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ABSTRACT

A new techniquefor intelligent form removal has been devel oped a ong with anew method for evaluating its
impact on optical character recognition. The form removal technique automatically detects the dominant linesin an
image and erases them while preserving as much of the overlapping character strokes as possible. Thismethod of form
removal relaxesthe recognition system’s dependence onrigid form design, printing, and reproduction by automatically
detecting and removing some of the physical structures (lines) on the form. The line detection and removal technique
operates on loosely defined zones in which no image deskewing is performed. The technique was tested on alarge
number of randomly-ordered handprinted lowercase al phabet fields, asthese | etters (especially those with descenders)
frequently touch and extend through the line along which they are written. It is shown that intelligent form removal
canimprove lowercase recognition by as much as 3%, but thisnet increase in performanceisinsufficient to understand
theimpact on the recognition. Thereisexpected to be trade-offswith the introduction of any new techniqueinto acom-
plex recognition system. A new statistical analysis was designed to evaluate the impact of intelligent line removal on
optical character recognition. This evaluation method compares the statistical distributions of individual confusion
pairs between two systems and automatically determines the significant improvements and the significant lossesin per-
formance. In order for system devel opersto continue to reduce error rates, sophisticated analyses like this become nec-
essary to understand the real impact a modification has on recognition performance. For example, this method of
evaluation should be very useful in squeezing higher performances out of voting systems. The statistical analysis pre-
sented in this paper was used to evaluate the new line removal technique and the results are reported.

1. INTRODUCTION

The National Ingtitute of Standards and Technology (NIST) has been actively conducting research in optical
character recognition (OCR) and the automated processing of handprint written on formssince 1988.1:23 Thisincludes
running several conferences sponsored by the Bureau of the Census that assessed the current state of the art in OCR
technol ogy.“’5 Asaresult of these conferences, and in conjunction with our own research®’, it has been shown that
computers are now ableto read isolated handprinted charactersaswell as (or better than) humans. Thisbeing true, why
arethere not numerous general purpose image reading software packages on the market, shrink-wrapped and ready for
immedigte sale? It is because character classification is only one small piece of an end-to-end character recognition
system.

One large technical hurdle still facing the OCR community includes the automatic detection of both physical
and logical structuresin adocument. Thisistermed Document |mage Under standi ng.9 For the purposes of this paper,
the types of documents considered will be limited to forms for which people are requested to enter responsesin pre-
determined fields. Physical structureson aform include the location of registration marks, instructional texts, linesand
rules, entry fields represented by lines or boxes, and handprinted responses. Logical structures on aform include the
reading order among the instructions on the form; the order in which the fields werefilled out on the form; the type of
information entered in each field, isit aname, an address, adollar amount, etc.; and the rel ationships between thefields,
for example, should fields sum together? Document recognition systems will become more like general purpose read-
ing machines as these capabilities continue to advance.

Specific issues facing automated forms processing include conducting intelligent form removal and robust
character segmentation. Realizing the need for continued progressin these areas, a project was formed to explore new
methods of form removal. The form removal technique developed and described in this paper isjust one of many alter-
native approaches', as anumber of companies offer their own solution. It is our experience that most of the resources
in the recognition community areinvested in algorithmic design and development. However, an equally important area



of research consists of evaluation methods for assessing and understanding the performance of complex recognition
systems. NIST has made aconcerted effort to integrateits algorithmic devel opment with desi gning automated methods
in which these algorithms can be more accurately evaluated and their impact understood.™*2 The contributions of this
study are therefore two-fold. A new form removal technique has been designed, and as a direct result of needing to
evaluate thistechnique, anew statistical analysis has been devel oped with which two recognition systems can be more
precisely compared.

Many current form removal techniques rely on identifying the type of form being processed so masks and
zone templates (prestored physical and logical structures) can be retrieved to aide in processing the form. These sys-
tems require strict adherence to form printing and reproduction specifications, and they require considerable effort
when adding new forms or modifying existing forms in the system. Once aform isidentified, the image is registered
so the form coincides with the retrieved masks and zone templates. The data comprising the form (including boxes,
lines, and instructions) are erased from the image and the entered responses (often handwritten) areisolated. These are
exactly the stepstaken by the NI ST Form-Based Handprint Recognition System, a public domain OCR package devel-
oped by NIST for transferring technology to industry and providing a baseline of performance from which other com-
mercially available products may be evaluated and compared.13 Copies of this system may be received free of charge
by writing the author aletter of request on company letterhead.

Unfortunately for OCR systems, people have been trained from an early age to write along aline. Their writ-
ing will frequently intersect the line with some lowercase letters naturally extending all the way through the line. If
form removal is not done carefully, portions of the characters overlapping the line will be chopped up, either causing
holesin the middle of character strokes or completely removing entire pieces of the character all together.

To improve the NIST public domain OCR package, a technique was devel oped to automatically detect and
intelligently remove some of the physical structures on aform (in this case, lines) so asto preserve overlapping char-
acter strokes (which improves the quality of character segmentation). The images in this study are scanned as binary
(black and white). As aresult, there is often high ambiguity about what black pixels represent. At any point in the
image, ablack pixel may represent only line data, only character data, or the overlap of both. These ambiguities, along
with the challenges they create are discussed in Section 2.

A method of using the Hough line transform for detecting dominant linesin animageis presented in Section
3. This section also documents atechnique for intelligently erasing the detected line from the image while preserving
as much as possibl e the shape of overlapping character strokes. Theline removal isbased on computing a specific type
of line width statistic and keying off of certain visual cues. Results are reported in Section 4 from atest designed to
evaluate the impact of this new method on OCR. The NIST public domain OCR system was modified to incorporate
the new form removal technique, and the system was run on alarge number of handprinted randomly-ordered lower-
case al phabet fields from NIST Special Database 191 The performance statistics showed a 3% overall increasein rec-
ognition accuracy, but these global statistics only report the net impact on performance.

In most cases, a newly developed technique will improve the system, but with what trade-offs? It was neces-
sary to design a new statistical analysisto study the local changes in performance between the old and new versions
of the recognition system. This evaluation method compares the statistical distributions of individual confusion pairs
between the two systems, so both the significant improvements and the significant losses in performance are detected
and reported. Thismethod of evaluation should be very useful in squeezing higher performancesout of voting systems,
in which the decisions from multiple classifiers are combined to improve recognition performance.15 The statistical
analysis was used to evaluate the new form removal technique and conclusions are drawn in Section 5.

2. CHALLENGES of ROBUST FORM REMOVAL

2.1 Examples of Visual Ambiguities

Examples of black pixel ambiguity areillustrated in Figure 1. At timesit becomes very difficult to distinguish
which black pixels represent character data, which represent line data, and which represent the overlap of both. This



ambiguity can cause confusions as shown in examples (a- €). Is the character shown in example (a) ana or ann?In

example (e), the characters shown were printed by the same writer. The character on the left isa g, and the character

ontherightisaq. Thetail of the qisoccluded by theline on theform causing both charactersto look alike. In examples
(f) and (9), it isdifficult to determine which black pixels are part of the descenders of the lowercase characters, and in
example (h), the bottom stroke of the s coincides with the line.

nora? eorp? horb? jori?

el A N2

@ (b) (© (d)

writer’s tail tails bottom
g & ¢ of g of g's stroke
(e) ) (9 (h)

Figure 1. Examples of line and character stroke ambiguity in binary images of handprint.

Most of the examples shown in Figure 1 can be deciphered correctly by a human upon close inspection. A
person resolves these ambiguities by comparing shapes from alternative classes of charactersin conjunction with pro-
cessing certain spatial cueswithin the configuration of black pixels. For example, we probably compare the difference
in widths between the line and character strokes, and we compare the trgjectory of the line with the shape of the char-
acters. The techniques devel oped for intelligent form removal that are presented in this paper were motivated by these
types of visual cues. Unfortunately, visua cues alone are not always enough to resolve the ambiguity, in which case
other sources of contextua information must be applied. Thisinformation may include considering alternative classes
of characters with similar shape and then resolving the alternatives through the use of alanguage or word model 16
The use of these other contexts to help resolve ambiguitiesis |eft to a future study.

2.2 Automatic Form Structure Analysis

Another purpose of this study was to devel op fundamental technology that contributes to the automatic anal-
ysis of form structures. A form structure includes such things as the geometrical layout of the fields on the forms, the
spatial extent of each field, along with other logical and semantic relationships between the fields. The ultimate goal
of this technology would permit the introduction of a new form into an automated forms processing system without
requiring any adaptation or retraining of the system. Currently, most form recognition systems require the geometric
layout of aform beknown apriori. To accomplish this, the system first identifies the type of form being processed from
apredetermined set of forms, and then the system retrieves the geometric data (masks and zone templ ates) correspond-
ing to theidentified form type. These systemsare limited to processing formsthat belong to the predetermined set, and
they are completely dependent on the prestored geometric data.

Many forms processing applications have very loose controls over the quality of their forms. The same type
of form may be typeset and printed by different printing contractors, on different paper stock, on different types of
printing devices, and peoplefilling out the form may even be permitted to return photocopies or facsimiles of the orig-
inal form. These different factors contribute to variations in the geometric layout of the form. Rather than measure,
categorize, and store each new variation of aform, it would be much more efficient to relax the dependence of the
recognition system on this geometric data. Ultimately, all dependence on prestored form information would be elimi-
nated, but thisisvirtually impossible since no standards yet exist for specifying how forms should be laid out and how



fields on aform should be best represented for optical character recognition applications, although some studies have
been conducted to help address these issues.>1’

Inlight of this, aform removal technique was designed to help reduce the dependence of aforms processing
system on the geometric details of the form. The method described in the next section takes aloosely zoned binary
subimage of afield and detects and removes all dominant horizontal linesin the subimage, while preserving the char-
acter strokesthat overlap with thelines. Any field in which the writer was provided ahorizonta lineto enter aresponse
can be processed by this method. The form’s lines are removed and the handprint is isolated regardless of form type.
Some global registration of the form is needed to produce loosely defined zones, but no precise pixel coordinates of
the field's size and location are required and no prestored image mask of the form is required. In thisway, aform’s
geometry is still needed, but the dependence on this information has been greatly relaxed.

3. INTELLIGENT LINE DETECTION AND REMOVAL

The form removal technique described in this paper removes all dominant horizontal lines from a binary
image. The removal of alineisdoneintelligently so asto preserve any part of a handprinted character that overlaps
theline. Previoustechniqueswould simply erasetheline, typically by applying amask or template of the form. If char-
acters overlapped the form information, this data was also erased, leaving gaping holesin the middle of character
stokes (especially descenders). A postprocess was then required to fill the resulting holes. Detection of these holes can
be accomplished by dilating the mask and logically ANDing it with the erased image. Candidate holes are located
where the black pixelsin the dilated mask overlap with the black pixelsin theimage. The challengeis not so much in
the detection of holes, but rather in determining how the holes should be accurately filled.

Realizing the repair of character strokeswould be very difficult and proneto error, atechnique for intelligent
line removal was developed where character strokes are preserved simultaneously in conjunction with the form
removal. The technique involves two steps, the detection of dominant lines and the intelligent removal of those lines.

3.1 Line Detection Using the Hough Line Transform

The Hough transform®® deal s with the detection of specific structural and shape rel ationships between pixels
in an image. For example, the Hough line transform®® is an elegant template matcher that determines the number of
possible lines that fit at |east some of the pixel datain an image. For comparison, consider a crude line detector con-
structed by defining a set of matrix templates, each containing a single pixel wide black line at a different orientation.
Each of these templatesiswindowed acrosstheimage, and at each step, the amount of coincident black pixels between
the template and the image are counted and stored. The same processis repeated for each of the line templatesin the
set, and locations in the image that incur a high pixel coincidence are determined to contain the associated line. This
type of line detection workswell for many applications, however it isinefficient because every pixel in theimage has
to be repeatedly searched for every linein the template set.

The Hough line transform avoids this repetitive application of successive templates by constructing a param-
eterized (voting) matrix representing all the possible lines that may reside in the image. The image data is searched
only once, and at each black pixel in theimage the question is asked, “ Given this point, what are the possible lines that
can pass through this point?’ Each one of the possible linesis represented by an addressable cell that isincremented
in the voting matrix. As black pixels are encountered in the image, cellsin the voting matrix are updated accordingly.
By the time a single pass through the image is complete, the voting matrix has recorded all the possible linesin the
image. The more black pixelslying along a specific line, the greater the corresponding cell value in the matrix. Dom-
inant linesin the image can therefore be systematically detected by ssimply finding the largest values in the matrix.

3.1.1 Solid Line Detection

Thisraisesthe question, “How are lines parameterized and used to address this voting matrix?” One possibil-
ity would be to use the slope-intercept form of aline in which one axis in the matrix would represent possible slopes



and the other axiswould represent corresponding y-intercepts. A problem with using the slope-intercept parameteriza-
tion occurs when aline approaches a vertical orientation, in which case the slope and intercept approach infinity. To
avoid discontinuities, the normal representation of aline listed in Equation (1) is used instead.

p; = XC0S6, +ysing, (1)

Figure 2 (3) illustrates aline and its corresponding parameters in normal representation form, (6;, pj). The
matrix on the right shows the associated Hough line transform voting matrix. Given ablack pixel in the image at posi-
tion (X, y), 8; isincremented between 6, and 6,5 according to a predefined step factor, and the corresponding p;'s
are solved according to Equation (1). For each (6;, p;) pair, the representative cell in the voting matrix isincremented
by one.

A goadl in this study was to detect all dominant horizontal linesin the image. To accomplish this, the Hough
line transform detection utility was designed so 6,y and 6,5 could be specified using asasingle value, £d degrees.
This argument limits the range of angles in which lines are considered. However, the positive and negative values of
this argument must be converted to normal representation, -d must be mapped to (90° - d) and +d to (d - 90°). Soin
order to search for linesin therange +5 degrees, two Hough Transform voting matrices are required, one matrix with
Omin= 85° and 6,,5= 90°, the second matrix with 6,,i,= -90° and 6,,,5,= -85°. An increment of 1° was used to sample
across these two sets of 0 ranges.

The other dimension of aHough line transform voting matrix represents p, the length of the normal vector
that intersects the given line and passes through the origin. The range of possible p’sis determined by the dimensions
of theimage being processed. A normal vector could potentially be extended from the origin of theimage to any point
in theimage space. Plus, thelength of p can be positive or negative. Therefore, pyin 1S Set to the negative of theimage's
diagonal length, and p,4 is Set to the positive diagonal length. These limits on p are an upper bound. Tighter ranges
can be imposed by taking into account the limitations placed on 6.
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Figure 2. Line parameters in normal representation form (a) and the Hough Transform voting matrix (b).

Upon one compl ete pass through the image, the two voting matrices are searched to determine where the dom-
inant horizontal lines are. The pseudocode in Figure 3 describes how a dominant line is selected. Given the voting
matrix with negative 6's (NegMx) and the matrix with positive 6's (PosMx), the top-n (for this study n=5) candidate
lines are chosen. The voting matrix is a discrete representation of the (6;, p;) parameter space, and linesin abinary
image are typically much wider than a consistent theoretical line width of one pixel. The rounding of actual 6’sto dis-
cretecell’sin the matrix in conjunction with linesin theimage having apixel width greater than one contributeto small
ambiguitiesin the voting matrix. At timesasingle linein the image may be closely represented by more than one cell
in the voting matrices. This creates a number of different implementation challenges. First, the votes within asingle
cell of thematrix (in general) reflect the dominance of theline, but they do not reflect the pixel length of theline. Neigh-



boring pixelswill frequently map into the same (6;, p;) cell, but the geometric position of the extra pixels contribute
to the width of the line, not to the line’s length. A second challengeis, once aline has been detected and erased from
the image, other cells representing a very similar line should not be considered because a significant number of their
pixelswill already have been removed from the image.

Given NegMx and PosMx
Find Top 5 Candidate Lines
Choose max from NegM X and PosMx
Convert max (6;, p;) to slope and intersection point
Compute where line intersects edges of the image
Count black pixels along line trajectory
Store left-most black pixel and right-most black pixel
end find
Choose line from set of candidates with max black pixels
Set corresponding (8;, p;) cell in appropriate Mx to zero

Figure 3. Pseudocode for dominant horizontal line selection.

To handle ambiguities in the voting matrices, the top-n combined candidates from the positive and negative
6 voting matrices are considered for the detection of adominant horizontal line. The five cellswith the most votes are
selected, and the slope and normal vector intersection point are computed for each candidate line from their corre-
sponding (8;, p;) parameters. Given a(8;, p;) pair, the slope mof the lineis computed as

m = tan (90° + 0) 2

and the normal vector intersection point (X, yy,) is calculated

X = pcoso (€)

n
Yn = pSing (4)

Some of the implementation details not discussed in this paper include ensuring equivalent values of 6 are
consistently represented in quadrants appropriate for system-provided trigonometric library functions. The method
described in this paper ensured all 8's were consistently represented by their equivalent anglesin quadrants| and 1V
(-90° to +90°). Also not mentioned are the details on how (8;, p;) pairs were mapped to discrete (i, j) cellsin the matri-
ces. Thisinvolves keeping records of the minimum and maximum values for each dimension of the voting matricesin
conjunction with taking into account the step size used to samplethe range of 6's, and offsetting values of p according
to twicethe diagonal length of theimage. These implementation details and others are left as an exercise to the reader.

Using simple line geometry, the points where each candidate line intersects the edge of the image are com-
puted, and the number of black pixels along each line trgjectory are counted. In addition, line lengths are computed as
the distance between the left-most and right-most black pixels along each line trgjectory. In the end, the candidate line
with the greatest number of black pixelsis selected and the line's (8;, p;) cell in the appropriate voting matrix is set to
zero, so the cell will not be selected again. If on a subsequent dominant line selection, a(6;, p;) cell with maximum
value turns up to have no black pixels aong its line tragjectory, then the line must have been redundantly represented
by acell already processed. In this case, the current (6;, p;) cell is appropriately set to zero and the search for the top-
n candidates continues. This search terminates prematurely if the total vote v for the next maximum (8;, p;) cell falls
below half theimage width w, v < (0.5 x w). If this happens, then only those candidates already found are considered
for dominance selection.

Line selection continues according to the algorithm in Figure 3 aslong astwo dominance criteriaare met. The
first test isbased on thelength | of the detected line as compared to the number of black pixelsb counted along theline
trajectory. If b < (0.75x 1), then the test for dominance fails and line selection terminates. The second test is based on
the length | of the detected line as compared to the overall width w of theimage. If | < (0.5 x w), then the test for dom-



inance fails and line selection terminates. The constants used in the dominance criteria have been tested over a broad
range of field types, however they may require modification for other applications.

3.1.2 Dashed Line Detection

A second technique was designed for detecting dashed linesin animage. Aswith solid lines, the dashed line
method uses the Hough line transform. The top-n (8;, pj) cellsin the voting matrix are used to direct the search for
dominant dashed lines, but unlike solid lines (which were selected based solely on the number of black pixelsin the
line), dashed lines are selected by analyzing the regularity of black and white pixel runs along a given line trajectory.
In general, adashed linewill exhibit avery regular pattern of black pixelsfollowed by white pixelsfollowed by black
pixels, and so on. To measure this regularity, the length of the runs of black pixels and the length of the runs of white
pixels are measured, and a standard deviation is computed for each of the two sets. These standard deviations are then
combined to compute a score by which dominant dashed lines are selected.

The formulafor deriving the score is based on two criteria that measure how small both the black and white
pixel run length standard deviations are. Thefirst criterion measures how small the standard deviations are relative to
the other candidate lines. The smaller aline's standard deviations are compared to the other candidates, the more reg-
ular are the particular line's dashes and intervals between the dashes. Given the maximum standard deviation o),
(whether black or white) from the entire list of candidate lines, smallness sis calculated as

(06— O ®)
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M

where 6, isthe larger of the current line’s black o, or white 6,, pixel run length standard deviations. Asthe current
line's 6,,, becomes increasingly small, s approaches 1.0. As 6,,, becomes increasingly large and approaches 6, S
approaches 0.0. The standard deviations are computed according to Equation (8).

The second criterion measures how close aline's standard deviations are rel ative to each other. Both standard
deviations (white and black) must be equally small to represent a dashed line. It was observed that aline tragjectory
passing through handprinted text exhibits regular black run lengths because the writing has afairly consistent stroke
width, however the lengths of the whiteinterval s between the characters fluctuates much more. To distinguish adashed
line from aline trajectory passing through handprint, both how small and how close the black and white pixel run
length standard deviations are to each other must be considered. In light of this, closenessc is calculated as
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The average of the two resultsin Equations (5) and (6), a = (s + ¢)/ 2.0, is used for the final score of each
candidate line. The line with the maximum scoreis selected as the dominant horizontal dashed line. Dashed line selec-
tion continues according to the algorithm in Figure 3 (with selections based on the a scores) aslong as two dominance
criteriaare met. Thefirst test is based on the length | of the detected line as compared to the number of black pixelsb
counted along thelinetrajectory. Dueto adashed line having significantly fewer black pixelsthan asolid line, the dom-
inance factor used for thistest is reduced from 0.75 (used for asolid lines) to 0.1. If b < (0.1 x I), then the test for
dominance fails and line selection terminates. The second test is exactly the same asthe one used for solid lines. If | <
(0.5 x w), then the test for dominance fails and line selection terminates, where| isthe length of the detected line and
w isthe width of the image.

3.2 Intelligent Line Removal

Upon detection, each dominant horizontal line in theimageis carefully removed so the character datain the
image is preserved. This requires an ability to distinguish line data from intersecting and overlapping character data.
As shown in Section 2, there can be a significant amount of ambiguity in binary images because black pixels can rep-



resent part of the line, part of the character, or both overlapping each other. Humans resolve these ambiguities amaz-
ingly well, and one way they accomplish thisis through careful analysis of visual cues. The technique developed for
this study tries to mimic this ability.

The method begins by processing what is known and predictable, and based on theinitial processing, further
refinesitself. At first, the only known and relatively predictable structure in the image is the detected line. To begin
from the location of plausible characters would be full of pitfalls as character locations, sizes, and shapes can vary
greatly. We do, however, have areasonably good description of the line trgjectory in the image, and we know the line
has arelatively uniform width. It iswith this knowledge that initial assumptions are drawn and the processing begins.

Thefirst step isto get a good estimate of the width of the line in the image. The detected lines are relatively
horizontal, which enables them to be represented as a sequence of vertically oriented slices (the width of one pixel)
that when sandwiched all together form aline. The position and length of each one of these slices can be measured and
stored by traversing the detected line trajectory, and at each successive horizontal position, computing the length of
the vertical run intersecting that point on the line. The location of the top-most black pixel, the bottom-most black
pixel, and the intervening distance (height) for each slice on the line are computed and stored. In theory, the slices will
all be of equal height, but small fluctuations are common dueto the varying quality of the source document and scanner
jitter. The most pronounced fluctuations in slice heights occur when other data, such as characters, intersect the line.
Thereis often an observable discontinuity in the heights of the slices as black pixels from the character are merged
with the black pixels of the actual line. These large fluctuations occur relatively infrequently across the length of the
line, so amajority of the line slices do represent the true width of the line. Operating under this assumption, the esti-
mated width of the line is computed as the median slice height along the entire line (between the left-most and right-
most black pixels along the trajectory). Figure 4 illustrates how slice heights fluctuate with the intersection of a char-
acter.
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Figure 4. lllustration of dlice heights along aline trajectory.
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Figure 5. Result of removing dlicesless than or equal to the median slice height.

Oncethe estimate for the line width has been computed, all sliceslessthan or equal to the median dlice height
in length are erased from the image. In the example shown in Figure 4, the median dlice height is 5. All dices with
height less than or equal to 5 are removed from the image and the result is shown in Figure 5. The remaining slices
need further processing in order to separate the line data from character data.



3.2.1 Fuzzy Line Segment Removal

Removing all sliceslessthan or equal to the median slice height performs exceptionally well when the quality
of the scanned document image is very high. Unfortunately, image quality can vary significantly in many applications
dueto thefluctuationsin the quality of source documents and the reflectance properties within the optical performance
of scanner’s. It has been observed in our database collections that the width of aline, when scanned, can vary consid-
erably across the length of the line, even when the lineis clearly printed with a uniform width. At times aline may
gradually thicken, and at other times, it may narrow. If these fluctuations exceed the median slice height, then entire
sections of residual line datawill remain. To account for these small but gradual deviations, amethod for detecting and
removing segments of fuzzy lines was developed.

ARGUMENTS: STEP 3:
A1l. avector of dlice statisticsincluding their tops, bottoms, heights, If the current slice’s height is small enough (C1 or C2) to contain
and erasure status only linedata ...

A2. the median slice height from all the slices Select one of the following steps that apply:
3.11f not in the middle of arun of slicesto be erased, then
start anew run and initialize run’s dlice stetistics.
If the current slice’s left neighbor is erased, then
use the looser tolerance (C1) for testing the heights of
future slicesin the run.
Otherwise
assume the run begins from a piece of character and
use atighter tolerance (C2) for testing the heights of
future dicesin the run.
3.21f inthe middle of arun of dlicesto be erased, then
update the current run’s slice statistics.
If the dlicesin the run fluctuate more than a fair amount
(C6), then
- restart the run from the current slice.
- use atighter tolerance (C2) for testing the heights of
future slices in the run because the new run begins
from a piece of character.

ALGORITHM:
for each dlicein the vector slices (A1)
Select one of the following steps that apply:
1. If at the end of arun of unerased dlices ...
2. If in the middle of arun of unerased slices AND
the current slice’s height istoo long (C1 or C2) to contain
only linedata...
3. If the current slice’s height is small enough (C1 or C2) to
contain only linedata ...
Otherwise, continue to the next slice
end for

STEP 1:
If at the end of arun of unerased dlices ...
Select one of the following steps that apply:
1.1 If run began from the point of an erased dlice, then
erase the run of dlices.
1.2 If run began from a piece of character, then (be restrictive)
erase the run of dlices only if the length of the runislong
enough (C3) to compute and test minimal line statistics.

CONSTANTS:
C1. alooser tolerance on slice heights based on the median slice
height (A2). C1 = max(A2 + 3, A2* 2.0)

STEP 2:
If in the middle of arun of unerased slices AND
the current slice’s height istoo long (C1 or C2) to contain only

C2. atighter tolerance on slice heights based on the median slice
height (A2). C2 = max(A2 + 3, A2* 1.5)
C3. aminimum run length required to get and test line statistics.

C3=3

C4. alonger run length required to get “accurate” statistics for vali-
dating aruntobealine. C4=A2* 3.0

C5. avery small amount of fluctuation among unerased slicesin a

linedata...
If run began from a piece of character, then (be more restrictive)
If the run islong enough (C4) to have reasonably accurate
line statistics for validating the run of slicesasaline AND

there is a very small amount of fluctuation (C5) among the run.C5=1
heights of the slicesin the run, then C6. afair amount of fluctuation among unerased slicesin arun.
erase the run of slices. C6=2

If run began from the point of an erased dlice, then
don’t do anything and continue to the next slice because
character strokes often merge continuously with the line, and
erasing arun in this case risks erasing character data.

Figure 6. Algorithm for removing fuzzy line segments.

The agorithm (listed in Figure 6) continues to analyze and process the unerased slices along the line trajec-
tory. Thelist of remaining slices are processed left to right, with contiguous slices that exhibit line-like statistics being
gathered into groups, called runs. Thereis at |east one core strategy incorporated in the algorithm. This takes into
account whether arun starts and ends at the point of erased slices or from slices containing character data. When arun
starts or ends at a piece of character data, tighter tolerances and stricter tests are applied to determine if arelatively
uniform run of glices contains only line data and therefore should be erased. In comparison, the criteria used to erase



arun of relatively uniform slices that begins and ends at points of erased slicesis much morerelaxed becauseit isvery
unlikely the run contains any character data whatsoever. The tightening of tolerancesincludes changesin thelimitson
dlice height, amount of fluctuation within arun of slices, and the length of the run. The length is an important criteria
because the longer the contiguous slices maintain relative uniformity, the more likely the slices are only part of the
line. The dynamic adjusting of these tolerances defines fuzzy line width boundaries that permit smooth fluctuations
around the median slice height. The algorithm also attempts to preserve as much of the character data as possible.

3.2.2 Filling Character Voids

Even with all the careful adjusting of tolerances in the fuzzy line segment removal, there can still be unre-
solved ambiguities in the image. Using the line dlice techniques described above, the chance of these ambiguities
increases as the width of the character stroke becomes increasingly thin. For example, study the illustration in Figure
7, whereacurved character stokeis shown overlapping aline. This particular configuration could represent the bottom
of aC or an O. The width of the character stroke is smaller than the width of the line, and the regions shaded in gray
represent dlices already erased by the line slice removal methods (based on median slice height and fuzzy line seg-
ments). In this example, the bottom of the character stroke is completely enveloped by the intersecting line, so upon
erasing line dlices, the character stroke isinadvertently cut in two, leaving avoid shown as the middie gray region in
the figure. Two different methods were developed to detect and refill these types of voids.

v
v

Figure 7. Part of an overlapping thin character stroke erased.

The first method takes into account the fact that the shorter the length of avoid, the more likely two neigh-
boring character pieces belong together and the void should be filled. To fill avoid, the erased slices comprising the
void are simply redrawn in theimage. The method also looks for compatibility between the two neighboring character
pieces. Each contiguous group of erased dlicesis gathered into arun, and then each run is processed independently as
apotential void. The limit used to determine if avoid is short enough is based on the median slice height of theline.
Specifically, alimit of Ig= max(8, 8 x m) was used, where I is the resulting limit and mis the median slice height. If
the length of arunis short enough, then each edge of the runistested for compatibility. Adjacent to the run’sleft and
right edges are slices that have not been erased and are assumed to contain pieces of characters. If the heights of the
left and right unerased slices are both within the limit [, = m+ 2, then it islikely the void contains character data, and
itisfilled.

The second method of filling voids is more complex. Voids caused by character curvatures overlapping the
line, like the one shown in Figure 8, often exceed the first method’s limit I, To detect and fill these long voids, it
becomes necessary to analyze the shape characteristics of the neighboring character pieces. This time contiguous
groups of unerased slices are gathered together into runs, and neighboring runs are compared to each other. First, their
interior vertical edges (V, and V, in the figure) are tested to make sure the intervening void passes completely through
the neighboring character pieces. The erased slice (V) adjacent to the right side of the | eft character pieceis searched
above and below for any reasonably close character data. The sameis done for the erased slice (V,) adjacent to the | eft
side of the right character piece. Next, the bottoms of the character pieces (H, and H,) are tested to make sure no char-
acter data extends through the bottom of theline. If these vertical and horizontal edges are clear of character data, then
it can be deduced that the character stroke comprising each of the neighboring character pieces begins above theline
and extend downwards intersecting the line without protruding through the bottom of the line.
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At thispoint it is necessary to examine the top interior contours of the two character piecesto determineif in
fact a curvature exists and whether the void should befilled. In Figure 8, line projections L and L, are used to approx-
imate the top interior contours. Projection L, is computed by tracing the left character piece’s contour, starting at the
top right edge (V)), and tracing the contour 6 steps upwards and to the |eft. The 6 pixel stepsiny are divided by the
accumulated change in x, and a slope is computed and used to construct the projection. The same process is repeated
for the right character piece and the projection L, is computed. Given L and L, the two character pieces are assumed
to comprise a curvature and the intervening void isfilled if all the following criteria hold:

1. L, ishorizontal or has positive slopeand L, isvertical or has negative slope. (Remember inimage
space, the origin isin the top left corner and positive values of increasing y extend downward.)

2. One projection is not perfectly vertical while the other projection is perfectly horizontal. (This
technique has been tailored for handprint in which case such exactnessis unlikely to naturally
occur within the formation of a character.)

3. The length of the intervening void must be less than the limit | = max(10, 5.0 x m). (This avoids
filling ridiculously large voids between two character pieces most likely not part of the same char-
acter.)

4. L, and L, intersect at a point within the region of the intervening void. (There must be reasonable
convergence of the two projections for the two character pieces to be joined together.)

H v Oy Hy
|

\Y,

Figure 8. Detecting and filling along void in a character curvature.

3.2.3 Corner Detection and Removal

Ascan beseenintheillustrations, after line slices have been erased and any character voidsfilled, the remain-
ing slices contain a mixture of black pixels belonging to the line and black pixels belonging to the character. Notice
the corners protruding downwards from each side of the character. These corners contain black pixels belonging
mostly to the line. The next step in the line removal method attempts to locate and clip these corners off. This helps
shape the character strokes that intersect the line. There are four different corner orientations, one for each corner on
arectangle. Oncethelogic for cutting away one corner has been derived, it can be easily adapted to remove any of the
other three orientations.

In order to locate these corners, a number of categories have been defined that represent the majority of fre-

guently occurring configurations of charactersintersecting with theline. Contiguousline sicesremaining in theimage
are grouped together and categorized into one of the eight different categoriesillustrated in Figure 9.
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Thru_DL Thru_DR
Thru_UL Thru_UR

Figure 9. Eight general categories of intersecting line and character stroke configurations.

Thefirst two categories, boot and hat, represent instances where characters such as O’'s or C'stouch the line
on the bottom or top respectively. The next two categories, pos_cross and neg_cross, represent instances where
descenders of characterssuch asj’sand y’s pass compl etely through the line on the form. The difference between these
two categories is the slope with which the character stroke crosses the line. The remaining categories represent char-
acter strokes that intersect the line, but only pass completely through on one side. In comparison, pos_cross and
neg_cross categories pass completely through the line on both sides. The category thru_dl (standing for “through and
downtotheleft”) represents characters such as S'sor J sthat touch the line on the bottom. The category thru_dr (stand-
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ing for “through and down to the right”) represents characters such asc's or € sthat touch the line on the bottom. The
category thru_ul (standing for “through and up to the left”) represents characters such as D’s or Z’s that touch the line
on thetop. Finaly, the category thru_ur (standing for “through and up to the right”) represents characters such asE’s
or F'sthat touch the line on the top.

Each of the eight categories has one or more corners containing residual line datathat should be clipped from
the character. As mentioned above, all four corner orientations (top-left, top-right, bottom-left, and bottom-right) exist
among these configuration of character strokes. A boot contains bottom-left and bottom-right corners, a hat contains
top-left and top-right corners, apos_cross contains bottom-|eft and top-right corners, aneg_cross contains top-left and
bottom-right corners, and so on. By studying theillustrations in Figure 9, you can observe that every corner has one
edge adjacent to the position of an erased slice. The position of the erased slice defines one point from which the corner
should be clipped. If a second point along the other edge can be located, the corner is cut off by interpolating aline
between the two points. If the second point cannot be located, the slope of the cut lineis estimated from contour sta-
tistics near the first cut point. The corner isthen clipped according to aline projected from the first point. A couple of
examples are given for amore detailed explanation.

In the case of pos_cross and neg_cross strokes, the second edge of the corner can usually be found by search-
ing the contour of the overlapping line and character datafor an inflection point. Figure 10 illustrates the clipping of a
bottom-left corner on apos_cross. The left vertical edge of the corner is adjacent to the last slice erased from the line.
Thetop of thiserased slice marksthefirst point (labeled point A) from which the corner should be cut. The second cut
point (labeled point B) islocated by traversing the bottom horizontal edge of the corner starting at the bottom of the
erased slice and searching right until the straight line runs into the edge of the character stroke. At this point, the con-
tour will typically make a subtle bend (or inflection). Thisinflection point is detected by accumulating the aggregate
changein the second derivatives along the contour. Given an array y that contains the y-coordinates of the bottoms of
the unerased dlices, the second derivatives can be accumulated by summing the values

d=-Y_1+2%-Yi, ()

'/-A

—

Figure 10. Cut points for the bottom-left corner on apos_cross character stroke.

Second derivatives are used in place of first derivativesin order to relax the method’s dependence on deskew-
ing. By examining the second derivative statistics, theimageis permitted to contain some rotational distortion that will
cause the y-coordinates along the bottom of the line to have slope other than zero. In our study, an inflection point was
detected whenever the accumul ated second derivatives exceeded one. Oncethe two points (A and B) arelocated, aline
isinterpolated between the two points (represented as the dashed linein the figure), and the black pixels below and to
the left of the line are erased. These pixels are assumed to be part of the ling, not part of the character.

At times, the line and character data merge so smoothly that no inflection point can be reliably detected. This
can happen with any of the eight categories, but it almost always happenswith bootsand hats, and it frequently happens
with the four thru_? categories. In these cases, only one of the cut pointsis known (the one adjacent to the last line
dice erased). For example, consider the bottom-left corner on the thru_dr stroke shown in Figure 11. Cut point A is
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determined by the location of the last line slice erased to the left. Assume in this example the character stroke and the
line data merge smoothly enough that inflection point B cannot be detected according to second derivative statistics.
In instances like this, the contour pixels near point A are analyzed and used to project a line towards point B.

Figure 11. One-sided projection to cut off the bottom-left corner on athru_dr character stroke.

Thisisdoneby starting at thetop of the last erased line slice (one dliceleft of point A) and searching upwards
for thefirst black pixel. This pixel isassumed to lie along the edge of the character stroke. Then, the same search is
conducted from the top of the next slice to the left, and then the next slice to the left of that slice, and so on. If black
pixelsare found, then as many as 6 consecutive sliceswill be used in the search, producing consecutive contour points
along the character stroke. Therelative differences between each successive contour point’sy-coordinateis cal cul ated
and the total changeiny istallied and used to compute aslope. A lineis projected from point A (represented asthe
dashed linein thefigure). Any black pixels below and to the Ieft of the line are erased, as they are assumed to be part
of theline. The projected cut line only approximates the location of the second cut point. The contour of the character
would be more accurately represented by a projected curvature. Nonethel ess, representing the projected character con-
tour with a straight line, in practice, does a reasonably good job at estimating point B.

3.2.4 I dentifying Character Stroke Categories

To this point, we have described eight general categories of overlapping line and character stroke configura-
tions. Within each of these categories, we have identified a predictable number of areas represented as cornersthat con-
tain black pixels comprising line data, and we have described two different techniques for detecting these corners and
removing the black pixels. A step not yet discussed is how do overlapping line and character stroke configurations get
categorized into one of the eight groups?

~_

A
\

Lé/‘ KLU R;g/‘ k\Ru

Figure 12. Slice comparisons for determining the location of character data.
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Recall that each line and character stroke configuration isidentified by the contiguous group of line slices not
yet erased. Each configuration is categorized by measuring the slice statistics on the left and right edges of the group.
Theleft and right pair of slices for aboot areillustrated in Figure 12. The top and bottom of the |left-most unerased
dliceiscompared with thetop and bottom of its adjacent erased slice, and the top and bottom of the right-most unerased
dliceis compared with the top and bottom of its adjacent erased slice. Character datais determined to exist above or
below the line by measuring the differences between the tops and bottoms of these pairs of slices.

Inthisfigure, Lo represents the last slice erased on the left, and L, represents the left-most slice unerased in
theline-character configuration. Thetopsand bottoms of these two slices, when compared, determinethereischaracter
dataabovetheline. Thesameistruefor theright pair of slices. The dice R, representsthelast slice erased on theright,
and R, represents the right-most slice unerased in the configuration. The configuration of unerased slices can be iden-
tified using these simple features (whether character data is detected above or below the left and right edges). For
example, if character datais determined to be above the line on the left (but not below), and character datais deter-
mined to be below theline on theright (but not above), then the group of unerased slicesisidentified to beapos_cross.
If character datais abovethe line on theleft (but not below) and character dataiis above and below the line of theright,
then the group of unerased slicesisidentified to be athru_dr. In practice, the majority of line-character configurations
will beidentified as one of the eight categoriesillustrated in Figure 9. Those configurations that do not fall into any of
the eight categories are simply left alone. Given the identity of the configuration, corners of line data can be located
and removed according to the methods described above and illustrated in Figure 10 and Figure 11.

3.3 Line Removal Examples

This section presents a number of results from performing the above techniques on avariety of fields. The
first group of results shown in Figure 13 are money fields extracted from IRS 1040 forms. These images were pro-
cessed at 12 pixels per millimeter (300 pixels per inch) binary. Each contains two horizontal lines from the form (due
to the cramped spacing of fields on these forms). The lower line marks the location of the current field, and the upper
line marksthe field above. In each example, the original field subimageis displayed above, with the results after intel -
ligent line removal displayed immediately below. Notice, the handprint that intersects the linesis preserved, and the
handprint protruding into the current field from above and below is also preserved. Keep in mind, the goal of thisline
removal techniqueisto automatically detect and erase as much of the horizontal line data as possible while preserving
asmuch character stroke data as possible. These examples contain numerousinstances of character strokesintersecting
and overlapping line data, and as can be seen from the results, the line removal technique does a very good job at
achieving its goals.

The next set of results, shown in Figure 14, are fields extracted from 1990 Decennial Census long forms. In
these examples, the images were scanned at 8 pixels per millimeter (200 pixels per inch) and each field is demarcated
by adashed box. The dashed line detection method described in Section 3.1.2 was used to automatically locate the tops
and bottoms of the box, and the results of removing the dashed horizontal lines are shown immediately below each
original image. The dashed line detection does confuse machine print with dashed lines because the statistics of the
black and white pixel runs are very regular and uniform. This confusion resultsin extra dashed lines being detected at
the very tops and bottoms of the images (places where thereisresidual machine printed text), and the machine printis
partially erased. Nonetheless, the horizontal dashed sides of the box are consistently located and removed with the
handprint therein preserved, which isthe goal of thiswork. Notice, although the third example in this group isrotated,
the dashed lines are effectively detected and removed. This demonstrates the method's relaxed dependence on form
deskewing, which is another goal.
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Figure 13. Horizontal lines removed from money fields off IRS 1040 tax forms.
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Figure 14. Dashed horizontal lines removed from occupation fields off Census forms.

The last set of examplesin this section are shown in Figure 15. The first three subimages show results from
the NIST method for line detection and removal. The images contain two response lines from the dependency block
on an IRS 1040 form. Thisblock islaid out as a small table in which multiple entry fields exist on multiplelines. The
overlap-
ping and touching characters within the same line as well as between lines, and many characters intersect and cross
through the lines on the form. Asaresult, the likelihood of line and character stroke ambiguities (like those discussed

fields are extremely small compared to the amount of information requested to be entered. This causes many

in Section 2) isvery high. This makes lines removal extremely difficult.
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The second imagein thisfigure showstheresults of horizontal lineremoval. Thethird image showstheresults
of conducting vertical line removal on the second image. To conduct vertical line removal, the second image was
rotated 90° and the horizontal line removal technique was invoked with only two parameters changed. Line detection
wasrestricted to 1° (previously 5°) of rotation, and the linelength tol erance was set to 98% (previously 75%). Thefirst
parameter is reasonable, because the vertical linesin the field are relatively short, so minor rotational distortions will
have a much shorter distance to propagate themselves. The second parameter limits the search for dominant linesto
only those having at least 98% of their line comprised of black pixels. Thisis reasonable because the vertical linesin
the image are solid and extend to the edges of the field subimage.

Thebottom field in Figure 15 istaken from the results of acommercially availableform removal package (the
name of the package is not important). What isinteresting isto compare the bottom image to the NIST results. Notice
the frequent discontinuities in character strokes introduced by the commercial package. Keep in mind, this method of
form removal had full knowledge that a 1040 form was being processed. Granted, this permitted the system to remove
instructional information in addition to the line information on the form, but even though the commercial package had
explicit form information available, its line removal performance is observably inferior. The NIST method performs
in asuperior way, even though it knew nothing about what form was being processed. The NIST method automatically
detects all dominant lines in the image and intelligently erases them so character strokes are preserved. This method
works amazingly well even on this very noisy and cluttered example, and the NIST method performed consistently
equal to or better than the commercial system on all the fields inspected in this study.

4. IMPACT on AUTOMATED CHRARACTER RECOGNITION

Once the new method for line detection and removal was performing satisfactorily on alarge number of test
cases (like the ones shown in the previous section), atest was needed to evaluate the impact of the new method on the
performance of an optical character recognition system. It was noted that the new method would have the greatest
influence on lowercase characters with descenders, such as g, j, p, g, and y. These characters, when handprinted, fre-
guently intersect and pass through the line along which they are written. If form removal techniques are not careful,
they will clip (or disconnect) these descenders, causing inter-character ambiguities that decrease the performance of
the system by inflating the number of substitutional errors. For example, aq with its descender clipped lookslikean a.

NIST has gathered several large samples of handwriting and recently has published all of themin asingle
database called NIST Special Database 19 (SD19)14. Each of the writersin this database were asked to fill in a hand-
writing sample form like the one shown in Figure 16. All of the 2,600 writers originally distributed with NIST Special
Database 1, 3, and 7 have been included in SD19, with an additional 1,099 new writers. The characters handwritten
on the forms have been segmented and labeled as independent images, so in all there are 3,699 forms and 814,255
labelled characters. A handwriting sampleform is comprised of fields containing digits, arandomly ordered lowercase
alphabet, arandomly ordered uppercase alphabet, and the Preamble to the U.S. Constitution. Having this database, the
randomly ordered lowercase al phabets provide excellent testing material for evaluating the impact of intelligent line
removal on optical character recognition.

In addition to the databases, NIST has a public domain software OCR package that provides the ability to
integrate and test new image processing and recognition technol ogies without having to start from scratch in develop-
ing an entire system from the ground up. A complete description of the system is provided in the distribution docu-
mentation.® The OCR system uses amethod of histogram projections to locate registration points within a
handwriting sampleform. These pointsare aligned to a set of reference registration pointsusing aLinear Least Squares
fit, and the image is transformed, removing any global distortionsin rotation, tranglation, and scale. The system uses
ablank form as amask, erasing any pixels that are a part of the form (its boxes and instructions). The handwriting
within each field is segmented using connected component labelling, and each component is size and slant normalized.
The Karhunen Loéve (KL) transform® is computed on each segmented character image, and a vector of KL coeffi-
cientsis produced. These coefficients form afeature vector that is classified by an optimized Probabilistic Neural Net-
work (PNN).2222 The recognition system storesthe results of each classified character image, including the character’s
assigned class along with a confidence value.
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HANDWRITING SAMPLE FORM

-DATE CITY STATE __ZIP
| o2/foe fps | | timr r,  #§seY |

This sample of handwriting is being collected for use in testing computer recognition of hand printed numbers
and letters. Please print the following characters in the boxes that appear below.

0123456789 0123456789 0123456789
0123456799 1 OIA3¥STC 78] I La/z 346 787 j
86 506 8941 95304 891405

[s¢] [see] (oo ] [Gssor | [agmer ]
521 5407 60170 689547 98

[s2] [swr] [eerrs | [ogysor | [ 9]
6081 77132 314200 78 464

l 608/ I |77/32— | l 314 200 —| L?Xl |4/6¢|
93847 256369 63 224 6902

| %37547 I Ijb’6367 ' j _éﬁ’—l I zz¢| | 6902 |
551339 78 722 21313

5798
1_515’/33’7 1 75/] |lz Z] |£’77J’ | |3/3’/5> 1

bgvxujdyohsmtfcwqiakrezpln
I byvx d4jdyohsmzfew qiakrer pln 1
FSHKDXTEZRQMLABGVIYPUCOJWN

FSHEDKT EZRAMIABEV I Y P ucog /N |

Please print the following text in the box below:

We, the People of the United States, in order to form a more perfect Union, establish Justice, insure domestic
Tranquility, provide for the common Defense, promote the general Welfare, and secure the Blessings of Liberty to
ourselves and our posterity, do ordain and establish this CONSTITUTION for the United States of America,

\Ve €he PﬁOP/¢ oft the Unized S‘E’ﬁ»ﬁes, (n ORber U Lornr rrrore
ec-,-FQQ't_. Nion, e3Tablish JusTite, /R3UFE domestia

traw vilr oy, Pfo\:’flc for the Qormon’ e7e nse, mETe the
ranquili ey rse, PR <
éa:ne,rﬁl u)e#a,&t, and secwre the Bless,pds’ of L;Aery o
burRselves wnc/ OUR | osten.}y, oh oRdsin apd establis

This QONVST/TUT700 Tor’ The Unvited Stmtes oF
Americh,

Figure 16. A handwriting sample form from NIST Special Database 19.
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As stated before, the original system uses ablank form as a mask to erase pixels from the input image. Any
part of a character overlapping with the form is erased, causing voids and discontinuities in character strokes (espe-
cialy lowercase letters with descenders). To avoid this, the public domain OCR system was modified, replacing the
mask-based erasing with the new line detection and removal techniques. Thelowercasefield isextracted fromtheform
(including the field’s box and some residual instructional information), and the new techniques are applied. In the pro-
cess of integrating the new capabilities, several issues had to be addressed. These included incorporating image tiling
for the accurate detection of very long lines, developing a general method for isolating the handprint in afield oncethe
horizontal lines are removed, and creating a new training set of labeled character images.

4.1 Tiling of Image for the Detection of Long Lines

A lowercase alphabet box on a handwriting sample form is 175 mm (not quite 7 inches) wide, that is 2,100
pixelsina 12 pixel per millimeter (300 pixels per inch) image. The length of the horizontal sides of the box used in
thisfield are so long there is often enough distortion in the image that no perfectly straight line can overlay the entire
edge of the box. This causes deficiencies in the Hough line transform, making it very difficult to detect long lines and
to track line slices.

The subtle distortionsin the image become significant as they propagate over longer and longer distances. In
order to compensate, the lowercase field images are divided into adjacent and non-overlapping pieces (tiles), where
the width of each tile is no more than 500 pixels wide. Within each tile, intelligent line detection and removal is con-
ducted, and the handprint in the tile isisolated and extracted. In this way, the effects of image distortions are avoided
asthey are negligible over the shorter tile widths.

4.2 | solation and Extraction of Handprint

Typically, there are at |east two dominant horizontal lines detected in alowercase field using the Hough line
transform (the top and bottom horizontal sides of the box). So far, the techniques for detecting and removing the two
lines have been discussed, but there is more work to be done in order to isolate the handprint in the image. In addition
to the handprint, there is still residual instructional information in the field, and the two vertical edges of the box
remain.

Aslinesareremoved, their end pointsare stored in alist. Theleft end points are sorted by their y-coordinates,
and vertical distances are computed between each neighboring pair of lines. The line pair representing the largest dis-
tance is assumed to belong to the tops and bottoms of the horizontal sides of the field’s box. A quadrilateral regionis
defined as the intervening area between these two lines (the region is not necessarily square). A search is conducted
on the pixelsin this region, top-to-bottom and left-to-right. Asablack pixel isfound, its connected component is
extracted and stored as a plausible character image, and the component is erased from the field image. The search con-
tinues for black pixels, and connected components are copied and erased, until the entire region is processed. In this
application, thefirst and last significant componentsin thefield are discarded asthey corresponded to the vertical sides
of the box. The region bounded by the two horizontal lines contains the majority (but not all) of the handprint in the
field. By using connected components to lift the handprint out of the image, characters that reside in the region, but
extend outside the region, are extracted in their entirety. By limiting the search to this region, residua instructional
information and other spurious marks are avoided, so only handprint is extracted.

4.3 Training Set Creation

A problem arose because the public domain system’s classifier was not trained on character images generated
by the new line removal technique. Theoriginal system’s classifier wastrained on | owercase examples whose descend-
ers and other character strokes overlapping the line were clipped. Up till now, NIST did not have the technology to
conduct robust form removal, so we were faced with atype of chicken and the egg dilemma. The clipped characters
introduce some obvious biases into the performance of the recognition. These biases include creating artificial inter-
character ambiguities and causing acertain number of |ettersto be under-represented by good, cleanly segmented char-

21



acter images. In order to evaluate the true impact of intelligent line removal on OCR, it was necessary to retrain the
recognition system on character images produced by the new line removal technique.

The 500 writersin the group labeled hsf_6 were selected from SD19 for creating anew training set of cleanly
segmented character images. Each writer’s lowercase al phabet was isolated, segmented, and classified, producing a
hypothesized field value from the recognition system’s original (biased) lowercase weights. The recognition system
used the line detection and removal techniques described above, so descenders and other lowercase character strokes
intersecting the lines on the form were preserved. Each field value produced by the system was compared against a
reference string of what was actually requested to be written in the field.

Dynamic string alignment based on the Levenstein distance was used to conduct the comparis;on.23 This
alignment method |abels each character in the system’s hypothesis string as either correct, substituted, or inserted; and
each character in the reference string as either correct, substituted, or deleted. The object of this exercise was to pro-
duce anew set of training examples with verified reference labels. To minimize the labor involved in labeling each
character correctly, the system’s assigned hypothesis |abels were used, except where the character wasidentified asa
substitution by the alignment utility, in which case the substitutions were replaced by their corresponding reference
label. Using thereferencelabel for charactersaligned as substitutions hel ped automatically repair some of the character
assignments prior to human verification, thus reducing the amount of manual labor spent repairing incorrectly classi-
fied characters.

To begin human verification, al the characters recognized correctly, along with all the reassigned substitu-
tions, were grouped into onelarge set of charactersand sorted by character class (athrough z). The remaining character
images (aligned as insertions) were grouped into a second set of characters and sorted by class. The two sets of char-
acters were used to bootstrap a character verification scheme called machine-assisted reference classification®*.

Thefirst group of characters were displayed by class in large blocks shown simultaneously on a computer
display. In thisway, those characters misclassified could be easily detected and marked because they stand our against
the background of all the other characters belonging to the correct class. The assigned labels of those characters not
marked were accepted and set aside as verified while the marked characters where added to the second group of char-
acters (those aligned asinsertions). This second group of characterswasdisplayed by class, but thistime, one character
at atime. When viewed, the human operator was given the choice to accept, reject, or manually correct the assigned
class. All the characters accepted or corrected were again collected into agroup and displayed simultaneously in large
blocks by class. The marked characters from this session were collected into a second group and displayed one at a
time. This process of checking and correcting continued several cyclesuntil all the characters either had their assigned
labels verified and accepted or the character image was rejected (due to bad segmentation).

In all 12,500 characters were verified and accepted. The entire verification process took one person less than
8 hours to complete. This machine assisted |abelling technique efficiently provided a new training set of cleanly seg-
mented characters, and the NIST public domain OCR package (augmented with the new line detection and removal
techniques) was retrained. The new training set was used to compute a new covariance matrix and new eigenvector
functions, which in turn, were used to compute new KL feature vectors. For this experiment, the 64 top-ranked eigen-
vectors were used to compute 64-element feature vectors. The new prototype feature vectors were then used on-line
to compute discriminant functions in the optimized PNN classifier.

4.4 Global Scoring Results

A test set consisting of the 2,100 formsin hsf_0, 1, 2, and 3 (also included in SD19) was chosen. The aug-
mented and retrained recognition system processed the lowercase field on each form and the results were stored to disk
in aformat compatible with the NIST recognition system scoring package.12?® Every lowercase field was assigned a
reference string, and the scoring package aligned the reference strings to the system’s hypothesized classifications.
Based on these alignments, global performance statistics were automatically calculated and reported.
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The same exercise was repeated for an older version of the NIST recognition system. In this case, the auto-
matic line detection and intelligent line removal was not used. This old version used the estimates of rotational distor-
tion from the form registration process to conduct skewed histogram projections to locate the edges of the boxeson a
handwriting sample form. A subimage of the lowercase field was extracted, including the box and residual instruc-
tional information. Rather than conduct histogram projections parallel to the raster scan lines in the image, adjacent
lines (the width of one pixel) were projected along atrajectory defined by the estimated amount of rotation in the
image. The two maximum peaksin the skewed histogram (corresponding to the two horizontal sides of the box) were
selected, and any pixel datathat overlapped or extended beyond the sides of the box was erased. The old version of
the recognition system clipped any lowercase character that intersected or extended outside the box. All the other com-
ponents (connected component character segmentation, size and slant normalization, KL feature extraction, and opti-
mized PNN classification) were the same as those used in the new system. It should be noted that the old system was
trained on prototype feature vectors computed from segmented character images generated by the skewed histogram
technique.

To assess the overall impact of the new form removal technique, the OCR results from the old and new sys-
tems were computed and then scored using the NIST scoring package. Global performance statistics were automati-
cally calculated and reported. The old system achieved a character output accuracy of 76.9% out of a possible 54,340
lowercase | etters; the test actually consisted of 2,090 lowercase fields. The new system achieved a character output
accuracy of 80.1% on the same characters. Using the new line detection and removal techniques on the lowercase
alphabet fieldsimproved the recognition about 3%. Thisisreasonable, asthereare only 5 out of the possible 26 letters
in the lowercase a phabet that have significant descenders, and from observation, we know these 5 letters are not
always written such that they overlap the line on the form. If on average one of the 5 letters touches the line during the
printing of the alphabet, then this would account for 3.8% (1/26) of the letters. We also know this would be an upper
bound (given our assumptions), because not al of the touching characters would cause an incorrect classification. So,
a 3% improvement in recognition is reasonable.

4.5 Statistical Analysis of Confusion Matrices

The 3% increasein recognition accuracy asaresult of usingintelligent lineremoval isin fact animprovement,
but this global performance statistic tells us very little about how the recognition was really impacted. Global perfor-
mance measures are helpful, but in practice their usefulnessislimited. If nothing else, some measure of statistical con-
fidence should be associated with the global measures. UN LV has incorporated confidence limitsinto their scoring
models and NIST isworking to incorporate them into the NIST scoring package aswell. But, even thisinformation is
limited. There needs to be away of computing local performance statistics on both the gains and the losses in recog-
nition accuracy. For example in this study, we knew the improvements to the recognition system should have their
greatest impact on lowercase letters (particul arly, those with descenders), and we just happened to have a database of
lowercase characters on which to test. We have shown a 3% improvement in overall recognition accuracy, but we do
not know if changes to the recognition system inadvertently caused some recognition problems. If so, what are these
degradations? | s there something that can be done to minimize them so accuracy continues to improve towards some
upper bound?

Any experienced system developer realizes any so-called improvement, when integrated into a complex rec-
ognition system, islikely to introduce new sources of error. It is all too familiar: a component is re-engineered and
tedioudly tested in isolation on arelatively small (yet manageable) test set. The new component seems to be function-
ing asdesigned and isnow placed into the end-to-end system. All activity intheroom stops, the system devel oper holds
his breath, and yes ... it works! The performance of the system improves, and yet in the back of hishead he wonders,
“But what have | traded off (if anything) for the improvement in performance? Lacking a meansto answer this ques-
tion, heisquick to accept the global performanceincrease, and he enjoys his brief moment of serendipity. Sound famil-
iar? It does to the author.

A technique for determining the significant difference in local performance statistics between two OCR sys-

tems has been developed. The method analyzes the confusion matrices generated by the two recognition systems. A
confusion matrix stores the number of timesindividual class substitutions occur during atest. Each cell in the matrix
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contains the number of times aletter (for example g) was incorrectly classified as another letter (for example g). The
matrix represents all possible confusion pairs, with one axis representing all the characters as they should be recog-
nized and the other axis representing all the characters asthey were actually recognized. Traditionally, the diagonal of
the confusion matrix contains all the characters correctly recognized, but we are only interested in the errors for this
analysis, so the diagonal elements are set to zero.

To analyze confusion pairs between two different systems, the test set is partitioned into n equal subsets. The
substitution errorsincurred by each system on each test subset are collected into separate confusion matrices. This pro-
duces n confusion matricesfor thefirst system, and a set of n confusion matricesfor the second system. The confusion
matrices from each system provide n samples for each possible confusion pair. The n samples are used to compute
distribution statistics (a mean and a standard deviation). For each confusion pair’s mean ., the standard deviation ¢ is
computed as

1 2 €S)
o= Jn_l.z 4 -w?
i=1
where n isthe number of partitions (in this case 10) and x represents the 10 samples for the current confusion pair. A
mean and standard deviation pair is computed for each cell in the confusion meatrix for the first system (i, 61) and for
each cell in the confusion matrix for the second system (u,, 65). Asaresult, amatrix of mean values and a matrix of
standard deviations are computed for each of the two systems.

Given the distribution statistics of each corresponding confusion pair between the two systems, a Student’st
test can be used to determine how similar the distributions areto each other.2” The difference between two distributions
is measured as

{ = Hl_ Hz (9)
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whichisin units of root mean square standard error. Given the normalized distancet, a probability p is derived either
numerically28 or viatable Iook-up27 for each cell in the confusion matrix. Thisis the probability that |t| could be at
least this large by chance, so the smaller the value of p, the less likely the two distributions are the same. Low values
of p signify the difference between the two systems for a particular confusion pair is significant. The tablein Figure
17 was produced by thresholding p at 2%, in which case we are 98% sure the difference did not happen by random
chance. The confusion pairswith p lessthan 2% were sorted on their corresponding value of t and reported in that order
intable. Noticethere are only 41 confusion pairslisted in the table. If wanted, the confidence threshold can be lowered
in order to examine more confusion pairs. The full confusion matrix contains 676 (26x26) pairs, and (disregarding the
correct recognitions along the diagonal) only 6.3% (41/650) of the possible confusion pairs are determined to be sig-
nificant in this analysis. Without a statistical method like this, it would be very difficult to manually select this small
subset of confusion pairs.

Thefirst two columnsin the table report each confusion pair determined to be statistically different. Thefirst
character, labeled (R)ight, isthe reference character the system should have recognized. The second character, labeled
(W)rong, isthe hypothesis character the system incorrectly assigned to the letter. For example, thefirst linein thetable
is reporting statistics on the system incorrectly classifying p’s as 0’s. The next two columns, labeled SY STEM 1, con-
tain the performance statistics from the old recognition system. Thefirst of these columns lists the average number of
errors | incurred for the corresponding confusion pair across the 10 test partitions. The second column lists the stan-
dard deviations ¢, associated with these errors. The second system’s error statistics are listed in the next two columns
labeled SYSTEM 2. These are the errors from using the new line detection and removal techniques.
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PAIR SYSTEM 1 SYSTEM 2 MEAN A STUDENT'St
R W 18] o1 o (o) g - Up t px10°7
p o 12.7 14 1.8 0.5 10.9 23.7 0.0
g a 25.6 4.1 6.2 1.6 19.4 13.9 0.0
q a 33.8 4.3 12.6 34 21.2 12.3 0.0
| | 27.6 3.9 11.3 2.9 16.3 10.6 0.0
y Vv 27.6 51 7.6 3.7 20.0 10.0 0.0
q o 8.3 20 25 1.0 58 8.2 0.0
y u 10.3 25 3.2 1.2 7.1 8.2 0.0
b h 9.7 24 33 1.4 6.4 7.4 0.0
] i 17.0 2.6 9.9 29 7.1 57 0.0
p n 4.8 2.2 1.1 0.5 3.7 52 0.0
p b 3.1 1.4 0.8 0.3 2.3 50 0.0
q u 1.1 0.5 0.4 0.0 0.7 4.7 0.1
g n 2.3 14 05 0.0 1.8 3.9 0.3
w b 0.6 0.3 0.2 0.0 04 3.8 0.4
g o 6.6 2.2 3.6 1.3 3.0 3.7 0.2
| k 0.7 0.5 0.2 0.0 0.5 34 0.8
y m 0.6 0.5 0.1 0.0 0.5 3.4 0.8
0O n 3.8 1.2 20 1.2 1.8 3.2 0.5
p d 19 14 0.6 0.0 1.3 2.9 1.7
e p 40 1.5 25 0.7 15 29 1.3
p f 2.6 0.9 1.8 0.0 0.8 29 1.8
| e 0.4 0.3 0.1 0.0 0.3 2.9 1.9
p h 0.3 0.3 0.0 0.0 0.3 2.9 1.9
] c 0.5 0.3 0.2 0.0 0.3 2.9 19
y f 0.4 0.3 0.1 0.0 0.3 2.9 19
c 0.4 0.3 0.1 0.0 0.3 29 19
q d 1.2 0.6 0.6 0.3 0.6 29 1.3
q w 0.6 0.3 0.3 0.0 0.3 2.9 1.9
] n 0.7 0.0 0.4 0.3 0.3 2.9 1.9
f S 1.4 0.5 0.9 0.3 0.5 2.7 1.4
g u 0.4 0.3 0.9 0.5 -0.5 -2.7 14
g m 0.2 0.0 05 0.3 -0.3 -2.9 19
q X 0.3 0.0 0.6 0.3 -0.3 -2.9 1.9
W X 0.4 0.0 0.7 0.3 -0.3 -2.9 1.9
q g 18.9 5.2 25.1 4.3 -6.2 -2.9 1.0
y q 1.7 0.9 2.9 0.9 -1.2 -3.0 0.7
vy 9| 27 14 54 22 27 | 33 05
d t 0.2 0.0 0.6 0.3 -04 -3.8 0.4
b o 0.9 0.5 1.6 0.3 -0.7 -3.8 0.1
| \% 2.4 0.8 3.9 0.9 -1.5 -4.0 0.1
r g 0.2 0.0 0.7 0.3 -0.5 -4.7 0.1

Figure 17. Statistical analysis reporting al significant (98% confident) changes in confusion errors between the old
system that chopped off characters and the new system that removed lines while preserving character stokes.

25



The column in thetable, labeled MEAN A, isthe difference in the mean accumulated errors between the two
systems. With p’s classified as 0's, there were on average 10.9 fewer errors made by the second recognition system.
Keep in mind there were 2,090 | owercase alphabets in the test, and these fields were divided into 10 equal partitions.
As aresult, there were 209 examples of each character in each partition, so 10.9 fewer p’'s called 0’sis an average
decrease of 5.2% (10.9/ 209). The largest significant improvement wasin g's called as, where there was a 10.1%
decrease in this type of error.

The last two columns in the table list the results of the Student’st test. The first column lists the normalized
distancet between thefirst and second systems' distribution of errorsfor the corresponding confusion pair. The second
column lists the corresponding value of p, the probability that the measured difference between the two distributions
occurred by chance.

Thetableisdivided vertically in two parts. The top portion lists all those confusion pairs in which the new
system improved, making fewer errors. Thisisrepresented in positive mean A’sand in positive values of t. The bottom
portion of thetablelists all those confusion pairsin which the new system did worse than the old system. In this case,
the mean A’sand t values are negative. These represent the significant trade-offs of introducing the new form removal
method into the recognition system. Despitethelossesin performance, there are considerably moreimprovementswith
the new line detection and removal techniques, and their net impact on performance greatly outweighs the losses (3%).

A closer look at the table shows the statistics are well behaved. Looking at the top and bottom of the column
of p values, one can observe that at the ends, p is very low so the confidenceis very high that the difference between
the two systems is significant. As we move to the middle of the table, the absolute values of t decrease and the values
of p increase. Thisshould occur because, asageneral rule, the closer two distributions are to each other the morelikely
they come from the same underlying distribution. It isinteresting to also note that, in general, the mean A’sfollow this
same trend. Although, there are some exceptions giving support to the fact that, without some measure of statistical
significance, a single measured sample may be misleading.

In light of these observations, the confusion pairs at each end of the table are statistically most significant.

Using theintelligent line detection and removal techniques, the most significant improvements occur with confusion
pairs(p, 0), (g, 8, (q, a), (j, 1), (v, v), (g, 0), and (y, u). Thefirst (reference) character in these pairs all have descenders,
and if you remove the descenders you are left with a partial character that closely resembles the second character in
each pair. Aswe expected, theintelligent removal of lines does significantly improve recognition, especially lowercase
characters with descenders. The statistical analysis of the confusion matrices was used to assess the impact of intelli-
gent form removal on off-line handwriting recognition, and by the predictable nature of the experiment, the OCR test
results have served to validate the statistical method.

On the other end of thetable, significant decreasesin performance have occurred with (r, g), (j, v), and up the
list abit further (q, ). These are cases where introducing the new method of line removal actually increased confusion
among specific pairs of characters. The new line removal technique attempts to preserve as much of the handwritten
character as possible. In so doing, some of the lowercase characters now have considerably longer descenders, which
inthe old system were clipped. The consistent chopping off of descenders, while bad for classification in general, actu-
ally avoids certain inter-character ambiguities. By preserving the descenders, these naturally occurring ambiguitiesare
reintroduced into the recognition problem and errors among these confusabl e charactersincrease. For example, j’sthat
were once cut off and highly confusable as|’s now have their descenders preserved, so at times their tails curve up
sufficiently to be confusable with handprinted v's.

Some of the other confusion pairs, having a negative impact on the new recognition system, are harder to
explain. It isour experience that the size normalization used in the preprocessing of the character image can cause
unexpected, yet consistent, patterns. For example, as the descenders on handprinted g's become longer and longer, the
dominance of thetop loop on the letter, after size normalization, becomes smaller and smaller to the point that it closes.
At this point, the normalized character image does become confusable with some handprinted r’s. The point is there
was no way to predict what the impact would be when reintroducing these naturally occurring ambiguities into the
system. Through this statistical analysis, the significant system degradations (in addition to the improvements) have
been automatically identified.
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5. CONCLUSIONS

A new method for form removal has been presented and analyzed. The Hough line transform was embellished
to automatically detect al the dominant lines in an image, and a new method (based on visual cues along the line tra-
jectory) was presented for intelligently removing the lines from the image. Lines are removed while simultaneously
preserving any overlapping character strokes. Results from this new form removal were shown to be superior to acom-
mercially available product, and these techniques were shown to improve the recognition of lowercase a phabets by
3%.

A statistical method was al so presented that analyzesthelocal performance statistics between two recognition
systems. A large testing set is partitioned into subsets and confusion matrices are compiled from the results on each
partition for each recognition system. Distribution statistics (mean and standard deviation) are computed across the
partition resultsfor each confusion pair in the matrices. A Student’st test isthen used to determineif the corresponding
confusion pair statistics between the two systemsis statistically different. Thisanalysisisvery useful because both the
improvements and the losses in recognition performance are determined, whereas global performance statistics only
report the net change in performance. As system devel opers continue to pursue lower and lower error rates, more
sophisticated analyses (like the one presented in this paper) become necessary to understand the impact amodification
really has on the recognition performance of a complex OCR system. For example, this method of eval uation should
be very useful in squeezing higher performances out of voting systems, in which the decisionsfrom multiple classifiers
are combined to improve recognition performance.

The statistical analysis of the confusion matrices was used to assess the impact of intelligent form removal
on OCR, and by the predictable nature of the experiment, the OCR test results have served to validate the statistical
method.
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