low contrast while another may not.

A set of measurements that constitute a quality vector will clearly convey more informa-
tion than just a summary scalar value. However, two outstanding issues remain. First is
that the vector in itself is not immediately useful: some operation (e.g. a mapping of the
vector to a scalar) must be performed before the value can be acted upon (e.g. compared
against a required minimum threshold). Thus, it may be necessary to establish a a map-
ping f : RN → R∞ of an N-element quality feature vector to an actionable scalar quality
value. Establishing such a mapping might require a calibration procedure and an appro-
priate set of samples. The second issue is that the quality vectors are less interoperable
than scalar values because the specific elements of the vectors are not standardized. This
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arises, in some part, because some biometric recognition algorithms are more sensitive to
specific quality-related defects than others. For example, if a fingerprint image is rotated,
this will present a serious problem to some matching algorithms but no problem to others.
That means that the mapping f will need to be tailored to the recipient.

1.3 Number of Quality Values

A quality metric is more useful if operationally it may be thresholded at one of many
distinct operating points. Thus a discrete-valued quality measure is better if performance
is significantly different for different levels of quality. If they are not, they could be mapped
to fewer levels that are statistically distinct. Real values can be quantized.

Biometric standards quite reasonably recommend quality values on the range of [0, 100]
with the implication that there are that many distinct values (i.e., between 6 and 7 bits).
BioAPI [16, 17], for instance, specify four ranges ([0, 25], [26, 50], [51, 75], [76, 100]) with
associated meanings: unacceptable, marginal, adequate and excellent. This is a tacit acknowl-
edgment that the range [0, 100] is too fine, and that an integer quality value on the range
[1, 4] is effectively all that may be needed (or possible). Practically this may not be the
case and a coarser quantization, corresponding to L < 100 statistically separate levels, is
usually achieved. Such mapping is most accurate if provided by the author of the quality
algorithm. Clearly a mathematical rationale for L (for example, a criterion against which L
can be optimized) is preferable. This could be something like the knees of the distribution
functions of the genuine and impostor scores, or L levels based on the separation of the
two distributions. An alternative might be to let L be a free parameter in a fitting process,
analogous to some discovered intrinsic precision. Regardless of how L is determined, for
a quality algorithm to be effective and operationally meaningful, its L quality levels shall
be statistically separate.
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Chapter 2

Uses of Quality Assessments

Quality measurement plays vital role in improving biometric system accuracy and effi-
ciency during the capture process (as a control-loop variable to initiate reacquisition), in
database maintenance (sample update), in enterprise-wide quality assurance surveying,
and in invocation of quality-directed processing of samples. Neglecting quality measure-
ment will adversely impact accuracy and efficiency of biometric recognition systems (e.g.,
verification and identification of individuals).

Deploying quality measurement tools allows automatic quality control over biometric
samples at the time of capture. If the first sample captured is of insufficient quality, it
is possible to catch this in real time and request that the subject’s fingerprint be retaken
on the spot. Measuring quality also introduces the ability for biometric matching systems
to devote different levels of computing resources according to the assessed quality of the
fingerprint image. Those samples that are determined to be of low quality may be routed
to slower, more robust matching algorithms, while the higher volume of high-quality sam-
ples may be routed to faster matching algorithms. Also, the weights for multimodal bio-
metric fusion can be selected to allow better quality biometric samples to dominate the
fusion. These valuable uses of BQAMs prompts the recommendation that quality values
should be computed across all retained samples in an enterprise. This may be done online
or offline and will depend on factors such as:

. the computational cost of BQAM execution during enrollment or verification;

. whether or not the samples are retained (in verification, they may not be);

. whether the matching scores or decisions themselves constitute a reportable opera-
tional performance measure; and

. the timescale for production of quality summaries.

Once quality scores have been collected in a central location, summarization of those scores
would allow quality monitoring across multiple sites or over time. This is useful to signal
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possible performance problems ahead of some subsequent matching operation. Quality
summarization functions should weight the native quality values so that the summarized
quality value is an estimate of the expected error rate, which, for verification, should serve
as measures of the overall expected false non-match rate. Arithmetic mean is not the pre-
ferred method of summarizing quality scores because all samples, regardless of their qual-
ity values, are given the same weight, but the recognition error rates are usually nonlin-
early dependent on the quality values.

The following sections describe the roles of a sample quality score in the various contexts
of biometric operations. The quality value here is simply a scalar summary of a sample
that is taken to be some indicator of matchability.

2.1 Quality at the Time of Capture

2.1.1 Enrollment Phase Quality Assessment

Enrollment is usually a supervised process, and it is common to improve the quality of
the final stored sample by acquiring as many samples as are needed to satisfy either an
automatic quality measurement algorithm (the subject of this paper), a human inspector (a
kind of quality algorithm), or a matching criterion (by comparison with a second sample
acquired during the same session). Our focus on automated systems’ needs is warranted
regardless of analyses of these other methods, but we do contend that naive human judg-
ment will only be as predictive of a matcher’s performance as the human visual system is
similar to the matching system’s internals, and it is not evident that human and computer
matching are functionally comparable. Specifically, human inspectors may underestimate
performance on overtly marginal samples. Certainly human inspectors’ judgment may be
improved if adequate training on the failure modes and sensitivities of the matcher is given
to the inspector, but this is often prohibitively expensive or time-consuming and not scal-
able. Immediate matching also might not be predictive of performance over time because
same-session samples usually produce unrealistically high match scores. For instance, Fig-
ure 2.1 shows an example of two same-session fingerprint images that were matched suc-
cessfully by three commercial vendors despite their obvious poor quality. That said, this
document does not take a position on the merits of doing this.

In any case, by viewing sample acquisition as a measurement and control problem in
which the control loop is closed on the quality measure, a system gains a powerful means
of improving overall sample quality and therefore improving overall performance. We
demonstrate this in more detail in Section 5.1, and here only report that removing lowest-
quality fingerprints from an operational dataset (1.65% of the dataset) improved Equal
Error Rate of a commercial fingerprint matcher from 0.0047 to 0.0024.

It is important to note that recapture will not alway improve quality. For a small fraction
of the population, satisfying quality requirements (i.e., providing samples with quality
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(a) First (b) Second

Figure 2.1: Example of same-session captures of single finger that, despite their poor qual-
ity (NFIQ =5), were matched correctly by three leading commercial matchers.

better than some pre-defined threshold) might not be achievable, because the source of
biometrics (e.g., surface of finger skin) is impaired, for example, due to age. These are
subjects of low biometric character, and recapture will mostly not improve the quality (see
Section 1.1 for a discussion of quality aspects). Not satisfying quality requirements results
in failure to enroll the subject. Failure to enroll cases need additional processing (e.g.,
different capture device), which is costly. Therefore, when determining quality threshold
at the time of capture, it is important to take failure to enroll rate into consideration.

In Appendix ??, we recommend a procedure to set quality threshold at time of capture for
both enrollment and verification or identification phases.

2.1.2 Verification Phase Quality Assessment

During a verification transaction, quality can be improved by closing an acquire-reacquire
loop on either a match-score from comparison of new and enrollment samples or on a qual-
ity value generated without matching. Indeed, it is common to implement an “up to three
attempts” policy in which a positive match is a de facto statement that the sample was of
good quality - even if the individual happens to be an impostor. Depending on the relative
computational expenses of sample matching, reacquisition, and quality measurement, the
immediate use of a matcher may not be the best solution.

The key difference here (as compared to the enrollment phase) is that quality values of both
the enrollment and verification samples can be used to predict performance. This two-
dimensional problem is distinct from the enrollment case where only one quality value is
used. Just like the enrollment quality assessment, when setting quality threshold for the
verification phase, failure to acquire should be considered (see Appendix ??).
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2.1.3 Identification Quality Assessment

Quality measurement in identification systems is important for at least three reasons. First,
many users often do not have an associated enrollment sample. So a one-to-many match
will be an inefficient and inconclusive method of stating whether the authentication sam-
ple had high quality. Second, in negative identification systems where users with an en-
rolled sample are motivated to evade detection, quality measurement can be used to detect
and prevent submission of samples likely to perform poorly [13], which may help prevent
attempts at spoofing or defeating detection. Third, identification is a difficult task; it is im-
perative to minimize both the false non-match rate (FNMR ) and the false match rate (FMR

). To the extent that consistently high-quality samples will produce high genuine scores, a
high matching threshold can be used, and this will collaterally reduce FMR . But in large
populations, FMR becomes dominant, and this raises the question: can a quality apparatus
be trained to be directly predictive of false match likelihood? At the minimum, the ability
to maintain a fairly constant FMR regardless of the quality of images is a desirable feature.
Increase in FMR when quality degrades is a security vulnerability. It increases the chance
of an impostor spoofing the system by presenting poor-quality samples.

2.2 Performance-Related Quality Monitoring

A valuable use of BQAMs is to monitor quality across multiple sites or over time. Quality
values may be aggregated and compared with some historical or geographic baselines.
Use of quality values in this role has been documented in [1]. Therefore, there is a need
for procedures to summarize quality values computed across all retained samples in an
enterprise into a single quality value representing the overall quality of the enterprise.
Quality summarization supports monitoring

. over time (to expose seasonal variation or trends);

. for each sensor (to identify defective devices);

. at each site (to identify problem locations);

. of officials or attendants (to assess adherence to operating procedures); and

. per user basis (to identify users that consistently yield low-quality samples).

In each case, the quality summaries can be used to identify departures from the application-
specific historical norms, or design targets. Once quality values have been collected in a
central location, these should be aggregated. The result is a summary value which sup-
ports monitoring of quality. Quality summarization should be performed across similar
usage, e.g., quality summarization over all enrollment samples of an enterprise, or quality
summarization over all verification samples of an enterprise. In operations where users
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frequently interact with a biometric system (e.g., time and attendance applications), qual-
ity values may be aggregated on a per-user basis. This will reveal the existence of indvid-
uals that consistently yield low-quality samples.

In Section 7.2, we show that it is generally not sufficient to simply average those values.
Instead we recommend that the provider of a quality assessment algorithm should sup-
ply a function to aggregate values into a summary statistic. For verification applications,
quality summarization functions should weight the native quality values to reflect mean
expected false non-match rate (FNMR ). Furthermore, it is recommended that such func-
tions compute quality summaries on the standardized range of biometric sample quality
values as specified in ISO/IEC 19784-1 BioAPI [17], which requires single-sample quality
values on [0, 100].

The quality summarization function could be the result of a BQAM calibration process con-
ducted by the provider, by a third party laboratory, or by the deploying organization.in-
situ1

The recommended procedure for National Institute of Standards and Technology (NIST)
Fingerprint Image Quality NFIQ [6, 7] is given in Section 7.2. This kind of quality aggrega-
tion applied here to NFIQ may be appropriate for other quality measures. However, this
document does not prescribe any particular functional form, and developers are free to use
any appropriate method. Indeed, we anticipate (and encourage) that such methods will
remain the private intellectual property of the provider.

Table 2.1 shows example of quality (NFIQ ) summarization across different sites and per
users. NFIQ summarization was performed on fingerprints collected as part of the US-
VISIT program over one week.

2.3 Differential Processing

Quality measurement algorithms can be used to alter the subsequent processing of a sam-
ple. Such conditional activity are categorized as follows.

. Pre-processing Phase A biometric recognition system might apply image restora-
tion algorithms (e.g., contrast adjustment) or invoke different feature extraction al-
gorithms for samples with some discernible quality problem.

. Matching Phase Certain systems may invoke a slower but more powerful match-
ing algorithm when low-quality samples are compared. Note that use of the slower,
more accurate matcher for all the samples would greatly increase the processing time.

1A representative set of (mated) samples and one or more matching algorithms will be needed for calibra-
tion.
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Table 2.1: NFIQ summary of a random selection of fingerprint images collect as part of the
US-VISIT program at two different locations over one week.

# of samples consulate-1 consulate-2

total # of samples 1431 4768

# of samples of NFIQ 1 939 831

# of samples of NFIQ 2 247 197

# of samples of NFIQ 3 84 184

# of samples of NFIQ 4 12 39

# of samples of NFIQ 5 3 15

NFIQ summary 98.13 95.50

confidence interval (97.68,9 8.47) (94.95, 96.35)

Routing only poor-quality samples to the slower but more accurate matching algo-
rithm improves the overall accuracy without negatively impacting the efficiency of
the system.

. Decision Phase The logic that renders acceptance or rejection decisions may depend
on the measured quality of the original samples. This might involve changing a
verification system’s operating threshold for poor-quality samples. In multimodal
biometrics, the relative qualities of samples of the separate modes may be used to
augment a fusion process [14, 15].

. Sample Replacement To negate the effects of template aging, a quality measurement
may be used to determine whether a newly acquired sample should replace the en-
rolled one. An alternative would be to retain both the old and new samples for use
in a multi-instance fusion scheme.

. Template Update Again, to address template aging, some systems instead combine
old and new sample features. Quality could be used in this process.
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Standardization

This chapter focuses on biometric quality standardization. Broadly, biometric quality stan-
dards serve the same purpose as many other standards, which is to establish an interop-
erable definition, interpretation, and exchange of biometric quality data. Like other stan-
dards, this creates grounds for a marketplace of off-the-shelf products, and is a necessary
condition to achieve supplier independence and to avoid vendor lock-in.

With advancement in biometric technologies as a reliable identity authentication scheme,
more large-scale deployments (e.g., e-passport) involving multiple organizations and sup-
pliers are being rolled out. Therefore, in response to a need for interoperability, biometric
standards have been developed.

Without interoperable biometric data standards, exchange of biometric data among dif-
ferent applications is not possible. Seamless data sharing is essential to identity manage-
ment applications when enrollment, capture, searching, and screening are done by dif-
ferent agencies, at different times, using different equipment in different environments
and/or locations. Interoperability allows modular integration of products without com-
promising architectural scope, and facilitates the upgrade process and thereby mitigates
against obsolescence.

Biometric data interchange standards are needed to allow the recipient of a data record to
successfully process data from an arbitrary producer. This defines biometric interoperabil-
ity and the connotation of the phrase “successfully process” is that the data, in this case,
biometric quality score, can be accurately exchanged and interpreted by different applica-
tions. This can be achieved only if the data record is both syntactically and semantically
conformant to the documentary standard.

Standards do not in and of themselves assure interoperability. Specifically, when a stan-
dard is not fully prescriptive or it allows for optional content, then two implementations
that are both exactly conformant to the standard may still not interoperate. This situation
may be averted by applying further constraints on the application of the standard. This is
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done by means of “application profile” standards, which formally call out the needed base
standards and refine their optional content and interpretation.

3.1 The ISO/IEC 29794 Biometric Sample Quality Standard

In January 2006, the Biometrics Subcommittee (SC 37) of Joint Technical Committee (JTC
1) initiated work on ISO/IEC 29794, a multipart standard that establishes quality require-
ments for generic aspects (Part 1), fingerprint image (Part 4), facial image (Part 5), and,
possibly, other biometrics later. Specifically, part 1 of this multi part standard specifies
derivation, expression, and interpretation of biometric quality regardless of modality. It
also addresses the interchange of biometric quality data via the multipart ISO/IEC 19794
Biometric Data Interchange Format Standard. Parts 4 and 5 are technical reports (not stan-
dard drafts) which address aspects of biometric sample quality that are specific to finger
images and facial images as defined in ISO/IEC 19794-4 and ISO/IEC 19794-5, respec-
tively.

The generic ISO quality draft (ISO/IEC 29794-1) requires that quality values must be in-
dicative of recognition performance and considers three components of biometric sample
quality, namely, character, fidelity, and utility, as shown in Figure 3.1. The character of
a sample indicates the richness of features and traits from which the biometric sample is
derived. The fidelity of a sample is defined as the degree of similarity between a biometric
sample and its source; for example, a heavily compressed fingerprint has low fidelity. The
utility of a sample reflects the observed or predicted positive or negative contribution of an
individual sample to the overall performance of a biometric system. Utility is a function of
both the character and fidelity of a sample and is most closely indicative of performance
in terms of recognition error rates.

Part 1 of multipart ISO/IEC 29794 draft standard defines a binary record structure for the
storage of a sample’s quality data. It establishes requirements on the syntax and seman-
tic content of the structure. Specifically, it states that the purpose of assigning a quality
score to a biometric sample shall be to indicate the expected utility of that sample in an
automated comparison environment. That is, a quality algorithm should produce quality
scores that target application-specific performance variables. For verification, the metric
would usually be false-match and false-non-match rates that are likely to be realized when
the sample is matched.

In addition, revision of all parts of ISO/IEC 19794 Biometric Data Interchange Format
started in January 2007. This opened the opportunity to revise or add quality-related
clauses (e.g., compression limits) to data format standards so that conformance to those
standards ensures acquisition of sufficient quality samples. This constitutes quality by de-
sign. To enable an interoperable way of reporting and exchanging biometric data quality
scores, the inclusion of a five-byte quality field to the view header in each view of the data
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in a Biometric Data Block (BDB) for all parts of ISO/IEC 19794 is being considered. By
placing quality field in the view header (as opposed to general header) of a BDB, one can
precisely report the quality score for each view of a biometric sample (see Figure 3.2). Ta-
ble 3.1 shows the structure of the quality filed that SC 37 Working Group 3 is currently
considering.

The one-byte quality score shall be a quantitative expression of the predicted matching
performance of the biometric sample. Valid values for quality score are integers between
0 and 100, where higher values indicate better quality. Values of 254 and 255 are to han-
dle special cases. An entry of “255” shall indicate a failed attempt to calculate a quality
score, and an entry of “254” shall indicate no attempt was made to calculate a quality score
(i.e., no quality score has been specified). These values of quality score are harmonized
with ISO/IEC 19784-1 BioAPI Specification (Section 3.3 ) [17], where “255” is equivalent to
BioAPI “-1” and “254” is equivalent BioAPI “-2” (Note that BioAPI, unlike ISO/IEC 19794,
uses signed integers.).

To enable the recipient of the quality score to differentiate between quality scores generated
by different algorithms, the provider of quality scores shall be uniquely identified by the
two most significant bytes of four-byte Quality Algorithm vendor ID (QAID). The least
significant two bytes shall specify an integer product code assigned by the vendor of the
quality algorithm. It indicates which of the vendors algorithms (and version) was used
in the calculation of the quality score and should be within the range 1 to 65535. Quality
Algorithm Vendor ID shall be set to “0” if the Quality Score is 254.

The structure of the quality field is modality-independent and therefore generalizable to
all parts of ISO/IEC 19794.

The ISO/IEC 29794 standard is currently under development, and ISO/IEC 19794 is cur-
rently under revision. The reader is cautioned that standards under development or re-
vision are subject to change; the documents are owned by the respective working groups
and their content can shift due to various reasons including, but not limited to, technical
difficulties, the level of support, or the need to gain consensus.

3.2 The ANSI/NIST ITL 1-2007 Quality Field

Initiated in 1986, this standard is the earliest and most widely deployed biometric stan-
dard. It establishes formats for the markup and transmission of textual, minutia, and
image data between law enforcement agencies, both within the United States and inter-
nationally.

The ANSI/NIST standard includes defined Types for the major biometric modalities. The
standard is multimodal in that it allows a user to define a transaction that would require,
for example, fingerprint data as Type 14, a facial mugshot as Type 10, and the mandatory
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Figure 3.1: Components of quality as defined by ISO/IEC 29794 Biometric Sample Quality
- Part 1: Framework. The character of a sample indicates the richness of features from
which the biometric sample is derived. The fidelity of a sample is the degree of similarity
between a biometric sample and its source. The utility of a sample is indicative of positive
or negative contribution of an individual sample to the overall performance of a biometric
system. Source: ISO/IEC JTC1 SC 37 N2727.

Figure 3.2: Structure of header in a biometric data block as defined in ISO/IEC 19794-x.
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Table 3.1: Structure of five-byte quality field that SC 37 Working Group 3 is considering.

DESCRIPTION SIZE VALID VALUES NOTE
Quality Score 1 byte [0-100] 254, 255 0: lowest
Quality Algorithm
Vendor ID

2 bytes 0 if Quality Score =
254 [1,65535] other-
wise

These two bytes
uniquely identify
the supplier (ven-
dor) of quality score.

Quality Algorithm
ID

2 bytes 0 if Quality Score =
254 [1,65535] other-
wise

These two bytes
uniquely identify
the algorithm that
computes the quality
score. It is provided
by the supplier
(vendor) of quality
score.

header and metadata records Type 1 and 2. These are linked with a common numeric
identifier.

In its latest revision [28], the standard adopted the ISO five-byte quality field (Table 3.1)
structure, but unlike ISO/IEC 29794, it allows for multiple quality fields, where each qual-
ity score could be computed by a different quality algorithm supplier. In addition, it man-
dates NIST Fingerprint Image Quality (NFIQ ) [7] for all Type 14 records.

3.3 The BioAPI Quality Specification

ISO/IEC 19784 Biometric Application Programming Interface (BioAPI) [17] (and its na-
tional counterpart The BioAPI specification [16]) allows for quality measurements as an
integral value in the range 0-100, with exceptions that value of “-1” means that quality field
was not set by the Biometric Service Provider (BSP) and value of “-2” means that quality
information is not supported by the BSP. The primary objective of quality measurement
and reporting is to have the BSP inform the application how suitable the biometric sample
is for the purpose specified by the application (as intended by the BSP implementer based
on the use scenario envisioned by that BSP implementer), and the secondary objective is to
provide the application with relative results (e.g., current sample is better/worse than pre-
vious sample). BioAPI also provides guidance on general interpretation of quality scores
as shown in Table 3.2).
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Value Interpretation
0-25 UNACCEPTABLE: The sample cannot be used for the purpose specified by

the application. The sample needs to be replaced using one or more new
biometric samples.

26-50 MARGINAL: The sample will provide poor performance for the purpose
specified by the application and, in most application environments, will com-
promise the intent of the application. The sample needs to be replaced using
one or more new biometric samples.

51-75 ADEQUATE: The biometric data will provide good performance in most ap-
plication environments based on the purpose specified by the application.
The application should attempt to obtain higher-quality data if the applica-
tion developer anticipates demanding usage.

76-100 EXCELLENT: The biometric data will provide good performance for the pur-
pose specified by the application.

Table 3.2: BioAPI quality categories
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Chapter 4

Properties of a Quality Measure

This chapter gives needed background material, including terms, definitions, and data
elements, for later chapters on quality evaluation, annotation, and summarization.

Throughout this chapter, we use low-quality values to indicate poor sample properties as
suggested by Biometric Quality Standards [17, 18]. This is at odds with some systems (for
example, the NIST Fingerprint Image Quality (NFIQ ) algorithm [6]), for which low values
indicate good “quality”. Accordingly, this document transforms the raw NFIQ values 1 . . . 5
using Q = 6−NFIQ .

4.1 Notation

Consider a data set D containing two samples, d(1)
i and d

(2)
i collected from each of i =

1, . . . , N individuals. The first sample can be regarded as an enrollment image, the second
as a user sample collected later for verification or identification purposes. The appropriate
composition of this data set for quality measurement algorithm assessment is discussed
later in Section 6. Suppose a quality algorithm Q can be run on the i-th enrollment sample
to produce a quality value

q
(1)
i = Q(d(1)

i ) (4.1)

and likewise for the authentication (use-phase) sample

q
(2)
i = Q(d(2)

i ) (4.2)

We formalize our premise that biometric quality measures should predict performance.
That is, we formalize quality values qi are related to recognition error rates. A formal state-
ment of such requires an appropriate, relevant, and tractable definition of performance,
which is given below.
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4.2 Relationship to Matching

Consider K verification algorithms, Vk, that compare pairs of samples (or templates de-
rived from them) to produce match (i.e., genuine) similarity scores

s
(k)
ii = Vk(d(1)

i , d
(2)
i ) (4.3)

and similarly non-match (impostor) scores

s
(k)
ij = Vk(d(1)

i , d
(2)
j ) i 6= j. (4.4)

If we now posit that two quality values can be used to produce an estimate of the genuine
similarity score that matcher k would produce on two samples

s
(k)
ii = P (q(1)

i , q
(2)
i ) + ε

(k)
ii (4.5)

where the function P is some predictor of a matcher k’s similarity scores, and εii is the
error in doing so for the i-th score. Substituting equation (4.1) gives

s
(k)
ii = P (Q(d(1)

i ), Q(d(2)
i )) + ε

(k)
ii (4.6)

and it becomes clear that together P and Q would be perfect imitators of the matcher Vk in
equation (4.3) if it was not necessary to apply Q to the samples separately. This separation
is usually a necessary condition for a quality algorithm to be useful because at least half
of the time (i.e., enrollment) only one sample is available (see Section 2). Thus the quality
problem is hard; first, because Q is considered to produce a scalar, and secondly, because
it is applied separately to the samples. The obvious consequence of this formulation is
that it is inevitable that quality values will imprecisely map to similarity scores, i.e., there
will be scatter of the known scores, sii, for the known qualities q(1)

i and q
(2)
i . For example,

Figure 4.1 shows the raw similarity scores from a commercial fingerprint matcher versus
the transformed integer quality scores from the NFIQ algorithm [5], where NFIQ native
scores are mapped toQ = 6−NFIQ. Figure 4.1(a) also includes a least squares linear fit, and
Figure 4.1(b) shows a cubic spline fit of the same data. Both trend in the correct direction:
worse quality gives lower similarity scores. However, even though the residuals in the
spline fit are smaller than those for the linear, they still are not small. Indeed, even with a
function of arbitrarily high order, it will not be possible to fit the observed scores perfectly
if quality values are discrete (as they are for NFIQ ). By including the two fits of the raw
data, we do not assert that scores should be linearly related to the two quality values
(and certainly not locally cubic). Accordingly, we conclude that it is unrealistic to require
quality measures to be linear predictors of the similarity scores; instead, the scores should
be a monotonic function, that is, higher-quality samples give higher-similarity scores.
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4.3 Relationship to Performance

Quality measurement algorithms should be designed to target application-specific perfor-
mance variables. For verification, these would be the false match or false non-match rates.
For identification, the metrics would usually be FNMR and FMR [19], but these may be
augmented with rank and candidate-list length criteria. Closed-set identification is opera-
tionally rare and is not considered here.

Verification is a positive application, which means samples are captured overtly from users
who are motivated to submit high-quality samples. For this scenario, the relevant perfor-
mance metric is the false non-match rate (FNMR ) for genuine users, because two high-
quality samples from the same individual should produce a high score. For FMR , it should
be remembered that false matches should occur only when samples are biometrically sim-
ilar (with regard to a matcher) as, for example, when identical twins’ faces are matched. So
high-quality images should give very low impostor scores, but low-quality images should
also produce low scores. Indeed, it is an undesirable trait for a matching algorithm to
produce high impostor scores from low-quality samples. In such situations, quality mea-
surement should be used to preempt submission of a deliberately poor sample (see the
uses discussion in Section 2).

For identification, FNMR is of primary interest. It is the fraction of enrollee searches that do
not yield the matching entry on the candidate list. At a fixed threshold, FNMR is usually
considered independent of the size of the enrolled population, because it is simply depen-
dent on one-to-one genuine scores. However, because impostor acceptance, as quantified
by FMR , is a major problem in identification systems, it is necessary to ascertain whether
low- or high-quality samples tend to cause false matches.

For a quality algorithm to be effective, an increase in FNMR and FMR is expected as quality
degrades. The plots in Figure 4.2 show the relationship of transformed NFIQ quality levels
to FNMR and FMR . Figure 4.2(a) and 4.2(c) are boxplots of the raw genuine and impostor
scores for each of the five quality levels. The scores were obtained by applying a commer-
cial fingerprint matcher to left and right index finger impressions of 34,800 subjects. Also
shown are boxplots of FNMR and FMR . The result, that the two error rates decrease as
quality improves, is expected and beneficial. The FMR shows a much smaller decline. The
non-overlap of the notches in plots of 4.2(a) and 4.2(b) demonstrates “strong evidence”
that the medians of the quality levels differ [27]. If theBQAM had more finely quantized
its output, to L > 5 levels, this separation would eventually disappear (see discussion in
Section 1.3).

Tabassi and Grother 33



Biometric Quality

(a) Linear Fit (b) Spline Fit

Figure 4.1: Dependence of raw genuine scores on the transformed NFIQ qualities of the
two input samples.

4.4 Combining Quality Values

Biometric matching involves at least two samples, and the challenge is then to relate per-
formance to quality values q(1) and q(2). This empirical dependence of performance on two
values was shown in Figure 4.1. We simplify the analysis by combining the two qualities

qi = H(q(1)
i , q

(2)
i ) (4.7)

As discussed in Section 2, it is usually the case that operationally a BQAM can be used
to ensure that an enrollment sample is of high quality. This will be compared later with
a sample that typically is of less controlled quality. To capture this concept, we consider
H(x, y) = min(x, y), i.e., the worse of two samples drives the similarity score. Some other
relevant pair-wise combination function H includes (but certainly is not limited to) the
arithmetic and geometric means, H(x, y) = (x + y)/2 and H(x, y) =

√
xy (see [20]), and

the difference function H(x, y) = |x− y|. We note that whatever H is used, it should be
well-defined for allowed values of x and y (e.g., positive values for the geometric mean).

Figure 4.3 shows error vs. reject behavior for the NFIQ quality method when the various
H(q1, q2) combination functions are used. Error vs. reject shows the improvement in per-
formance (FNMR or FMR ) as samples of lowest quality are rejected. Error vs. reject concept
is discussed in detail in Section 5.2.

The lines in Figure 4.3 show H(q1, q2) +N(0, 0.01), where the gaussian noise serves to ran-
domly reject samples within a quality level and produces an approximation of the lower
convex hull of the geometric mean curve. Between the minimum, mean, and geometric
mean functions, there is little difference. The yellow line result, for H = |q1 − q2, shows
that transformed genuine comparison score is unrelated to the difference in the qualities
of the samples. Instead, the conclusion is that FNMR is related to monotonic functions of
the two values. The applicability of this result to other quality methods is not known.
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(a) Genuine (b) FNMR

(c) Impostor (d) FMR

Figure 4.2: Boxplots of genuine scores, FNMR , impostor scores, and FMR for each of five
transformed NFIQ quality levels for scores from a commercial matcher. Each quality bin,
q, contains scores from comparisons of enrollment images with quality q(1) ≥ q and sub-
sequent use-phase images with q(2) = q, per the discussion in Section 5.1. The boxplot
notch shows the median, the box shows the interquartile range, and the whiskers show
the extreme values. Notches in (d) are not visible, because the medians of FMR s are zero
and therefore outside the plot range.
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(a) FNMR vs reject

(b) FMR vs reject

Figure 4.3: Dependence of the error vs. reject characteristic on the quality combination
function H(.). (a) shows, for a fixed threshold, the decrease in FNMR as samples with low-
quality scores are rejected. (b) shows the decrease in FMR at a fixed threshold, as samples
with low-quality scores are rejected. Index fingerprints collected at operational settings
were used. The similarity scores come from commercial matchers.
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Chapter 5

Do Quality Values Predict
Performance?

This chapter documents methods for the quantitative evaluation of systems that produce
a scalar summary of a biometric sample’s quality. Quality measurement algorithm is re-
garded as a black box that converts an input sample to an output scalar. Evaluation should
be done by quantifying the association between those values and observed matching re-
sults. We advance detection error trade-off and error versus reject characteristics as metrics
for the comparative evaluation of sample quality measurement algorithms.

Prior work on quality evaluation, and of sample quality analysis generally, is limited.
Quality measurement naturally lags recognition algorithm development, but has emerged
as it is realized that biometric systems fail on certain pathological samples. The primary
use of a quality measure is as a means of detecting a bad sample and initiating recapture
of the live subject. “Bad” in this context, refers to any property or defect associated with a
sample that would cause performance degradation.

We recommend testing quality measurement algorithms in large-scale offline trials which
offer repeatable, statistically robust means of evaluating core algorithmic capability. Alonso
et al. [9] reviewed five algorithms and used the fingerprints of the multimodal MCYT cor-
pus [10] to compare the distributions of the algorithms’ quality assignments, with the re-
sult that most of the algorithms behave similarly. We note that finer-grained aspects of
sample quality can be addressed. For instance, Lim et al. [11] trained a fingerprint qual-
ity system to predict the accuracy of minutia detection. However, such methods rely on
the manual annotation of a data set, and this is impractical for all but small datasets, not
least because human examiners will disagree in this respect. The virtue of relating quality
to performance is that matching trials can be automated and conducted in bulk. We note
further that quality algorithms that relate to human perception of a sample quantify perfor-
mance only as much as the sensitivities of the human visual system are the same as those
of a biometric matcher. One further point is that performance-related quality evaluation is
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agnostic on the underlying technology: it would be improper to force a fingerprint quality
algorithm to produce low-quality values for an image with few minutia when the target
matching algorithm is non-minutia-based, as is the case for pattern-based methods [12].

The evaluation protocols proposed assume only that the quality algorithm is claimed to
predict performance: we do not assume that the algorithm has been standardized nor that
its output has any particular distribution. We test the claim by relating quality values to
empirical matching results. However, we consider the algorithm to be a black box whose
design and intended outputs are determined solely by its author, and we make no assump-
tion of its internal operation.

Formal specification of how performance should be quantified and whether such perfor-
mance measures are viable and appropriate were discussed in section 4.3. Next sections
describe three methods for the evaluation of quality. All three consider the use of combi-
nation functions, H (discussed in section 4.4), which are specifically compared in section
5.2.

5.1 Rank-Ordered Detection Error Trade-off Characteristics

A quality algorithm is useful if it can at least give an ordered indication of an eventual
performance. For example, for L discrete quality levels, there should notionally be L DET
characteristics.1 In the studies that have evaluated quality measures [4, 6, 19, 20, 25, 26],
DET’s are the primary metric. We recognize that DETs are widely understood, even ex-
pected, but note three problems with their use: being parametric in threshold, t, they do
not show the dependence of FNMR (or FMR ) with quality at fixed t, they are used without
a test of the significance of the separation of L levels; and partitioning of the data for their
computation is under-reported and non-standardized.

We examine three methods for the quality-ranked DET computation. All three use N

paired matching images with integer qualities q(1)
i and q(2)

i on the range [1, L]. Associated
with these are N genuine similarity scores, sii, and up to N(N − 1) impostor scores, sij

where i 6= j, obtained from some matching algorithm. All three methods compute a DET
characteristic for each quality level k. For all thresholds s, the DET is a plot of FNMR (s)
= M(s) versus FMR (s) = 1 −N(s), where the empirical cumulative distribution functions
M(s) and N(s) are computed, respectively, from sets of genuine and impostor scores.

The three methods of partitioning differ in the contents of these two sets. The simplest case
uses scores obtained by comparing authentication and enrollment samples whose qualities
are both k. This procedure (see for example, [21]) is common but overly simplistic. By

1The DET used here plots FNMR vs. FMR on log scales. It is unconventional in that it does not transform
the data by the CDF of the standard normal distribution. The receiver operating characteristic plots 1−FNMR
on a linear scale instead. These characteristics are used ubiquitously to summarize verification performance.
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the DETs for each quality level can be compared. Although a good BQAM will exhibit an
ordered relationship between quality and error rates, this DET computation is not oper-
ationally representative because an application cannot usually accept only samples with
one quality value. Rather the DET may be computed for verification of samples of quality
k with enrollment samples of quality greater than or equal to k,
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we model the situation in which the enrollment samples are at least as good as the au-
thentication (i.e., user submitted) samples. Such a use of quality would lead to failures to
acquire for the low-quality levels.

If instead we compare performance across all authentication samples against enrollment
samples of quality greater than or equal to k,

FNMR(s, k) =

˛̨̨n
sii: sii≤s, q
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o˛̨̨
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we model the situation where quality control is applied only during enrollment. If re-
peated enrollment attempts fail to produce a sample with quality above some threshold,
a failure-to-enroll (FTE) would be declared. This scenario is common and possible be-
cause enrollment, as an attended activity, tends to produce samples of better quality than
authentication.

The considerable differences between these three formulations are evident in the DETs of
Figure 5.1 for which the NFIQ algorithm [5] for the predicting performance of a commercial
fingerprint system was applied to over 61,993 genuine and 121,997 impostor comparisons
(NFIQ native scores were transformed to Q = 6−NFIQ ). In all cases, the ranked separation
of the DETs is excellent across all operating points. We recommend that equation (5.2), as
shown in Figure 5.1(b), be used because it is a more realistic operational model.
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(a) q(1) = i, q(2) = i (b) q(1) ≥ i, q(2) = i

(c) q(1) = i, q(2) ≥ −∞

Figure 5.1: Quality-ranked detection error trade-off characteristics. Each plot shows five
traces corresponding to five transformed NFIQ levels.
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However, as relevant as DET curves are to expected performance, we revisit here a very
important complication. Because DET characteristics quantify the separation of the gen-
uine and impostor distributions and combine the effect of quality on both genuine and
impostor performance, we lose sight of the separate effects of quality on FNMR and FMR .

In any case, we conclude that DETs, while familiar and highly relevant, confound genuine
and impostor scores. The alternative is to look at the specific dependence of the error rates
on quality at some fixed threshold. Indeed, for verification applications, the variation in
FNMR with quality is key because the majority of transactions are genuine attempts. For
negative identification systems (e.g., watchlist applications) in which users are usually not
enrolled, the variation of FMR with quality is critical. This approach is followed in the next
section.

5.2 Error vs. Reject Curves

In this section, we recommend to use error vs. reject curves as an alternative means of
evaluating BQAMs. The goal is to state how efficiently rejection of low-quality samples
results in improved performance. This again models the operational case in which quality
is maintained by reacquisition after a low-quality sample is detected. Consider that a pair
of samples (from the same subject), with qualities q(1)

i and q(2)
i , are compared to produce a

score s(k)
ii , and this is repeated for N such pairs.

We introduce thresholds u and v that define levels of acceptable quality and define the set
of low-quality entries as

R(u, v) =
{
j : q(1)

j < u, q
(2)
j < v

}
(5.4)

The FNMR is the fraction of genuine scores below threshold computed for those samples
not in this set

FNMR (t, u, v) =
|{sjj : sjj ≤ t, j /∈ R(u, v)}|
|{sjj : sjj <∞, j /∈ R(u, v)}|

(5.5)

The value of t is fixed2 and u and v are varied to show the dependence of FNMR on quality.

For the one-dimensional case when only one quality value is used (see Section 4.4), the
rejection set is

R(u) =
{
j : H(q(1)

j , q
(2)
j ) < u

}
(5.6)

FNMR is false non-match performance as the proportion of non-excluded scores below the
threshold.

FNMR (t, u) =
|{sjj : sjj ≤ t, j /∈ R(u)}|
|{sjj : sjj <∞, j /∈ R(u)}|

(5.7)

2Any threshold may be used. Practically it will be set to give some reasonable false non-match rate, f , by
using the quantile function the empirical cumulative distribution function of the genuine scores, t = M−1(1−
f).
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(a) Finger - FNMR

(b) Finger - FMR

Figure 5.2: Error vs. reject performance for three fingerprint quality methods. Figures
(a) and (b) show reduction in FNMR and FMR at a fixed threshold as up to 20 % of the
low-quality samples are rejected. The similarity scores come from a commercial matcher.
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If the quality values are perfectly correlated with the genuine scores, then when we set
t to give an overall FNMR of x and then reject proportion x with the lowest qualities. A
recomputation of FNMR should be zero. Thus, a good quality metric correctly labels those
samples that cause low genuine scores as poor quality. For a good quality algorithm, FNMR

should decrease quickly with the fraction rejected. The results of applying this analysis
are shown in Figure 5.2. Note that the curves for each of the three fingerprint quality algo-
rithms trend in the correct direction, but that even after rejection of 20 %, the FNMR value
has fallen only by about a half from its starting point. Rejection of 20 % is probably not an
operational possibility unless an immediate reacquisition can yield better quality values
for those persons. Yoshida, using the same approach, reported similar figures [22]. Note,
however, that for NFIQ , the improvement is achieved after rejection of just 5%. In verifi-
cation applications such as access control, the prior probability of an impostor transaction
is low, and thus the overall error rate is governed by false non-matchers. In such circum-
stances, correct detection of samples likely to be falsely rejected should drive the design of
BQAMs.

5.3 Generalization to Multiple Matchers

It is a common contention that the efficacy of a quality algorithm is necessarily tied to a
particular matcher. We observe that this one-matcher case is commonplace and useful in
a limited fashion and should therefore be subject to evaluation. However, we also observe
that it is possible for a quality algorithm to be capable of generalizing across all (or a class
of) matchers, and this too should be evaluated.

Generality to multiple matchers can be thought of as an interoperability issue: can sup-
plier A’s quality measure be used with supplier B’s matcher? Such a capability will exist to
the extent that pathological samples do present problems to both A and B’s matching algo-
rithms. However, the desirable property of generality exposes another problem: we cannot
expect performance to be predicted absolutely because there are good and bad matching
systems. A system here includes all of the needed image analysis and comparison tasks.
Rather we assert that a quality algorithm intended to predict performance generally need
only be capable of giving a relative or rank ordering i.e., low-quality samples should give
lower performance than high-quality samples.

The plots of Figure 5.3 quantify this generalization for the NFIQ system using the error
vs. reject curves of section 5.2. Figure 5.3(a) includes five traces, one for each of five
verification algorithms. The vertical spread of the traces indicates some disparity in how
well NFIQ predicts the performance of the five matchers. A perfectly general BQAM would
produce no spread.
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(a) Across Matchers

(b) Across Datasets

Figure 5.3: Error vs. reject characteristics showing how NFIQ generalizes across (a) five
verification algorithms, and (b) three operational data sets. The steps in (a) occur at the
same rejection values because the matchers were run on a common database.
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Table 5.1: KS statistics for quality levels of three quality algorithms

Quality Algorithm Q = 1 Q = 2 Q = 3 Q = 4

Quality Algorithm 1 0.649 0.970 0.988 0.993

Quality Algorithm 2 0.959 0.995 0.996 0.997

Quality Algorithm 3 0.918 0.981 0.994 0.997

5.4 Measuring Separation of Genuine and Impostor Distributions

We can evaluate quality algorithms on their ability to predict how far a genuine score will
lie from its impostor distribution. This means instead of evaluating a quality algorithm
solely based on its FNMR (i.e., genuine score distribution) prediction performance, we can
augment the evaluation by including a measure of FMR because correct identification of
an enrolled user depends both on correctly finding the match and on rejecting the non-
matches. Note also that a quality algorithm could invoke a matcher to compare the input
sample with some internal background samples to compute sample mean and standard
deviation.

The plots of Figure 5.4 show, respectively, the genuine and impostor distributions for ad-
justed NFIQ values, 1, 3, and 5. The overlapping of genuine and impostor distributions for
the poorest NFIQ means higher recognition errors for that NFIQ level, and vice versa; the
almost complete separation of the two distribution for the best-quality samples indicates
lower recognition error. NFIQ was trained to specifically exhibit this behavior.

We consider the Kolmogorov Smirnov (KS) statistic. The KS test is non-parametric, distribution-
free, and simple. The KS statistic is simply the maximum absolute difference between the
two distributions’ cumulative distributions functions. For better-quality samples, a larger
KS test statistic (i.e., higher separation between genuine and impostor distribution) is ex-
pected. Each row of Table 5.1 shows KS statistics for one of the three quality algorithms
that we tested. KS statistics for each quality levels u = 1, . . . , 5 are computed by first com-
puting the genuine (i.e., {sii : (i, i) ∈ R(u)}) and impostor (i.e., {sij : (i, j) ∈ R(u), i 6= j})
empirical cumulative distributions, where R(u) = {(i, j) : H(q(1)

i , q
(2)
j ) = u}. Thereafter

the largest absolute difference between the genuine and impostor distributions of quality
u is measured and plotted. (Note that to keep quality algorithm providers anonymous, we
only reported KS statistics of the lowest four quality levels.)

5.5 Data to be Used for Testing

A quality measurement algorithm could be evaluated using data specifically collected with
deliberate defects. For example, quality could be degraded by misfocusing the camera.
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(a) Best

(b) Middle

(c) Worst

Figure 5.4: There is a higher degree of separation between the genuine and impostor dis-
tribution for better-quality samples as measured by NFIQ .
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Such data have several notable uses: development of a quality measurement algorithm,
teaching best practice by counterexample, and assessing the performance of a product in-
tended to test the conformity of an image or signal to an underlying standard.3 However,
we argue that this type of data should not be used for evaluation for four reasons. First,
such data is by definition laboratory data and therefore would lack application-specific
operational relevance. Second, by applying certain kinds of degradation to the images, the
evaluator is making assumptions about the performance sensitivities of matching algo-
rithms. For example, if the chin is cropped from a face image, then this may be immaterial
to a face recognition algorithm. Third, it would be difficult or impossible to collect samples
that express all possible combinations of quality defects and particularly with their natural
frequency and to their natural degree. Finally, the laboratory data may not ordinarily be
available in large quantities.

Instead the use of operationally representative data, i.e., samples harvested during real-
world usage or from a relevant scenario test [23] should be considered. By definition, this
has the advantage of having relevance to the operation. We showed examples of such data
in Section 5.2.

To illustrate the importance of using an aggregated corpus for evaluation, we use the Color
FERET database [24]. The frontal fa and fb images from each of 852 subjects were used at
full, half, and quarter resolutions. These are input to a quality algorithm and a matching
algorithm from the same supplier. The reduction in image size forcibly induces the reduc-
tions in both quality and match scores evident in Figure 5.5. Note, however, that for any
one of the three point clouds in Figure 5.5(a), there is large variation in score in relation to
quality - a trend that is not improved by plotting M(s) instead (Figure 5.5(b)). This reflects
the difficulty of the face quality problem.

The final graph, Figure 5.5(c), shows the error versus reject performance for each of the im-
age sizes separately and for the aggregate data set. This latter curve, in grey, is lower than
the others. This demonstrates the value of using composite sets for evaluation purposes.
Also worthy of note is that the error versus reject performance at any of the three sizes
is superior to that in Fig. 5.5, which uses the same algorithm on a more uniform dataset.
Those images are about the same size as the half-size FERET images but are more con-
sistently posed (i.e., frontal), sized, compressed, and all subjects do not wear eyeglasses.
The suggestion, then, is that the more homogenous the corpus, the more difficult it is for
a quality algorithm to predict variation in similarity scores. We should emphasize that the
algorithm was provided to NIST without any claim of efficacy or recommended domain
of use.

3For example, the ISO/IEC 19794-5 Face Recognition Interchange Format standard puts quantitative limits
on the amount of quality-related degradation as blur, non-frontal pose, and the number of grey levels.
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(a) Score vs. min(q1, q2)

(b) FNMR vs. min(q1, q2) (c) Error vs. Reject

Figure 5.5: Scatter plots of scores and FNMR values versus quality, and the error vs. reject
curves, for a face quality metric applied to a face database composed of images at full
(blue), half (green), and quarter size (red).
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Figure 5.6: Error vs. reject characteristic of same algorithm as in Figure 5.5 but using data
with less quality variation. The plots correspond to different quality combination function
H(.) as discussed in Section 4.4.
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Chapter 6

Quality Reference Data Sets

This chapter recommends a procedure to annotate the samples of a reference corpus with
quality values. Quality-annotated corpus could be used for quality algorithm develop-
ment. quality calibration, and conformity of quality scores to a standard.

6.1 Construction of a Reference Data Set

The strategy is to assign values that are directly related to the results of matching those
samples. This is achieved by taking the similarity scores from K ≥ 1 matching algorithms,
classifying them, and, in the case of K > 1, taking a consensus. The result is a reference
set useful to quality algorithm developers. It would be of use for tuning of an operational
quality algorithm, when the matcher and kind of data are known.

The input to the procedure is a representative sample database. The output is an anno-
tation of each sample with a scalar quality target. The method presumes the availability
of a representative matching algorithm, which will be used to compare samples to pro-
duce both genuine and impostor similarity scores. It is therefore implied that two or more
samples per person are available.

6.1.1 Data

Data gathered in a target operational application would be most realistic. Contemporary
matchers perform extremely well on most images, and it is therefore necessary to preferen-
tially stack the reference set with samples that are naturally problematic to the matcher. For
example, for a reference fingerprint data set to span the quality spectrum, it should be, to
the degree possible, balanced in terms of finger position (right/left index/thumb/middle),
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finger impression (roll/plain/flat), sex, age, and capture device. Lack of data often renders
it difficult to create such a balanced dataset.

6.1.2 Target Quality Assignment

We seek to assign a performance-based quality score to each image in a reference dataset.
We ensure that the quality values are representative of performance by associating the im-
age with similarity scores as follows. Consider a biometric corpus containing two samples,
d

(1)
i and d

(2)
i , for each of N individuals, i = 1, . . . , N . The first samples represent enroll-

ment samples, and the second samples represent those for authentication. The following
procedure assigns quality values q(1)

i and q(2)
i to all images in the corpus.

1. For each matching algorithm Vk, k = 1, ..,K of K available algorithms:

For each person i:

(a) Compare the first and second samples using the k-th matcher to produce gen-
uine score. Repeating equation 4.3:

s
(k)
ii = Vk(d(1)

i , d
(2)
i ) (6.1)

where Vk is the k-th matching algorithm for all available k = 1, ...,K matching
algorithms.

(b) Compare the first sample from person i with the second sample from all j =
1, . . . , N and i 6= j other persons. The result is J = N − 1 impostor scores,

s
(k)
ij = Vk(d(1)

i , d
(2)
j ) (6.2)

(This is essentially equation 4.4.)

(c) Insert i into set T if its genuine score is larger than all its impostor scores, i.e.,
s
(k)
ii > s

(k)
ij ∀j. This is a rank 1 condition.

(d) For the first sample of each person d(1)
i , compute the sample mean and standard

deviation of its J associated impostor scores

mi =

∑J
j=1 s

(k)
ij

J−1
(6.3)

σi =

√√√√∑J
j=1

(
s
(k)
ij −mi

)2

(J − 1)−1
(6.4)
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(e) Normalize the genuine score from eq. 6.1 using the impostor statistics

zi = (sii −mi)/σi (6.5)

Once all normalized similarity scores have been computed:

(a) Compute two empirical cumulative distribution functions: One for the top-
ranked genuine scores of set T

C(z) =
| {zi : i ∈ T , zi ≤ z} |
| {zi : i ∈ T , zi ≤ ∞} |

(6.6)

and another for those not in that set.

W (z) =
| {zi : i /∈ T , zi ≤ z} |
| {zi : i /∈ T , zi ≤ ∞} |

(6.7)

These cumulative distribution functions are plotted in Figure 6.1 for live-scan
images of the right-index fingers of 6000 individuals and scores of a commer-
cial fingerprint matcher. These were produced in a U.S. government test using
sequestered operational data.

(b) Bin normalized match score range intoK bins based on quantiles of the normal-
ized match score distribution. One strategy, for K = 5, is shown in Table 6.1 in
which F−1 is the quantile function, and F−1(0) and F−1(1) denote the empir-
ical minima and maxima, respectively. If W−1(1) ≥ C−1(0.25) an appropriate
quartile of C(z) must be selected.

(c) Sample di is assigned target quality qi corresponding to the bin of its normalized
match score zi from eq. (6.5).

(d) The procedure is repeated for sample d(2)
i by swapping indices 1 and 2 in equa-

tions 6.1 and 6.2. Since one sample will have an impostor distribution different
from another, two different samples of the same subject may have different nor-
malized match scores and therefore different quality values.

2. Samples with identical quality assignments from all V matchers become members of
the Quality Reference Dataset. Those without unanimity are discarded.

This procedure has been used to form NFIQ training and compliance set [8], only with dif-
ferent bin boundaries. These were set by manual inspection to give useful categorization
of the normalized match score statistic.
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Table 6.1: Binning normalized match score

Category Description Range of normalized match score

1 poor {zi : −∞ ≤ zi < C−1(0)}
2 fair {zi : C−1(0) ≤ zi < W−1(1)}
3 good {zi : W−1(1) ≤ zi < C−1(0.25)}
4 very good {zi : C−1(0.25) ≤ zi < C−1(0.75)}
5 excellent {zi : C−1(0.75) ≤ zi}

Figure 6.1: Empirical cumulative distribution functions for the top-ranked genuine scores
and for the impostor scores. The vertical lines are one possible way of binning normalized
match scores. Samples are assigned quality numbers corresponding to the bin of their
normalized match score.
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Fingerprint Image Quality

A fingerprint is a pattern of friction ridges on the surface of a fingertip. A good-quality
fingerprint has distinguishable patterns and features that allow the extraction of features,
which are useful for subsequent matching of fingerprint pairs. A minutia-based auto-
matic fingerprint matching algorithm uses features that compare local ridge characteristics
(minutia) of two fingerprints and produces a real-valued similarity score.

Several factors affect the quality of fingerprint images: user’s skin condition, improper
finger placement, scanner limitation or imperfection, impurities on the scanner surface,
and others. Using the terminology of Section 1.1, the cause of these imperfections can
be classified in four groups: i) impairments in the source of biometric (character): like scars,
blisters, skin conditions such as wet or dry, age, occupation, etc.; ii) user behavior: such
as improper finger placement, e.g., rotating finger or placing only tip of a finger which
cause capturing insufficient area of finger image; iii) imaging: for example, low contrast,
distortion, sampling error, insufficient dynamic range, etc.; and iv) environment: such as
temperature, humidity, or unclean platen.

7.1 NIST Fingerprint Image Quality (NFIQ)

NFIQ is a fingerprint quality measurement tool; it is implemented as open-source software
conformant to the ISO/IEC 9899:1999 C specification, and is used today in U.S. govern-
ment and commercial deployments. Its key innovation is to produce a quality value from
a fingerprint image that is directly predictive of expected matching performance, and has
been designed to be matcher-independent. Definition of quality as prediction of perfor-
mance first introduced by NFIQ has been widely adopted by industry and the research
community, and consequently the international biometric sample quality (ISO/IEC 29794)
is currently under development.
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NFIQ first measures appropriate image fidelity characteristics. These quality components
are then fused using a three-layer feed-forward nonlinear perceptron model so that the
overall quality score is prediction of recognition errors likely to be realized when the sam-
ple is matched. NFIQ extracts minutia, assigns a quality value to each minutia point, and
measures orientation field, pixel intensity, and directional map to compute the following
local and global features: number of foreground blocks, number of minutia, number of
minutia that have quality value better than certain thresholds, percentage of foreground
blocks of excellent, good, fair, and poor quality. A neural network was trained to classify
the computed feature vectors into five levels 1 through 5 where NFIQ = 1 is the best-
quality and NFIQ = 5 is the lowest quality. The neural network was trained on how far
a sample’s genuine score would lie from its impostor distribution. Fig. 7.1 shows that
the highest recognition performance is achieved for the best quality samples (NFIQ=1),
and samples with lowest quality (NFIQ=5) have the lowest performance. In Section 5.4,
we noted that an effective BQAM would exhibit better separation of genuine and impos-
tor distributions for better-quality samples. The plots of Fig. 5.4 (in Section 5.4) show,
respectively, the genuine and impostor distributions for NFIQ values 1(excellent quality),
3(average quality), and 5(poor quality). The overlapping of genuine and impostor for the
poorest NFIQ (i.e., NFIQ=5) means higher recognition errors for that NFIQ level, while
the almost complete separation of the two distributions for the best-quality samples (i.e.,
NFIQ=1) indicates lower recognition error. Source code for NFIQ algorithm is publicly
available and can be downloaded from [7].

7.2 Recommendations for NFIQ Summarization

This section, as promised in Section 2.2, recommends procedures for NFIQ summarization.
The motivation for NFIQ summarization is to monitor quality variation over time, across
different acquisition settings and/or application.

In an operation where fingerprint images are collected and their NFIQ values are computed,
the overall quality of the collection is given by:

Q̃ = 102.75− 2.75p1 − 5.37p2 − 14.38p3 − 42.25p4 − 102.75p5 (7.1)

where pi is the proportion of the fingerprints with quality value i = 1 . . . 5. The weights
were determined using the method of Appendix A, and they reflect the likelihood that
an observed false non-match involved a fingerprint of quality i. The terms of equation
7.1 indicate that the errors are dominated by images with NFIQ values 4 and 5, and this
implies that a plain averaging of observed values is not an appropriate summary. Thus
users of NFIQ should not use the mean or median of a set of quality values as a summary
statistic. Equation 7.1 produces a NFIQ summary on the range [0, 100]. This is achieved
by a transformation of a simpler linear quantity (see the development in Appendix A).
It is used here to allow standardized range of biometric sample quality values; mainly
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Figure 7.1: Quality-ranked detection error trade-off characteristics. Five traces correspond
to five NFIQ levels. Fingerprint images with NFIQ=1 (highest quality) cause lower recog-
nition error than images with NFIQ=5 (lowest quality).
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in keeping with the ISO/IEC 19784-1 BioAPI [17] requirement for single sample quality
values on [0, 100]. Equation 7.1 provides a Best Practice estimate for the NFIQ algorithm
for those verification applications in which the specific matchers and operating thresholds
are unknown. Discussion of dependance on matcher algorithm and operating threshold
follows.

. Dependence on Matching Algorithm Weights in equation 7.1 are consensus esti-
mates. That is, they were estimated using the observed false non-match rates from
a set of leading commercial matching algorithms. The result is that the weights are
not exactly the weights that would be used for any one algorithm, or for a specified
set of algorithms. NIST regards the NFIQ weights above as Best Practice estimates to
be used unless other details about the application are known.

. Dependence on Operating Threshold Weights in equation 7.1 are estimates of the
observed false non-match rates computed at some fixed threshold. The result is that
these weights are most accurate for that particular threshold and not as accurate for
biometric systems operating at other thresholds. Figure 7.2 shows the variation of
these weights computed at three different thresholds. It appears that weights for
NFIQ values of 1 and 2 are quite robust to a wide range of thresholds, but weight
for NFIQ value 5 varies with threshold. Table 7.1 shows recommendation for NFIQ

summarization at several operation threshold. NIST regards these recommendations
as Best Practice estimates, and these should be used unless other details about the
application are known. Thus, in verification applications, where operating threshold
is fixed at τ , users of NFIQ fingerprint quality assessment algorithm should either use
the weights computed at threshold closest to τ (as shown in Table 7.1) or follow the
procedure in Appendix A to establish dedicated weights.

In verification applications, where a specific set of one or more matching algorithms or op-
erating thresholds are known and available, users of NFIQ fingerprint quality assessment
algorithm should follow the procedure in Appendix A to establish dedicated weights.
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Table 7.1: Recommendation for NFIQ summarization at different operating thresholds

False Match Rate Recommendation for NFIQ summarization

0.01 101.91 - 1.91p1 - 3.97p2 - 10.24p3 - 34.03p4 - 101.91p5

0.001 102.75 - 2.75p1 - 5.37p2 - 14.38p3 - 42.25p4 - 102.75p5

0.0001 105.41 - 5.41p1 - 9.15p2 - 23.82p3 - 55.81p4 - 105.41p5
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Figure 7.2: Dependance of NFIQ weights on operating threshold. Weights for NFIQ values 1
and 2 are quite robust to variation of the computing threshold. Thresholds are set at overall
false-match-rates of 0.01, 0.001, and 0.0001. Each point corresponds to the NFIQ weight
estimated using similarity scores of a commercial matching algorithm on large operational
fingerprint datasets. NFIQ weights in Table 7.1 are means of six matching algorithms with
the highest performance.
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Closing

Biometric quality measurement is an operationally important and difficult problem that
is nevertheless massively under-researched in comparison to the primary feature extrac-
tion and pattern recognition tasks. In this paper, we enumerated the ways in which it is
useful to compute a quality value from a sample. In all cases, the ultimate intention is to
improve matching performance. We asserted, therefore, that quality algorithms should be
developed to explicitly target matching error rates, and not human perceptions of sample
quality. To this end, we defined a procedure for the annotation of a reference sample set
with target quality values. We gave several means for assessing the efficacy of quality al-
gorithms. We reviewed the existing practice, cautioned against the use of detection error
trade-off characteristics as the primary metrics, and instead advanced boxplots and error
vs. reject curves as preferable. We suggest that algorithm designers should target false
non-match rate as the primary performance indicator.

In conclusion, we posit that quality summarization as a predictor of recognition perfor-
mance is a difficult problem, and we encourage the academic community to consider the
problem and extend the quantitative methods of this paper in advancing their work.

The benefit of measuring and reporting of biometric sample quality is to improve per-
formance of biometric systems by improving the integrity of biometric databases and en-
abling quality-directed processing in particular when utilizing multiple biometrics. Such
processing, enhancements result in increasing probability of detection and track accuracy
while decreasing probability of false alarms.
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Determination of Quality Weights

This section advances a procedure for assigning weights to the output values of a BQAM.
We assume quality values are quantized into L levels so that (without loss of generality)
q = 1 . . . L, where q = 1 and q = L indicate lowest and highest quality values, respectively.
This is the case with NFIQ for which L = 5 and other commercial BQAMs for which L = 8
and L = 10. The strategy is to assign weights uq that are directly related to the error rate
observed for samples of quality q.

Suppose some enterprise collects fingerprints and measures the quality of each. If the
number of prints collected over some interval in an operational situation is n and this is
composed of nq prints of quality q, then we could compute the mean quality across all n
samples. However, arithmetic mean is not the preferred method of summarizing quality
scores because all samples, regardless of their quality values, are given the same weight. If
instead the expected utility of a fingerprint of quality q is uq = U(q), then a better summary
statement of quality is

q̄ =

∑L
q=1 uqnq∑L

q=1 nq

(A.1)

If the utility uq is actually an estimate of the false reject rate for samples of quality q of
a reference fingerprint verification system operating at some reasonable threshold, then q̄
will be an estimate of the expected error rate. We proceed by introducing a procedure to
compute utility uq for different levels of a BQAM such that the summarized quality value
is an estimate of the expected error rate.

Consider a biometric corpus contains 2N pairs of images fromN persons. The first sample
represents an enrollment sample, and the second represents the authentication sample.
The samples have integer qualities q(1)

j and q
(2)
j for j = 1, . . . , N . Applying V matching

algorithms to the samples, we get

. N genuine similarity scores, s(v)
jj , and
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. up to N(N − 1) impostor scores, s(v)
jk with j 6= k

where v = 1, . . . , V and V ≥ 1.

1. For all matching algorithms v and quality values q, compute FNMRv(τ, i) of authen-
tication samples of quality i with enrollment samples of quality better than or equal
to i at operating threshold τ using genuine scores of matching algorithm v. Note
that we assumed higher quality values indicate better quality. For BQAMs which low
values indicate good quality (for example, NFIQ ), q(1)

j ≤ i, q
(2)
j = i should replace

q
(1)
j ≥ i, q(2)

j = i in the computation of FNMRv(τ, i) below.

for (v = 1, . . . , V )
for (i = 1, . . . , L)

FNMRv(τ, i) =

∣∣∣{s(v)
jj : sjj ≤ τ, q

(1)
j ≥ i, q(2)

j = i
}∣∣∣∣∣∣{s(v)

jj : sjj ≤ ∞, q(1)
j ≥ i, q(2)

j = i
}∣∣∣

end
end

which results in the following array
FNMR1(τ, 1) FNMR2(τ, 1) . . . FNMRV (τ, 1)
FNMR1(τ, 2) FNMR2(τ, 2) . . . FNMRV (τ, 2)

. . . . . . . . . . . .
FNMR1(τ, L) FNMR2(τ, L) . . . FNMRV (τ, L)


2. compute weight ui

ui =
∑V

v=1 FNMRv(τ, i)∑L
q=1

∑V
v=1 FNMRv(τ, q)

Thus the aggregated quality across an enterprise is

Q =
L∑

i=1

uipi (A.2)

where ui are estimated posterior probabilities above. As probabilities, these values will
not be on a range familiar to users. For example, the NFIQ summary is

Q = 0.016p1 + 0.032p2 + 0.086p3 + 0.252p4 + 0.613p5 (A.3)

Tabassi and Grother 62



Biometric Quality

such that if all samples were of NFIQ = 1 (i.e., the best quality), the result would be Q =
u1 = 0.016. Similarly the worst case is when all samples in the enterprise are of NFIQ = 5,
which results inQ = u5 = 0.613. Thus this formulation would result in NFIQ summaries on
the range [u1, u5], which is [0.016, 0.613]. Users should regard equation A.3 as a measure
of expected overall FNMR . However, this document recommends transformation from
[u1, u5] to the more familiar BioAPI [17] range [0, 100] which has 0 as the lowest quality and
100 as the best. This can be accomplished by:

1. Either relating the quality summary number Q (i.e., expected error rate) back to the
native quality range by using the inverse of the utility function:

Q̃ = U−1(Q) = U−1

(
L∑

i=1

uipi

)
(A.4)

where U−1 is a function approximation (e.g., piece-wise linear interpolation) of pairs
(i, ui);

2. Or by mapping (e.g. linear mapping) [u1, u5] to [0, 100]. Thus, NFIQ summaries
mapped to [0, 100] are given by

Q̃ =
100u5

u5 − u1
−

5∑
i=1

100ui

u5 − u1
pi (A.5)

which forms equation 7.1 in this document. Table 7.1 shows recommendation for
NFIQ summarization at different thresholds where utility ui i = 1 . . . 5 (i.e., five lev-
els of NFIQ ) is computed at different operating thresholds, and linearly mapped to
[0, 100] using equation A.5.
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