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Reducing the Effects of Record Truncation 
Discontinuities in Waveform 

Reconstructions 
Nicholas G. Paulter, Jr. and Robert B. Stafford 

Abstract-Record truncation discontinuities (RTD’s) are ar- 
tifacts in recorded data caused by the difference between the 
values of the data at the two ends of the record. The RTD causes 
errors in waveform reconstructions, in particular, in digital re- 
constructions that use a deconvolution process. Consequently, 
we examine the effects of these RTD’s on reconstructions of dis- 
crete-time waveforms. Four previously proposed methods for 
reducing the effects of the RTD on the spectra of step-like wave- 
forms are examined for application in deconvolution, and a 
comparison of their effects in deconvolution is given. An anal- 
ysis of the errors is given for each case. 

I. INTRODUCTION 
ATA acquired from the measurement of a given sig- D nal are affected by the measurement instrument (such 

as measuring an electrical pulse with an oscilloscope). 
These data represent the signal as recorded within the lim- 
itations of the measurement instrument and, therefore, can 
be described by the convolution of the instrument’s im- 
pulse response with the signal. Consequently, it is nec- 
essary to remove the effects of the instrument on the data 
to obtain a more accurate representation of the original 
signal; this is done by deconvolution. In addition, the data 
may have different values at the ends of the record be- 
cause of the finite record length. This difference is the 
record truncation discontinuity (RTD), and it will cause 
errors in a reconstruction that uses waveform deconvolu- 
tion. 

The deconvolution technique we use here uses the dis- 
crete Fourier transformation (DFT’s) of the data and the 
instrument response and, therefore, requires periodicity 
of the data. Consequently, if the data is step-like (that is, 
the waveform has zero or near-zero slope at either end of 
the record and that the values at the ends of the record are 
not equal), the RTD’s will cause oscillations in the record 
of the deconvolved data. These oscillations are an unde- 
sirable artifact caused by the abrupt transition and the pe- 
riodicity assumed by the DFT (see Fig. l). Therefore, to 
perform deconvolutions using step-like waveforms, the ef- 
fects of RTD’s must be removed. In this paper, we pro- 
vide derivations of the techniques [1]-[5] proposed for 
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(b) 
Fig. 1. Effect of RTD on deconvolution result. (a) The deconvolution in- 
put waveform (b) The deconvolution result when the RTD is ignored. Os- 
cillations on the right side of (b) are caused by the RTD. 

reducing the effects of RTD’s in the spectra of step-like 
waveforms and derive operator equations to facilitate the 
analysis of the effects of these techniques in deconvolu- 
tion. This information will be useful for those who have 
a need for deconvolving step-like waveforms and who 
may, in addition, desire a mathematical description of 
these techniques as used in waveform deconvolution. 

11. BACKGROUND 
The techniques examined include time-domain win- 

dowing [4], the Nicolson ramp-subtraction method [ 11, 
the Nahman-Gans (NG) record-extension method [2], and 
using first differences [5 ] .  The waveforms considered here 
are real-valued and either step-like or impulse-like (that 
is, the waveforms have zero or near-zero slope and the 
same value at both ends of the record). The analysis of 
the effects of the RTD on a reconstructed waveform is 
more easily calculated using the frequency-domain rep- 
resentation of the waveforms than the time-domain rep- 
resentation; therefore, we begin the analysis with the 
Fourier transform of the time-domain convolution. 
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The discrete-time convolution process is described by 

(la) 
N- 1 

fT = ,zo g,h,-,, 0 s 7 5 2N - 1 

and its frequency-domain equivalent is 

F k  = GkHk, 0 I k I N - 1 (1b) 

where, for the purpose of illustration, g, is the measured 
event; h, is the impulse response of the measurement sys- 
tem; f, is the acquired signal; m is the time index; N is 
the number of points in the time record; 7 is the delay; k 
is the frequency index; and Gk, Hk, and Fk are the DFT’s 
of g,, h,, and f,. We assume h, is known so that g, can 
be obtained by deconvolving h, fromf,. In the frequency 
domain, the deconvolution becomes a division of the fre- 
quency components, 

Fk 
Gk = 

and g, is recovered by an inverse DFT of Gk. We will 
assume for the purpose of this paper that, for the functions 
used and for sufficiently long epochs, (2) would give the 
correct reconstruction of g,. However, here we will be 
concerned with the case when the epoch is too short, that 
is, for a step-like f,. 

It should be pointed out that ( la) represents a linear 
convolution process whereas (1 b) represents a cyclic con- 
volution process. These two processes provide the same 
result as long as time-aliasing in the cyclic process is pre- 
vented; this will be assumed here. Furthermore, if g, and 
h, are both N-point records, the result of ( la) is a (2N - 
1)-point record. For the purpose of this paper the convo- 
lution result will be of length 2N because the record length 
of the acquired data, f,, can be any length desired. 

This study will be performed with a single-step decon- 
volution (division of spectra) and will assume complete 
knowledge of h,. A noise-freef, is used to determine and 
compare the errors introduced into the reconstructions by 
the different techniques. In Section I11 we examine the 
effects of RTD-reducing techniques on waveform recon- 
structions and develop operator expressions to describe 
these techniques. These expressions are used to analyze 
the effect of these techniques on waveform deconvolu- 
tions. We will consider noise in f, in Section IV. 

111. THE EFFECTS OF RECORD TRUNCATION 
DISCONTINUITIES 

A. Time Windowing 
Windowing techniques have been used to reduce the 

effects of RTD’s on either the time or frequency repre- 
sentations of data [4]. The problem with windowing is 
that two mutually nonassociative mathematical processes 
are being used. Consider windowingf, by w,; the sub- 
sequent deconvolution is given by 

(3) 

where * denotes a convolution process, and G; is an ap- 
proximation to Gk. The desired signal Gk will not be re- 
covered because Gk Hk remains convolved with Wk. 
Therefore, any technique that uses windowing to remove 
the RTD of a waveform should be used cautiously in a 
reconstruction. Table I shows the mean and standard de- 
viation of the differences between the values of the orig- 
inal waveform and the waveforms reconstructed using 
windowing or one of the other techniques examined here. 

B. Nicolson Ramp-Subtraction Method 
I) Derivation: The Nicolson method subtracts a ramp 

from the acquired data [Fig. 2(a)]; the result is a wave- 
form where the two ends of the record have the same value 
[Fig. 2(b)]. The Nicolson-modified record is 

( 4 4  

(4b) 

f k  = fm - r m  

F; = F k  - Rk. 
and its frequency -domain equivalent is 

r, is the ramp function and Rk its spectrum, 

I L 
k = O  

where fN- andfo are the values of the last and first points, 
respectively, of the original record. Using ( 5 )  in (4b), 
F; becomes 

n - l  

k = O  (n - 1 )  
m = O  

N -  I 
Ji3 F; = c fmexp(-i2nkm/N) + 

m = O  1 - exp (-i2nk/N)’ 

k =  1,2;. .  , N - 1  (7) 
where the summation gives the DFT of f,. 

To develop an operator equivalent of (7), first consider 
r,. Let r, be the result of a convolution of two step func- 
tions with a mutual delay of one sample, the first, s,, 
having unit height, and the second, fp,,, having height 
fa/N. Letfp,, be the N-point truncated record of the con- 
volution of go,, with h, such that fp = gpCh,, where gp 
= gN- 1 - go, and gN- and go are the values of the last 
and first points of g,. Convolving fp,, with s, gives r,; 
its frequency representation is 

Rk = G0,kHkSk (8) 
where S k  is the Fourier transform of s,. Using (8) in (7) 
yields 

F;  = GkHk 4- Gp,kHkSk. (9) 

Equation (9) will be used in the deconvolution analysis. 
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Fig. 2.  The effect of the Nicolson ramp-subtraction technique and the 
Nahman-Gans record-extension technique on a waveform. (a) The original 
record. (b) The Nicolson-modified record. (c) The Nahman-Gans-modified 
record. 

TABLE I 
MEAN VALUE AND STANDARD DEVIATION OF ERRORS IN THE RECONSTRUCTED WAVEFORMS FOR 

q,.m ARE IMPULSE-LIKE WAVEFORMS. THE FUNCTIONS DESCRIBING THEM ARE: q l . m  = 1 / [1  + m / ~ l ,  q 2 , m  

= exp [ - ( m / ~ ) ’ ] ,  q3.,,, = exp ( - m / T ) ,  p l , m  = u ( m  - 7 )  (UNIT STEP FUNCTION), A N D P ~ . ,  = exp 
( - m / T l )  [I - exp ( m / ~ ~ ) ] ,  WHERE T Is A TIME CONSTANT. THE VALUES OF ALL WAVEFORMS RANGE 

DECONVOLUTION. THE MEAN ERROR VALUE IS THE TOP LISTING OF EACH PAIR. THE FIRST FIVE ENTRIES 

DECONVOLUTIONS USING THE FOUR METHODS INDICATED. THE p i ,m  ARE STEP-LIKE WAVEFORMS, AND THE 

FROM 0 TO 1 AND ARE 1024 POINTS LONG. THE “*” INDICATES A CONVOLUTION AND “1” A 

FOR THE NICOLSON METHOD ACTUALLY REPRESENT ERRORS IN A DECONVOLUTION WHERE NO RECORD 
MODIFICATIONS WERE PERFORMED (THE RAMPS WERE ZERO-VALUED); THEREFORE, THIS IS A MEASURE OF 

THE COMPUTER-INDUCED ERROR. THE OFFSET CORRECTION FOR THE NICOLSON AND DIFFERENCE 
TECHNIQUES WAS PERFORMED BEFORE THE MEAN ERROR WAS CALCULATED. 

~~ ~~ ~~ ~ 

Time-Window Nicolson Nahman-Gans Difference 

- 1.26e-01 4.16e- 10 4.46e-09 9.24e- 13 
q 1 . m  * q z . m l q 1 . m  4.35e-0 1 1.26e-07 1.27e-07 1.36e-03 

- 1.56e-02 3.75e-05 3.75e-05 1.34e-08 
q 1 . m  * q 3 , m / q 1 . m  1.26e-01 5.61e-05 3.75e-05 5.25e-02 

- 1.64e-02 4.12e-05 9.52e-06 3.52e-09 
q 1 . m  * q 3 . m I q 3 . m  1.83e-0 1 8.78e-06 9.64e-06 6.84e-02 

-8.24e-02 - 9.76e-05 2.95e-05 4.52e-09 
q 3 . m  * q z . m l q 3 . m  6.93e-01 4.28e-05 2.96e-05 1.36e-03 

- 9.52e-03 4.53e-05 3.75e-05 1.34e-08 
q 3 . m  * q 3 . m I q 3 . m  1.27e-01 4.50e-06 3.75e-05 5.25e-02 

- 1.18e-01 -9.50e-04 - 5.66e-09 8.40e- 10 
P 1 . m  * q 2 . m I ~ l . m  4.89e-01 1.37e-04 1.44e-06 1.44e-06 

- 1.43e-02 - 9.36e-04 1.87e-05 3.75e-05 
P 1 . m  * 4 3 . m / ~ l , m  1.23e-01 4.8 le-05 1.87e-05 3.73e-07 

-4.44e-02 - 1.22e-03 3.21e-06 1.95e-03 
P 1 . m  * q 3 . m l q 3 . m  4.95e-00 5.75e-04 3.3 le-06 6.25e-02 

-3.12e-02 4.44e-05 1.88e-05 3.75e- 10 
~ 2 . m  * q l , m / p 2 , m  2.28e-01 4.33e-04 2.00e-05 6.82e-06 

- 5.09e-02 - 3.46e-04 1.72e-05 2.25e-04 
4.35e-02 4.95e-04 1.42e-05 6.10e-04 Mean 

Standard 9.17e-01 1.45e-04 1.75e-05 2.65e-02 
Deviation 1.43e-00 1.99e-04 1.4 le-05 2.94e-02 

2) Deconvolution Effects: The deconvolution of h, 
from the Nicolson-modified record off, is, in the fre- 
quency domain, given by 

waveform by another: 

G k  * 
G k H k  -/- G k H B , k S k  = 

G ;  = 
H k  + H B , k S k  G ;  = 3 = G k H k  4- G B , k H k S k  = G 

Hk Hk -k (lo) Only the offset correction is required in this case. 
The g, is recovered by an inverse transform of G; and 
then a subtraction of a ramp. This ramp is obtained by c. A ~ ~ z u ~ - G ~ ~ ~  Method 
dividing r, by Eh, for all m. An offset correction is also I) Derivation: The NG operation consists of negating 
necessary becauseh and gp do not contain information on f, (f, = 0 for m < 0 and m > N - l),  delaying this 
the absolute position. The offset correction is done by negated version off, by N points, adding it to the original 
subtracting gh (gk is the inverse DFT of G ;  from g, and record, and then adding a square pulse to force the end 
then adding fo/Eh, to g,, for all m. The next equation . values to be the same [Fig. 2(c)]. Call this new function 
shows the results for the deconvolution of one step-like f;. The square pulse is zero-valued for m < Nand for m 
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1 N has a value equal to the sum of the values of the first N -  I 

and last points of the original record. The DFT off k is = (zo f m  exp ( - i n k m / N )  (1 - exp ( - ink)}  
N -  1 

F ;  = fm exp ( - i2nkm/2N)  
m = O  

2 N -  1 

+ [ fN- 1 + fo - fm-N]  eXp ( - i2nkm/2N)  
m = N  

N -  1 

= f m  exp ( - i n k m / N )  
m = O  

N -  1 

+ [ f N - l  + fo] exp ( - i n k m / N )  exp ( - ink)  
m = O  

N -  1 

- c fm exp ( - i n k m / N )  exp (-ink). ( 12a) 
m = O  

Letting f a  = f N -  + fo and rewriting (12a): 

Nf,; k = 0 

0; k = 2 ,  4, * * ,  2N - 2 
N -  1 

2 f m e x p ( - i n k m / N )  
m = O  

F; = 

k = 0 , 2 , 4 ,  e * *  , 2 N  - 2 ,  
N -  1 

= 2 f m e x p ( - i n k m / N ) ;  (14) 
m = O  r k = 1, 3, , 2 N  - 1. 

The change of the upper limit from 2N - 1 to N - 1 is 
possible because fm is zero-valued for m 2 N .  Now con- 
siderf2,m. The step-like function f a , ,  = f a / 2  for 0 5 m 
I N - 1, 0 for all other m ,  and arises from the convo- 
lution of g,,m (a function with value g, over some m so 
that f a  = g, Eh,, where g,  = gN - + go) and h,. Con- 
volving with d,, we get 

F2,k = Fa .kDk ,  

k = 0, 2 ,  4 ,  * , 2 N  - 2 ,  
N -  I 

1 m = O  exp ( - i n k m / N ) ;  

k = l , 3 ; . .  , 2 N  - 1, (15) 

N -  1 where is the DFT of Adding an N-point time- 
- f a  exp ( - i n k m / N )  shifted version of F2,k to Fl ,k  we get for F ; ,  

m = O  

N -  1 

= 2 fm exp ( - i n k m / N )  

- 2fa 
1 - exp ( - i n k / N ) '  

k =  1 , 3 ,  , 2 N -  1. 

( 12b) 
We now develop an operator expression to describe the 
NG technique that can be used to analyze the reconstruc- 
tion results. The NG extension process can be described 
by a convolution off, and the step-like function with an- 
other function, d,, and then adding these two new wave- 
forms. Let the function for the convolution process, d,,,, 
be equal to 1 for m = 0, - 1 for m 1 N ,  and zero-valued 
for all other m. We want to examine 

f a  f a  
f k = f m * d m + f u , m * d m  + - = f  2 ~ , m  + h , m  + 2' 

(13) 
where f a , ,  is the step-like function. The frequency rep- 
resentation of fi, is 

Fk Dk 

(:<: f m  exp ( - inkm / N )  

/ 2 N -  1 \ 

dm exp ( - iukm / N )  . ( m = o  

F [  = F l , k  - F2.k + Nfad(k) 

= FkDk - Fa,& + Nf,G(k), (16) 

where 6 (0) = 1. Using (14) and (15) in (16), we have 

Nf,; k = 0,  

k = 2 , 4 ,  * * , 2 N - 2  
N -  1 

2 f m  exp ( - i u k m / N )  

- 2 exp ( - i n k m / N )  

F;  = m = ~  

N -  I 

m = O  

k = 1 ,  3 ,  - * , 2N - 1, (17a) 

Ga3kHkDk + Ng,6(k) h,. (17b) 

Equation (17a) is identical to (12b); therefore, (17b) will 
be used to examine the errors associated with the 
NG-extended records on waveform reconstructions. 

2) Deconvolution Effects: First consider the deconvo- 
lution where h, is impulse-like, 

2 

or 1 
F;  = GkHkDk - 

m 

[GkHkDk - + Ng,6(k) Ga,kHkDk 

G; = 
Hk 
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This is the spectrum for an NG-extended record, and g, 
is recovered by simply ignoring the reconstructed record 
for m L N. The reconstruction error statistics are listed 
in Table I. 

Now consider the case for h, being step-like. Let H ;  
= 2Hk - Ha,k be the Fourier transform of the NG-ex- 
tended h,. Because F; is described by (12a), f k  should 
have been produced by a convolution of one NG-extended 
waveform and one nonextended waveform. Therefore, 
either g, or h, should be NG-extended. Choosing h, to 
be NG-extended gives the resultant deconvolution, 

k =  1 , 3 ,  , 2 N -  1 
- - 

The GI: # Gk because G; is undefined where H i  = 0, 
that is, fork = 2, 4, , 2N - 2. We can set G; = 0 
for k = 2, 4 ,  * - , 2N - 2, but in doing so g, becomes 
NG-extended (to get g,!,,). Consequently, f is the result 
of the convolution of two NG-extended records, g,!,, and 
h;. Therefore, we need to examine how this apparent 
convolution of two NG-extended records came about. 

The linear-time convolution of g,!,, and h,!,,, both of 
length 2N, produces a 4N-point record, and its frequency 
representation is 

- 

4 N -  I 

Fj” = f h e x p  (-i21rjm/4N), 0 I j 5 4N - 1. 
m = O  

(20a) 

The cyclic convolution [7] (lb), on the other hand, pro- 
duces a 4N-point record from the multiplication of the 
spectra of two 4N-point records where each record is zero- 
valued for a least 2N points. For the cyclic convolution, 
the two 4N-point records are the replicas of NG-extended 
waveforms from 0 to 2N - 1 and are zero-padded from 
2N to 4N - 1. Consequently, the convolution record is 
also zero-padded from 2N to 4N - 1. Equation (12a) with 
fa = 0 shows that for any NG-extended impulse-like (in- 
cluding an already NG-extended) waveform, each fre- 
quency component will be two times that of a zero-padded 
waveform. Therefore, for this case, the spectrum of the 
cyclic convolution should be half that of the linear con- 
volution, so that (20a) becomes 

4 N -  1 

Fj” = m = O  f6 exp (-i2xjm/4N) 

A subsequent deconvolution of h,!,, (ho-padded from 2N to 
4N - 1) from (20b), followed by an inverse DFT, then 
ignoring the gh-padded portion of this time record (2N to 
4N - l ) ,  and finally performing a DFT on the new 2% 
point time record gives 

2N- I 

GI: = g,!,, exp (-inkm/N) 
m=O 

0 5 k 5 2N - 1 (21) 
where g,!,, is the NG-extended g,. Comparing (21) to (12a) 
shows that G; is the spectrum of an NG-extended g, mul- 
tiplied by 1/2. Therefore, we get g, by multiplying (21) 
by two, inverse transforming, and ignoring the recon- 
structed record for m L N. 

At this point it is worthwhile to rectify a few erroneous 
claims regarding the NG method. The conclusion that the 
Nicolson and NG techniques provide identical frequency 
information [7] is not correct. We have obtained analytic 
expressions for both the Nicolson and NG modified rec- 
ords and tested the accuracy of these expressions. The 
equations describing the two processes do not give iden- 
tical spectra, even when ignoring the zeroes for the NG 
spectrum. The difference can also be verified by decon- 
volution. The dc component (k = 0) is not zero [2] nor is 
it twice that of the unextended data’s spectrum [8]. The 
dc component is Nf,, as shown in (12b). Another claim 
pertains to the power of the NG-extended waveform. The 
nonzero frequency components of the NG spectrum are 
not always related to the DFT spectrum of the original 
data record by a factor of two [8] as can be seen from 
(12b). The power of an NG-extended record, in terms of 
the power of an unextended record, is 

N -  1 2 N -  I 

N -  1 

N -  1 

= 2 P  + Nf: - 2f, f, (22) 
m=O 

where P is the power of the unextended waveform. 

D. First Difference 
The first-difference technique maintains the original 

record length and increases the noise power of the data. 
Let the first difference of the data be given by the con- 
volution of f, with the first-difference operator U,, 

f ;) = f, * U ,  (23a) 

where the superscript “( 1)” indicates the first difference 
and u0 = 1, u1 = - 1, and U ,  = 0 otherwise. The fre- 
quency-domain equivalent of (23a) is 

FL’) = Fk v k  = GkHk vk = GkHL” or GL1’Hk (23b) 

where vk is the Fourier transform of U ,  and is given by 
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TABLE I1 
MEAN AND STANDARD DEVIATION OF ERRORS FOR DECONVOLUTIONS USING 

THE THREE METHODS INDICATED AND FOR VARYING LEVELS OF 
PRECONVOLUTION ADDITIVE NOISE A,. THE CONSTANT c VARIES THE 

RELATIVE CONTRIBUTION OF A, TO 4,. SEE TABLE 1 FOR AN EXPLANATION 
OF THE VARIABLES. THE MEAN ERROR VALUE IS THE TOP LISTING OF EACH 

ARE THE AVERAGE OF SIX MEASURED VALUES. 
PAIR. BOTH THE MEAN AND STANDARD DEVIATION VALUES PRESENTED 

Nicolson Nahman-Gans Difference 

q 1 . m  * ( 4 2 . m  + CAm)/ql,m 
c = o.oO01 

c = 0.001 

c = 0.01 

c = 0.1 

c = o.oO01 

c = 0.001 

c = 0.01 

c = 0.1 

P1.m * ( 4 3 . m  + cAm)/Pl.m 

-4.96e-5 
1.23e-7 

-4.97e-4 
1.22e-7 

-4.95e-3 
1.31e-7 

-4.96e-2 
2.56e-6 

-9.88e-4 
8.22e-5 

- 1.44e-4 
1.33e-4 

- 5.91e-3 
9.49e-4 

- 5.08e-2 
9.46e-3 

4.60e-5 
4.96e-5 
4.97e-4 
4.97e-4 
4.13e-3 
5.30e-3 
4.96e-2 
4.96e-2 
3.87e-6 
1.70e-5 

- 2.27e-4 
2.46e-4 

-2.46e-3 
2.63e-3 
2.48e-2 
2.66e-2 

1.14e-7 
1.36e-3 
1.14e-6 
1.53e-3 
9.46e-6 
7.33e-3 
5.27e-5 
7.01e-2 

-7.75e-6 
1.66e-5 

-4.54e-4 
9.45e-5 

-4.93e-3 
9.30e-4 

-4.98e-2 
9.43e-3 

and Hi” and Gi’) are the Fourier transforms of the suc- 
cessive differences of h, and g,, respectively. If HI’’ is 
used in (23b), Gk is obtained by dividing Fi” by the dif- 
ference of Hk. A subsequent inverse Fourier transform of 
Gk yields g,. On the other hand, if Hi” is used in (23b), 
we first divide FZ” by Hk and then perform an inverse 
transform on Gi” to get g:). The desired signal g, is re- 
covered by integrating (running sum) g:’. An offset error 
may occur, and it is corrected the same way as done for 
the Nicolson method. Deconvolution error statistics are 
shown in Table I. 

IV. NOISE 
The effects of additive noise on a waveform reconstruc- 

tion can be described by 

(Gk -k Ai,k)Hk -k (Ga,k -l- A l , p , k ) H k S k  A 2 , k  
FFiC = 

FFif = (Gk -k Al,k)Hk vk -k A2,k (25) 

where Al ,k  and A2,k are pre- and postconvoiution additive 
noise, and the superscripts on Fk refer to the given pro- 
cess. Hk is assumed to be noise free. Division of the 
expressions in (25) by Hk causes amplification of the high- 
frequency components of A*, k .  Consequently, the decon- 
volution is unstable, and the reconstructed waveform is 
not representative of the original input. Techniques are 
available for dealing with this problem, but this is not a 
topic of this paper. If A2,k  = 0, however, the reconstruc- 
tion may resemble the input. Table I1 shows statistics of 

the results of reconstructions with varying levels of pre- 
convolution additive noise. The uniformly distributed 
noise A,  was generated using a pseudorandom number 
generator and has an amplitude range of -0.5-0.5. 

V. CONCLUSIONS 
We have examined techniques that reduce the effects of 

record truncation discontinuities in the spectra of step-like 
waveforms for application in waveform reconstructions. 
These techniques include time-domain windowing, the 
Nicolson ramp-subtraction technique, the Nahman-Gans 
record-extension method, and taking first differences of 
the data. We have shown that some of these techniques 
can be used as a predeconvolution process to facilitate the 
return of an accurate waveform reconstruction. 

The Nicolson, Nahman-Gans, and difference methods 
do not produce significant error in the reconstructed wave- 
form, whereas windowing may. Our observations show 
that an offset error may occur for all techniques and, ne- 
glecting this offset error, the errors in the reconstructed 
waveforms for deconvolutions using the Nahman-Gans 
technique are typically less than the errors caused by the 
other techniques. The trends displayed in Table I were 
also observed using other test waveforms, the data of 
which is not shown. The Nicolson method, however, was 
the least affected by preconvolution additive noise. Math- 
ematical operations were introduced to describe the Ni- 
colson, Nahman-Gans, and first-difference techniques 
and, in using these, we have been able to accurately de- 
termine the nonmachine-induced errors in the recon- 
structed waveform. 
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