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Abstract—In this paper, we propose a backbone construction
scheme over heterogeneous ad hoc networks, where the network
nodes have different characteristics such as communication
capacity, processing power and energy resource. Most of the
wireless backbone construction techniques focus on minimizing
the number of backbone nodes. In our proposed scheme, we not
only minimize the backbone size, but also take the characteristics
of nodes into account when building a backbone. In the scheme,
the more capable nodes have higher probability to serve as
backbone nodes and provide a wireless highway over which
end-to-end communication can take place. The proposed scheme
includes two major steps, which can be solved by formulating as
a Dominating Set (DS) problem and a Steiner Tree Problem with
Minimum Number of Steiner Points (STP-MSP) respectively.
We focus on the two subproblems and present a number of
polynomial time approximation algorithms. Simulation results
show that the proposed scheme achieves higher average backbone
node performance, while has approximately the same backbone
size comparing with other schemes.

I. INTRODUCTION

Hierarchical techniques [1][2] have been studied to provide
scalability for ad hoc networks with smaller routing tables and
reduced routing overhead. Backbone structure [3][4] is one of
the typical techniques for hierarchical infrastructure. However,
the objective of most of prior work for backbone construction
is to minimize the number of backbone nodes, where the
characteristics of network nodes have not been taken into
account. Recently, many ad hoc network applications are based
on heterogeneous networks. Such a network is composed
of different wireless devices with different communication
capacities, processing and energy resources, or interfaces (e.g.,
802.11a/b/g, WiMax, UWB). For example, for an ad hoc
network in battlefield environment, network nodes have a wide
range of capabilities. Those can include high altitude aircraft
or satellites, low flying unmanned aerial vehicles (UAVs),
ground vehicles, soldiers, and sensors. Some of these nodes,
such as satellites or UAVs may have robust and powerful
communication capacities, while others such as soldiers or
sensors may have limited and time varying communication
capacities with limited transmission power. In a public wireless
network, also, the network could be composed of some dedi-
cated wireless routers, desktop machines, laptops, handhelds,
and phones, where some nodes are more powerful and others
are less powerful for communications and processing.

In most of the current backbone construction schemes,
all devices are considered equal when performing backbone
nodes (BNs) selection. That is, the weak nodes have the same

probability to be selected as BNs as strong nodes. In our
scheme, we take the characteristics of nodes into account when
constructing a backbone, where the characteristics could be
communication capacity, processing power, energy resource,
etc., or any combination of them. We term the characteristics
as capability in this paper. The more capable nodes have higher
priority to be selected as BNs. There are two major steps in
our backbone construction scheme. The first step is to select
a dominating set [5] of the nodes, which means all nodes in
the graph are either in the dominating set, or adjacent (one-
hop) to at least one of the nodes in that set. In order to select
the more capable nodes to serve as dominators (i.e., BNs), a
capability level is specified for each nodes. We select the nodes
with highest capability level as dominators until all nodes are
covered (i.e., one-hop away from one of dominators). The
second step is to put some relay nodes into the network
to provide the connectivity of selected BNs. The problem
of minimizing the number of relay nodes (Steiner points)
is termed as STP-MSP (Steiner tree problem with minimum
number of Steiner points) [6]. In practical applications, the
relay nodes could be devices combining with communication
and mobility capabilities (e.g. mobile robots or throwboxes
[7]), or could be ground or aerial vehicles which provide the
required mobility for wireless devices. We assume that the
relay nodes have at least the same capability as selected BNs.
In this way, the capable nodes in the network are connected
through the deployment of relay nodes to form into a wireless
highway over which reliable and high bandwidth end-to-end
communications can take place.

The problem of constructing a backbone structure over
wireless ad hoc networks has been widely investigated. A great
amount of existing research devoted to backbone formation
based on the minimum connected dominating set (MCDS)
concept [3][4][8][9], which means, the selected nodes in
dominating set must together induce a connected graph, and
the number of selected nodes is minimized [10]. However, the
connected dominating set scheme is only suitable for well-
connected networks, i.e., an end-to-end path is guaranteed
to exist between any source-destination pair. Our proposed
backbone construction scheme is based on DS-based backbone
nodes plus relay nodes placement, which is applicable to
different kinds of network scenarios, and we have proved that
our scheme would result in smaller backbone size than MCDS
approaches.

The major contributions of this paper include the following:



1) Our backbone construction scheme is based on finding the
most capable nodes to serve as BNs, while most of previous
work have the sole objective of minimizing the backbone size;
2) We have proved that our constructed backbone achieves
higher average BN performance than other approaches through
simulations; 3) A new algorithm for the problem of BN selec-
tion is presented and analyzed; 4) For the relay node place-
ment problem, we present a polynomial-time approximation
algorithm with a smaller approximation ratio than previous
work; 5) This paper is the first work to decompose backbone
formation problem into two subproblems of dominating set
and STP-MSP to solve, which provides a unified backbone
construction approach for different network scenarios (i.e.,
dense or sparse, connected or partitioned network scenarios)
while the others are under the assumption that the network is
dense and well-connected.

The rest of this paper is organized as follows. In Section II,
we present the notation and problem formulation. Section III
presents and analyzes our backbone construction algorithms.
Simulation results are presented in Section IV. Finally, we
conclude the paper in Section V.

II. BACKGROUND AND PROBLEM FORMULATION

A. Notation

We use the following notation in the rest of the paper.
For more graph theoretic terms that are not defined in this
paper, readers can refer to the text book [5]. For two points
x and y in the Euclidean plane, we use [x, y] to denote the
line segment connecting them and ||xy|| to denote the Eu-
clidean distance between them. We denote V as the collection
of nodes {v1, v2, ..., vn}, and X as the collection of BNs
{vx1 , vx2 , ..., vxk

} selected from V , where {x1, x2, ..., xk} ⊆
{1, 2, ..., n}, k ≤ n. We define a node vi as a regular node
(RN) when vi ∈ V \ X . We assume the location of all
nodes can be detected through GPS or be obtained through
a localization mechanism. The location of node vi is denoted
by x-y tuples (xvi , yvi). We denote Y as the collection of
relay nodes {y1, y2, ..., yl}, and B as the overall collection of
BNs {b1, b2, ..., bk+l}, where B = X ∪ Y . We assume a disk
connectivity model for the communication channel. That is,
each node is equipped with an omnidirectional antenna that
makes the transmission coverage a disk, whereby two nodes
can communicate if and only if they are within a certain
communication range. We assume that each node (vi) has
corresponding values Ci and ri that indicate the capability
level and radio range of that node, respectively. Let R =
{r1, r2, ..., rn}. In our analysis we assume the relay nodes have
the same radio range with R = max

ri∈R
(ri), so R ≥ ri > 0. The

network topology can be represented as an undirected graph
G = (V,E) where V is a set of vertices including all nodes
and E is a set of undirected edges. An edge between nodes
vi and vj indicates their distance is at most the radio range
of ri and rj , i.e., ||vivj || ≤ min(ri, rj). Nodes vi, vj ∈ V
are said to be neighbors if (vi, vj) ∈ E. N(v) denotes the
set of neighbors of node v and dG(v) denotes the degree of

node v in graph G. Suppose the maximum node degree of
all nodes is ∆, i.e., ∆ = max

v∈V
(dG(v)). In the dominating set

problem, the set of nodes that are associated with (covered
by) a dominator vj ∈ X is denoted by D(vj), and we have
D(vj) = N(vj) \ X . We assume that a heterogeneous ad hoc
network has 1, 2, ..., Lmax capabilities levels, with Lmax the
highest capability level among all the nodes.

B. Problem Formulation

In the rest of this paper, the problem of constructing a
minimum wireless backbone for an ad hoc network with high
node capability level is termed as MWBHNC, the problem
of finding a minimum dominating set of nodes is termed as
MDS, the problem of finding a minimum dominating set of
nodes with high node capability level (the first step) is termed
as MDSHNC, and the problem of minimum number of relay
nodes placement (the second step) is termed as MRNP.

Definition 3.1: Let V = {v1, v2, ..., vn} be a set of nodes
in network and R = {r1, r2, ..., rn} be their corresponding
radio ranges, X be a set of BNs selected from V , Y be a
set of relay nodes and R be their radio ranges. The hybrid
communication graph G(R, R, M,ErR) induced by the 4-
tuple (R, R, M, ErR) is an undirected graph with vertex set
M = V ∪ Y and edge set ErR. ErR is defined as follows:
• For any two nodes vi, vj ∈ V , if ||vivj || ≤ min(ri, rj),

then the edge (vi, vj) ∈ ErR;
• For any node vi ∈ V and any relay node yj ∈ Y , if
||viyj || ≤ ri, then the edge (vi, yj) ∈ ErR;

• For any two relay nodes yi, yj ∈ Y , if ||yiyj || ≤ R, then
the edge (yi, yj) ∈ ErR.

Problem MWBHNC: Given R, R, and the graph G(V,E)
where V denotes the set of nodes and E denotes the set
of edges such that E = {(vi, vj)|vi, vj ∈ V, ||vivj || ≤
min(ri, rj)}. The MWBHNC problem is to find a minimum
set of backbone nodes (i.e., min(|B|), B = X∪Y) and a hybrid
communication graph G(R, R,M,ErR), where M = V ∪ Y .
The backbone is a tree T (R, R,M,ET ) (ET ⊆ ErR) over
G(R, R, M, ErR) such that:
• For any edge ei ∈ ET connecting two nodes between vi

and vj , if vi ∈ V \ X and vj ∈ X , we have ||vivj || ≤
min(ri, rj);

• For any edge ei ∈ ET connecting two nodes between vi

and yj , if vi ∈ X and yj ∈ Y , we have ||viyj || ≤ ri;
• For any edge ei ∈ ET connecting two nodes between yi

and yj , if yi, yj ∈ Y , we have ||yiyj || ≤ R;
• ∀vi ∈ V , we have either vi ∈ X or ∃vj ∈ X , vi ∈ N(vj);
• ∀vi ∈ V \ X , ∃vj ∈ X , such that vi ∈ D(vj), and

Cj = max
vk∈N(vi)

(Ck) (any regular node is covered by its

neighbor with highest capacity level).
Problem MDS: Given the graph G(V, E) where V de-
notes the set of nodes and E the set of edges such that
E = {(vi, vj)|vi, vj ∈ V, ||vivj || ≤ min(ri, rj)}. The MDS
problem is to find a minimum set of nodes X selected from
V such that:
• ∀vi ∈ V , we have either vi ∈ X or ∃vj ∈ X , vi ∈ N(vj).



Problem MDSHNC: Given the graph G(V, E) where V
and E denote the sets of nodes and edges such that E =
{(vi, vj)|vi, vj ∈ V, ||vivj || ≤ min(ri, rj)}. The MDSHNC
problem is to find a minimum set of nodes (i.e., min(X ))
with highest node capability selected from V such that:
• ∀vi ∈ V , we have either vi ∈ X or ∃vj ∈ X , vi ∈ N(vj);
• ∀vi ∈ V \ X , ∃vj ∈ X , such that vi ∈ D(vj), and

Cj = max
vk∈N(vi)

(Ck).

Problem MRNP: Given R, R and the graph G(X , E) where
X denotes the set of selected backbone nodes and E denotes
the set of edges such that E = {(vi, vj)|vi, vj ∈ X , ||vivj || ≤
min(vi, vj)}. The MRNP problem is to find a minimum set
of relay nodes (i.e., min(Y)) and a Steiner tree T (R, R,X ∪
Y, ET ) such that:
• For any edge ei ∈ ET connecting two nodes between vi

and vj , if vi, vj ∈ X , we have ||vivj || ≤ min(ri, rj);
• For any edge ei ∈ ET connecting two nodes between vi

and yj , if vi ∈ X and yj ∈ Y , we have ||viyj || ≤ ri;
• For any edge ei ∈ ET connecting two nodes between yi

and yj , if yi, yj ∈ Y , we have ||yiyj || ≤ R.
The main purpose of the problems above is to minimize

backbone size while the selected BNs have higher capability
than others. Both MDSHNC and MRNP problems are NP-
hard. In this paper, we propose some faster polynomial-time
approximation algorithms to solve these problems. A poly-
nomial time α-approximation algorithm for a minimization
problem is defined as an algorithm A such that, for any
instance of the problem, computes a solution that is at most α
times of the optimal solution of the instance, in time bounded
by a polynomial in the input size of the instance [11]. In this
case, we also say that A has an approximation ratio of α.

To the best of our knowledge, this paper is the first attempt
to deal with the MWBHNC problem. We decompose the prob-
lem into two subproblems, MDSHNC and MRNP, to solve
separately in this paper. The MDSHNC problem have not been
investigated before although its general case - MDS problem
has been widely studied. An algorithm with approximation
ratio of H(∆+1) is presented for MDSHNC problem, where
H is the harmonic function. The MRNP problem has been
studied in [12], where the authors have proposed a simple
minimum spanning tree (MST) based approximation algorithm
for MRNP with approximation ratio of 7. In this paper we
present an O(n3) algorithm with a smaller approximation ratio
of 3.

III. THE BACKBONE CONSTRUCTION ALGORITHMS

A. Finding Dominators

The objective of MDSHNC is to find a minimum set of
dominators that the capability of each dominator is the largest
one among the neighbors of the nodes associate with (covered
by) that dominator. We first investigate its general case, MDS
problem, then modify the general case to solve the MDSHNC
problem. It is known that MDS problem is equivalent to
minimum set cover (MSC) problem [5]. A set cover instance is
created by making each vertex an element, and each vertex vi

corresponds to a set Si that contains the vertex itself, together
with its neighbors, i.e., Si = {vi} ∪ {vj |vj ∈ N(vi)}.

Definition 4.1: Given a finite set U and a family of n non-
empty subsets Ω = S1, S2, ..., Sn that their universe is U (i.e.,
S1∪S2∪...∪Sn = U), the MSC Problem is to find a minimum
cardinality X ⊆ {1, 2, ..., n} such that

⋃
i∈X Si = U .

Definition 4.2: Given X ⊆ {1, 2, ..., n}, an element is said
to be covered if it belongs to

⋃
i∈X Si.

It is known that the MSC problem is NP-hard. Here we
present a greedy heuristic algorithm for MDS problem. As
shown in Algorithm 1, the idea is that at each iteration,
we always pick the set containing the maximum number
of uncovered elements, until all elements are covered. For
the sets that are selected for covering the universe U , their
corresponding vertices, vi (i ∈ X), are selected dominators.

Algorithm 1: Greedy Algorithm for MDS problem
input : Family Ω = S1, S2, ..., Sn of subsets of a finite

set U ; {C1, C2 , ..., Cn};
output: X ⊆ V

F := U ; (F is the set of vertices that are currently1

uncovered)
X := ∅;2

G := {1, 2, ..., n};3

while F 6= ∅ do4

choose a subset Si where i ∈ G such that |Si ∩ F| is5

maximum among all {Sj |j ∈ G};
F := F \ Si;6

X := X ∪ {vi};7

G := G \ {i};8

end9

output X ;10

It is known [13] that a greedy algorithm is an H(k)-
approximation algorithm for minimum set cover problem,
where k denotes that each Si has at most k elements (i.e.,
|Si| ≤ k for all Si ∈ Ω). Since k = ∆ + 1, we know that
the Algorithm 1 is an H(∆ + 1)-approximation algorithm for
MDS problem.

The objective of the MDSHNC problem can be achieved
by modifying Algorithm 1. As shown in Algorithm 2, the
idea is that at each iteration, we pick the node from the
set of Lmax level nodes that can cover maximum number
of uncovered nodes. After the selection of the Lmax level
nodes as possible dominators, if there still exists uncovered
nodes, then we select the (Lmax − 1) level nodes as possible
dominators. This process will continue until all nodes in the
network are covered.

Theorem 4.1: Using the greedy algorithm described in
Algorithm 2 yields a dominating set of size at most H(∆ +
1)|OPT |, where OPT is the minimum dominating set for
DSHNC problem, ∆ is the maximum node degree.
PROOF: Since the greedy algorithm is a H(∆ + 1)-
approximation algorithm for MDS problem, when Lmax = 1,
the MDSHNC problem turn into MDS problem, we have the



Algorithm 2: Greedy Algorithm for MDSHNC
input : Family Ω = S1, S2, ..., Sn of subsets of a finite

set U ; {C1, C2 , ..., Cn};
output: X ⊆ V

F := U ;1

X := ∅;2

Lmax := max
i∈{1,2,...,n}

(Ci);
3

for level := 1 to Lmax do4

G(level) := ∅;5

end6

for i := 1 to n do7

G(Ci) := G(Ci) ∪ {i};8

end9

level := Lmax;10

while F 6= ∅ do11

choose a subset Si where i ∈ G(level) such that12

|Si ∩ F| is maximum among all {Sj |j ∈ G(level)};
F := F \ Si;13

X := X ∪ {vi};14

G(level) := G(level) \ {i};15

if ∀i ∈ G(level), |Si ∩ F| = 0 then16

level := level − 1;17

end18

end19

output X ;20

approximation ratio H(∆ + 1) in this case. When Lmax > 1,
let OPTi be the optimal solution for MDS selected from the
set of nodes with capability level i, Bi be the dominators
selected from the set of nodes with capability level i through
Algorithm 2, then we have |Bi| ≤ H(∆+1)|OPTi|. Hence, the
total number of dominators through Algorithm 2,

∑Lmax

i=1 |Bi|,
is no more than H(∆ + 1)

∑Lmax

i=1 |OPTi|. Since |OPT | =∑Lmax

i=1 |OPTi|, we have
∑Lmax

i=1 |Bi| ≤ H(∆ + 1)|OPT |. ¤
B. Relay Node Placement

In this subsection we focus on the second subproblem that
if a set of dominators (X ) is given, we need to deploy the
minimum number of relay nodes in the graph G(X , E) such
that the resulting graph is connected. When R = ri (i.e., all
the nodes in the network and the relay nodes have the same
radio range), the MRNP problem is equivalent to the standard
STP-MSP problem [6]. The definition of STP-MSP is: given a
set of terminals X = {x1, x2, ..., xn} and a positive constant r,
find a tree T spanning X such that each edge in the tree has a
length no more than r and the number of Steiner points (nodes
other than those in X ), is minimized. In [12] the authors have
studied the MRNP problem and an 7-approximation algorithm
was proposed. Combining with the ideas in [14] which target
for STP-MSP, we present an O(n3) approximation algorithm
with approximation ratio of 3 for MRNP problem.

Definition 4.3: Given a set of nodes X = {v1, v2, ..., vk}
and their radio ranges R = {r1, r2, ..., rk}. Given the radio
range of relay nodes R. Tmst(X ) is defined as the minimum
spanning tree (MST) over the nodes in X . The steinerized

(a) Original topology (b) MCDS scheme (c) Our scheme

Fig. 1. An example of MCDS-based scheme and our scheme

minimum spanning tree TS
mst(X ) is defined by placing a

minimum number of relay nodes (yk ∈ Y) on the line segment
[vi, vj ] for each edge e = (vi, vj) in Tmst(X ), such that
||vi, yk|| ≤ ri for each edge (xi, yk), and ||yi, yj || ≤ R for
each edge (yi, yj) in TS

mst(X ).

Most of existing work (e.g., [6][12]) are based on steinerized
minimum spanning tree approach. Since the relay nodes are
in general placed along the edges of the MST, these work
cannot find solutions in which a relay node is used as a central
junction that connects multiple nodes. We present a 3-star
approach that for each combination of 3 disconnected nodes,
exploring the possibility to deploy a relay node to connect
them. With the central junction of relay nodes, we believe
that our scheme would result in smaller backbone size than
MCDS-based approaches. An extreme example is that all the
eight nodes are equally distributed around a circle, as shown
in Fig. 1. The edges in the graph denote that every two nodes
connected by them are within the radio range of each other.
We can see that the backbone size of MCDS-based scheme is
6, while our scheme (the sum of BNs and relay nodes) is 4.

Lemma 4.1: If a triangle ABC is acute, the minimum
enclosing circle of the triangle is the one bounded by the circle
circumscribing ABC. If a triangle ABC is obtuse or right, the
minimum enclosing circle of the triangle is the one whose
diameter is the longest edge of triangle ABC. (The proof is
obvious and it is omitted due to the limit of space.)

For an acute triangle, its circumcenter can be found as the
intersection of the three perpendicular bisectors. If the radius
of MEC is no larger than the minimum radio range of A, B
and C, put a relay node in circumcenter to connect the three
separated dominators. We denote the process as CircleJudge
(A, B, C). The circumcenter is denoted as O.

Definition 4.5: A connected cluster in ad hoc networks is
defined as for any two nodes in the same connected cluster,
there is an end-to-end path between them. For any two nodes
located in different connected cluster, there is no end-to-end
path between them.

As shown in Algorithm 3, we try to find a 3-star for any
three nodes located in different connected cluster. Then, we
steinerize the line segments [vi, vj ] with ||vivj || in increasing
order where vi, vj are located in different connected clusters.
The operation Combining(vi, vj) combines two clusters con-
taining vi and vj respectively into an integrated one.

Theorem 4.3: Let Y be the set of relay nodes obtained from
Algorithm 3, we have |Y| ≤ 3 · |OPT |. (See Appendix for
proof).



(a) (b) (c) (d)

Fig. 2. a) Original topology; b) MCDS scheme backbone; c) MDS+MRNP scheme backbone; d) MDSHBC+MRNP scheme backbone.

Algorithm 3: Approximation algorithm for MRNP
input : A set of dominators X = {v1, v2, ..., vk}, R, R
output: A Steiner tree Ts(X )

Ts(X ) = ∅;1

for each line segment [vi, vj] where xi, xj located in2

different connected clusters do
if ||vivj || ≤ min(ri, rj) then3

Combining (vi, vj); put [vi, vj ] into Ts(X );4

end5

end6

T (1) := Ts(X );7

for each set of three points A,B, C located in three8

different connected clusters do
if CircleJudge(A,B, C) = success then9

Combining (A, B, C);10

put [O,A], [O,B], [O, C] into Ts(X );11

end12

end13

T (2) := Ts(X );14

for each [vi, vj] with ||vivj || in the increasing order do15

if vi, vj located in different connected clusters then16

put steinerized [vi, vj ] into Ts(X );17

Combining (vi, vj);18

end19

end20

IV. PERFORMANCE EVALUATION

Three different backbone construction schemes, MCDS,
MDS+MRNP and MDSHNC+MRNP are implemented in
MATLAB to evaluate the performance and to compare our
scheme (i.e., MDSHNC+MRNP) with other two schemes (i.e.,
MCDS and MDS+MRNP). In the simulations, a total of n
nodes are randomly distributed in a region of 2500 m× 2500
m. We assume the nodes with higher capability level have
larger radio ranges, and the ranges are between 150 m and 350
m, and all relay nodes have fixed radio range of 350 m. Fig. 2
gives an example of the original deployment topology (Fig.2-
(a)) and different backbones constructed by three different
methods. In Fig. 2, the larger circles are the nodes with higher
capability level (the maximum capability level is 5), the red

(a) (b)

Fig. 3. a) Average capability as a function of number of nodes; b) Average
capability as a function of maximum capability level.

circles are selected dominators, the squares are relay nodes
and the solid green lines are backbones for the network.

In order to compare the constructed backbone performance,
Fig. 3 presents the average capability (which is the average
of the capability levels of the nodes that have been selected
as BNs) with MCDS, MDS+MRNP and MDSHNC+MRNP
schemes respectively. In Fig. 3-(a), the maximum capability
level is 5, the number of nodes is ranging from 100 to 600. In
Fig. 3-(b), the number of nodes is 350, the maximum capabil-
ity level is ranging from 2 to 8. The results demonstrate that
our scheme achieves higher average capability level than the
others at all conditions, and the gap between our scheme and
the others increases with the increase of maximum capability
level. The backbone size (the number of dominators plus the
number of relay nodes) induced by the three schemes are
presented in Fig. 4. We can see that although the MDS can
achieve much smaller number of dominators than MDSHNC
(denoted by dashed lines), our scheme achieves approximately
the same backbone size as MDS+MRNP. In addition, the
MCDS scheme induces the largest backbone size among the
three schemes.

V. CONCLUSIONS

In this paper, we have proposed a new solution to construct
a backbone for heterogeneous wireless ad hoc networks. In
our scheme, the nodes with higher capability (e.g., commu-
nication capacity, processing power or energy resource, etc.)
have higher possibility to be selected as backbone nodes. To
achieve this, a greedy algorithm for MDSHNC problem is



(a) (b)

Fig. 4. a) Backbone size (or number of dominators) as a function of number
of nodes; b) Backbone size (or number of dominators) as a function of
maximum capability level.

proposed and analyzed. Next, we deploy a minimum number
of high-performance relay nodes in the network to connect
the selected backbone nodes to form into a wireless backbone
over which end-to-end communication can take place. We
present an approximation algorithm for MRNP problem and
prove that the algorithm has smaller approximation ratio than
those of previous work. Simulation results demonstrate that
our backbone construction scheme achieves higher backbone
performance while not increasing the backbone size.

VI. APPENDIX

Definition 6.1: A Steiner tree is full if every terminal (i.e.,
∀vi, vi ∈ X ) in the tree is a leaf. If a Steiner tree is not full,
then we can always find a terminal with degree more than
one which enable us to break the tree at this terminal. In this
way, every Steiner tree can be broken into several smaller full
Steiner trees. Those smaller full Steiner trees are called full
components of a Steiner tree.

Lemma 6.1:[14] Let TOPT be optimal Steiner tree on graph
G(χ,E). Let Tj be a full component of TOPT . Then the
following results hold:
(1) Every vertex in TOPT has degree at most five;
(2) The steinerized minimum spanning tree on terminals in Tj

has at most 3 · |Tj |+ 1 Steiner points.
(3) If Tj contains a Steiner point of degree at most four, then
the steinerized minimum spanning tree on terminals in Tj has
at most 3 · |Tj | Steiner points.
(4) If the steinerized minimum spanning tree on terminals in Tj

contains an edge (of length at most r) between two terminals,
then it has at most 3 · |Tj | Steiner points.

Proof of Theorem 4.3: Let T (1) and T (2) be temporary trees
that are created by lines 7 and 14 in Algorithm 3 respectively.
Let Ts be a steinerized minimum spanning tree [6] on all
given terminals (X ), and assume there are k number of 3-stars
have been found in T (2), then we have C(TA) ≤ C(T s)− k.
By Lemma 6.1 we know that each Steiner point of TOPT

has degree at most five. Suppose TOPT has p number of full
components. We construct a steinerized spanning tree T for χ
as follows: Initially, put T (1) into T . For each full component
Tj(1 ≤ j ≤ p), add to T the steinerized minimum spanning
tree T s

j for terminals in Tj , i.e., T = T (1) ∪ T s
1 ∪ .... ∪ T s

p .
If T has a cycle, destroy the cycle by deleting some edges
and Steiner points of T s

j . An important observation is that

if T s
j ∪ T (1) has a cycle, a Steiner point must be removed

for destroying the cycle unless T s
j contains an edge between

two terminals. Suppose there are q number of full components
(Th, 1 ≤ h ≤ q) that every Steiner point in Th has degree
five and Th ∪ T (1) has no cycle, based on Lemma 6.1, we
have C(Ts) ≤ C(T ) ≤ 3 · C(TOPT ) + q, i.e., C(TA) ≤
3 ·C(TOPT )+ q−k. Suppose T (1) has m connected clusters,
then T (2) has m − 2k connected clusters Ci(1 ≤ i ≤ m −
2k). We construct another graph G′ with vertex set χ and the
following edges. First, put all edges of T (1) into G′ (which
has m number of connected clusters). Then consider every
full component of Th(1 ≤ h ≤ q). If Th has only one Steiner
point, then this Steiner point connects five terminals. As the
five terminals could be connected by a single Steiner point,
Algorithm 3 should find a 3-star among the five terminals (in
line 8). Put the edges of 3-star into G′, the number of separated
terminals (clusters) in Th are decreased from 5 to 3. If Th has
at least two Steiner points, there must exist at least two Steiner
points each connecting to four terminals. Similarly, Algorithm
3 should find a 3-star among the four terminals. Put the edges
of 3-star into G′, the number of separated terminals (clusters)
in Th are decreased more than 2. Do the same operations for
each Th (1 ≤ h ≤ q) on G′. After that, G′ has at most
m − 2q connected clusters. Since every connected cluster of
G′ is contained by a Ci in T (2), we have m−2k ≤ m−2q ⇒
q ≤ k. Therefore, C(TA) ≤ 3 · C(TOPT ). ¤
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