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Abstract

Two types of Fourier Transform based filters are presented and used to enhance fingerprint
images for use with a neural network fingerprint classification system developed at NIST [1][2].
With image enhancement the system is capabl e of achieving classification error rates of 8.65% with
10% rejects (average over volumes 1-5 of NIST Special Database 9), a2 percentage point improve-
ment in error rate versus using no fingerprint enhancement. Speed of the filters range from 2to 9
seconds. Classification tests were performed with fingerprints from NIST Special Database 9 \ol-
umes 1-5[3] using ridge-valley based feature extraction, Karhunen Loéve transform, and a Proba-
bilistic Neural Network (PNN) classifier. Improvements made to the classification system used
include: a new segementor, use of non uniform feature vectors, and a faster version of the PNN
classifier. The faster PNN classifier resultsin an average of four times faster classification with no
change in resulting error rates. Also, the testing method used differs from past reports because no
rolling of the same print is allowed to appear in both the training and testing set used by the Neural
Network classifier.

Keywords: image enhancement, fast Fourier transform, fingerprint classification, Probabilistic
Neural Network, Karhunen Loéve transform, database, registration.



1lintroduction

The current classification system used at NIST involves three main steps: pre-processing, fea
ture extraction and classification. The current problem being presented isto accurately classify fin-
gerprints into five major class groupings: Arch, Left Loop, Right Loop, Tented Arch and Whorl
(see Figure 1a-e for example prints). A magjor problem that has occurred in trying to classify fin-
gerprintsis extracting features from poor quality images. The features extracted from poor quality
images tend to have scattered ridge directions with low confidences. Poor ridge directions can
result in erroneous registration points or, since some of the classes like arch and tented arch may
have very dlight differences, the classifier will have difficulty accurately separating the different
classes. Thisreport concentrates on using three different Fourier Transform based image filters to
help reduce the noise present in the images. One hopes that by providing the feature extractor with
less noisy images that it will be able to extract |ess ambiguous features to send into the classifica-
tion stage resulting in more accurate classification. Resultswill show that the goal of extracting bet-
ter features and improving classification was accomplished.

Figure 1la: Example of arch pattern.



Figure 1c: Example of right loop pattern.



Figure 1e: Example of whorl pattern.

The images used, for training and testing, are from NIST Special Database 9 Volumes 1 and 2
[3], which are 832 X 768 8-bit gray scale images. All reports to this point have reported results
using NIST Special Database 4 [4]; there are very significant differences between the two data-
bases making comparison of results obtained from each database very difficult. Section 2 discusses



the important differences between NIST Special Databases 4 and 9 such as method of scanning the
data and quality of the data.

Another important difference from earlier testing methods is that in previous test the “f” roll-
ings of the fingerprints in Special Database 4 were used for training and the “s” prints were used
for testing. Thisisvery significant because for test in thisreport the “f” printsfrom one volume are
used asthetraining set and the“s” of adifferent volume are used asthe testing set. Test have shown
thereisasignificant differencein classification error rates (3-4%) that occurs when thefirst rolling
of aprint appearsin thetraining set (especially with a Probabilistic Neural Network) versus having
different datain the training and testing sets. Knowing this one should not compare results reported
in this report with results reported in earlier reports. For this reason, Section 8 contains results of
classification at various stages of system improvement (i.e. no enhancement at all, adding registra-
tion and adding new feature extraction methods) for use in comparing the effects of applying dif-
ferent filters to the images.

Most of the original 832 X 768 images contain significant amounts of white background space
which only increases processing time and does not help classification. Segmentation, as described
in Section 3, is used to obtain the best 512 X 480 section of the original image for use by the rest
of the classification system. Currently a section of 512 X 480 is used for compatibility with current
algorithms and to help reduce computation time.

The next step is filtering of the fingerprint images, which is discussed in Section 4. As previ-
oudly stated there are three different filters that will be applied to the image data. Each filter uses
the fast Fourier transform to first convert the image into the frequency domain before applying fil-
ter masks. The first filter processes the image in subsections and reconstructs the filtered image
from these sections. The other two filters use specially oriented masks which filter the image based
on distinct orientations. They create new images based on each orientation and then reconstruct the
filtered image from these orientation images.

After filtering, the image is ready for feature extraction. The current method being used, dis-
cussed in Section 5, is aridge-valley feature extractor. The feature extractor provides more detail
in important areas of the fingerprint print image such as cores and deltas by allowing more ridge
directionsin these areas at the expense of less ridge data near the edges of the image. At this stage
theridge directions are also registered. Figure 2 shows an example of a core location found by reg-
istration. Registration is used to move the core of each fingerprint to a common point and help
reduce differences introduced by segmenting the fingerprint at different locations. The output of
the feature extractor, an array of 840 ridge directions, is reduced to a much smaller set of input fea-
tures by first calculating the covariance matrix of the training set feature vectors and then sending
the principle eigenfunctions of the covariance matrix (calculated using EISPACK routines [5]) to
a Karhunen Loéeve (KL) transform. The KL transform is a dimensionality reducing transform
which takes the 840 ridge directions for each image and produces approximately 120 features for
use as input to the Neural Network classifier. Another useful feature of the KL transform method
isthat the features are ranked in order of decreasing variance so it is simple to use fewer features
than are actually found by selecting the first n features.



The final stage of the system is classification. For classification purposes the primary class of
each print was used and no weight was given for any referenced classes at thistime. Also, all scar
prints were discarded from the dataset as it was not clear how to handle these prints. The classifier
used for thisreport isaProbabilistic Neural Network [2][13] asdescribed in Section 6. During clas-
sification the a priori probabilities of each class are applied to the output activations giving more
weight to classes that have a more common occurrence in a natural distribution. Also, a “fast”
implementation of PNN is used which reduces the computation time by approximately afactor of
4 with no changein classification accuracy. The method takes advantage of the KL feature set being
in order of decreasing variance to limit the calculation time.

The results of the experiments performed are given in Section 8 along with the methods used
for scoring and rejecting the fingerprints. Unlike previous work reported, the scoring does not use
the a priori probabilities when scoring because after rejecting a certain number of printsit may be
incorrect to assume the class distributions are still the same. At this point thereis not sufficient data
to estimate the class distributions after certain levels of rejection.

Figure 2: Example of a core location found by registration.



2 Experimental Fingerprint Database

To date most fingerprint classification results reported in NIST work were performed using
NIST Special Database 4 (SD4). The images used in this report for training and testing purposes
were taken from NIST Special Database 9 Volumes 1-5 (SD9). SD9 images are 8 hit per pixel gray
scale images of mated fingerprint card pairs (270 card pairs per volume). This means the finger-
prints are matched at the card level, and not every individual fingerprint from mated cardswill nec-
essarily have the same exact class. In contrast, SD4 was setup so that al matched fingerprints had
the same classlabel. Every fingerprint in SD9 has aNational Crime Information Center (NCIC) [6]
class label assigned by classification experts. These assigned NCIC classes were converted to one
of the following five major groups. Arch, Left Loop, Right Loop, Tented Arch and Whorl for clas-
sification purposes.

The most obvious difference between the two databases is that SD4 contains an equal number
of fingerprints from the five major classes where as SD9 was randomly selected from current FBI
work so that it approximated a natural distribution of the fingerprint classes. The “natural” proba-
bility of occurrence for each of thefive major classesis shown in Table 1. These probabilities were
calculated from a sample of fingerprint classes containing approximately 222 million fingerprint
classes. Also shownintable 1 are the exact classdistributions of volumes 1 and 2 of SD9. Thevari-
ations between the exact and natural distributions are accounted for by weighting the output acti-
vations of the PNN classifier with the probabilities for each class (see Section 6).

Class “Natural” Volume 1 Volume 2
A 0.037 0.067 0.038
L 0.338 0.306 0.316
R 0.317 0.311 0.309
T 0.029 0.041 0.048
w 0.279 0.275 0.289

Table 1: Probability of occurrence of the five major class groups.

The random collection of datafrom current FBI work also resultsin alower quality of images,
although it isamore redlistic sample of the classification work being done by humans. The quality
islower because the s’ rollings are from current search cards sent to the FBI which in most cases
are of lower quality than the permanent file cards. The prints used in SD4 were taken from the per-
manent files of the FBI in which case if multiple cards have been collected on one individual the
better quality cards are stored in the permanent file.

There was also a significant difference in the method used to collect the datafor SD4 and SD9.
In SD4 each image was scanned individually and some “eyeball” registration was done to center
theimagein the area being scanned as well asrotating theimage into the upright position. SD9 was
collected by first scanning all ten prints on a card into one large image (4096 X 1536 pixels) and
then segmenting the individual images. The images were segmented at the same point for every
card, so there was no “eyeball” registration or orientation correction occurring in SD9.



Taking al the factors of quality, registration, and segmentation into account, SD9 is a more
realistic method of evaluating a complete classification system, where as SD4 is more useful in
evaluating asimple feature extraction routine and classifier. The use of SD9 for evaluating the per-
formance of the entire system should provide more realistic results than using SDA4.

3 Image Segmenting

Thefingerprintsfrom NIST Special Database 9, present anew problem to the classification sys-
tem because the images are 832 by 768 pixels in dimensions and contain significant amounts of
white space in the image (see Figure 3). The segmentation routine described below is used to seg-
ment the fingerprint datafor use by the rest of the classification system.

The segmentation routine takes asitsinput an original fingerprint image, which isan 8-bit gray
raster of dimensions 832 pixels (width) by 768 pixels (height); its output is a smaller 8-bit raster,
512 by 480 in size, produced by snipping from the input raster arectangular region, with the sides
of the snipped rectangle not necessarily parallel to the corresponding sides of the original raster.
Snipping out asmaller rectangleis hel pful becauseit reducesthe amount of datathat hasto undergo
the compute-intensive filtering process, and also because it produces a raster whose size is well
matched to our implementation of Wegstein's R92 registration routine. The segmentor also
attempts to return fingerprints which are rotated to an upright position.
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Figure 3: Original raster of image to be segmented.

The segmentor decides which rectangular region of the raster to snip out by performing the fol-
lowing steps (Figure 3is an original fingerprint raster, and Figure 4a-d illustrate the processing as
applied to this fingerprint):

1) Produce a 104x96-pixel binary raster whose pixels indicate which 8x8-pixel blocks of the
original raster are considered to be “foreground”:

Find minimum pixel value for each block as well as the global minimum
and maximum pixel values.

For (severa factor values between 0.0 and 1.0)
{
threshold = global_min + factor * (global_max - global_min)

Set to “true” each pixel of candidate-foreground map whose correspond-
ing pixel of the array of block minimais <= threshold and count resulting



candidate-foreground pixels.

Count the transitions between the true and false values in the candidate-
foreground, counting along all rows and also along all columns. Keep
track of minimum number of transitions.

}

Among those candidate-foregrounds whose number of true pixelsiswithin
specified limits, pick the one with the fewest transitions. (If threshold is
too low, there tend to be many holesin what should be solid blocks of fore-
ground; if the threshold is too high, there tend to be many spots on what
should be solid background. If threshold is about right, there are few holes
and spots, and hence relatively few transitions.

Figure 4a shows the foreground produced from the fingerprint of figure 3.

[y

Figure 4a: Foreground of Figure 3.

2) Clean up and center the foreground-map:

Perform three erosions on foreground-map. Each erosion consists of
changing to false each true pixel that is next to afalse pixel.

Find the connected sets (“ blobs”) of true pixels, and changeto falseall pix-
els except those belonging to the largest blob.

Changeto true any pixel that has true pixels both to itsleft and to itsright,
or both above and below itself.

Calculate centroid of foreground-map and translate foreground-map mov-
ing its centroid to the middle pixel position of its raster.

Figure 4b shows the result of cleaning up and centering the foreground.

Figure 4b: Foreground of Figure 3, “cleaned” and centered.

3) Find the l€eft, top, and right edges of the foreground:

Move upward from middle row and find left-most true pixel of each row,
but stop when horizontal difference between current row’s and previous



row’s left-most true pixel is> 1.
Repeat process, moving downward from middle row.

These two processes find the left edge of the foreground. The limit of one
on the horizontal change prevents the supposed edge from going around a
corner of the foreground.

Similarly, find top and right edges.
The three linesin the center of Figure 4c are the edges of the foreground.

n

Figure 4c: Edge detection of Figure 3.

4) Fit straight lines to foreground edges:

For each of the three edges, use linear regression to produce a straight line
that most closely fits the points comprising the edge.

Naturally, the left and right edges are fitted to lines of theformx =m* y
+b.

Thetop edgeisfitted to aline of theformy =m™* x + b.

The straight lines in the right part of Figure 4c are the fitted lines.

5) Calculate overall slope of foreground:

Calculate the average of the slopes of the left edge, the right edge, and a
line perpendicular to the top edge (negative the slope of the fitted line).
This average slope is the overall slope of the foreground.

6) Find top of foreground:

Make a histogram from the rows of a rectangle whose width corresponds
to the output raster width, whose height islarge, whose center is at the cen-
ter of the foreground’s raster, and which isrotated so that its sides have the
same slope as the foreground.

Move downward in the histogram, stopping at thefirst row which both fits
entirely into the foreground raster and has a threshold number of true pix-
els. (Notethat the resulting foreground top is not generally the same asthe
top edge found earlier, because its slope is the average of the slopes corre-
sponding to the three edges found, rather than being the slope of just the
top edge.)

7) Finish deciding the snipping parameters:

Theoverall slope computed earlier determinesthe angle of snipping which
nullifies any rotation of the fingerprint.

10



Asfor the position of snipping, that is chosen so that the top of the snipped
rectangle corresponds to the foreground top found in the preceding step.
(Having the snipped rectangle hang from the top of the foreground, instead
of centering it on the foreground center, produces abiasin favor of the last
joint of the finger, which is the only interesting part of the finger asfar as
classification is concerned.)

The box superimposed on the foreground, in the left part of Figure 4c,
shows the snipping rectangle that has been decided on.

8) Snip smaller raster from the original raster:

Produce the output raster by copying the appropriate pixels of the input
raster, applying the translation and rotation that correspond to the snipping
parameters that were computed.

Figure 4d shows the output raster snipped from the input raster. Its edges
correspond to the box in the left part of Figure 4c.

Figure 4d: Segmented image of Figure 3.
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4 Finger print Image Enhancement

This section describes the two filtering techni ques used to enhance the quality of the fingerprint
images. Both filter techniques use the fast Fourier transform (FFT) to compute the discrete Fourier
transform (DFT) when filtering theimage. The difference in the methodsisthat thefirst filter oper-
ates on 32 X 32 pixel sub-regions of the image and the second filter acts globally over the entire
image. Also, the second filter enhances the image in distinct directions where as the first just does
simple noise reduction. Figure 5 shows the original unfiltered fingerprint raster that has been
through the segmenting process.

Figure 5: Original image f0000048.pct.

4.1 Localized FFT Fingerprint Filter

The first filter used to improve the quality of the fingerprint images is based on the algorithm
in[7]. Thisfilter processestheimagein 32 X 32 pixels, beginning in the upper left hand corner of
theimage. After processing atileit shiftsright 24 pixels and to obtain the next 32 X 32 tile, result-
ing inthefirst 8 columns of thetile being common with thelast 8 columns of the previoustile. After
reaching the right side of the image the filter shifts down 24 pixels, resulting in the 8 rows of com-
mon datawith vertically adjacent tiles, and restarts at the | eft side of the image. Processing contin-
ues until reaching the bottom right side of the image. The common data between the horizontally
and vertically adjacent tiles helps reduce the artifacts (visible in Figure 6) created by processing
theimageintiles.

12



Eachtileistreated asamatrix of real numbers. Thefirst step infiltering atile isto compute the
two-dimensional DFT, defined as follows (B set to zeros):

2 32
X +1Yyy = Y Y (Apn+ By exp (—2mi (

m=1n=1

(G-1)(m-1) (k-1)(n-1)
32 32

)) (1)

The FFT is used, rather than using formula (1) directly. The filtering of some of the high and low
gpatial frequenciesis done using amask to set these frequencies to zero. Next the power spectrum
P of the FFT is computed:

2 \2
Pic = X+ Yk ()

The elements of the power spectrum (Pj) are then raised to a power o (0.3 was used) and multi-
plied by the FFT elements X +iY producing the new elements U +iV:

Qi = Pji (3)
Yik = Qi “)
Vik = QikYik (5)

Finally, the inverse transform of U + iV is computed, and its real part becomes the filtered tile. In
reconstructing the image the filter keeps only the center 24 X 24 pixels, accounting for the 8 pixel
overlap, and discards the 4 outer edge rows/columns of thetile. The multiplication of the FFT ele-
ments by a power of the power spectrum has the effect of amplifying the dominant frequenciesin
the tile. Presumably, the dominant frequencies of the tile are those corresponding to the ridges
thereby increasing the ratio of ridge information to non-ridge noise and adapting to variations in
ridge frequency from onetile to the next. Figure 6 is aresult of applying thisfilter to the raster of
Figure5.

13



Figure 6: Image filtered using localized FFT filter.

4.2 Directional FFT Filter

The directional FFT filter was designed to do better filtering with respect to the ridge flow in
the fingerprint image [8]. The filter uses a predefined orientation mask designed to filter the finger-
print imagein aprimary ridge direction while preserving the detail of the minutiae. Another advan-
tage of the filter isthat it does not produce artifacts as seen with the localized FFT filter.

The filter processes the image by first calculating the FFT of the image. Next, the directional
mask is applied by rotating it to ten distinct orientations, creating ten different images with the
ridge flow enhanced in each of ten distinct directions. Then the inverse FFT for each direction fil-
tered imageis computed (see Figure 7a). The pixel orientations of thefiltered image are determined
by comparing the ten direction filtered images, pixel by pixel, and recording the direction with the
largest squared magnitude at each pixel asthe pixel orientation in the filtered image. A histogram
smoothing function is applied to the recorded pixel orientations to help smooth directionsin local
neighborhoods. Thefiltered imageisthen reconstructed using the recorded pixel directionsto deter-
mine from which direction filtered image to select each pixel value. Figure 7b shows the results of
filtering the fingerprint in Figure 5 with this method.

After some experimentation it was determined that using ten orientations was probably not nec-

essary, so adjustments were made to the kernel mask and a second version used only six orienta-
tions (see Figure 8a and Figure 8b).

14



Figure 7a: Orientation images for direction filter versionl.
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Figure 8a: Orientation images for direction filter version2.
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Figure 8b: Image filtered using version 2 of the directional filter (six orientation masks).
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5 Feature Extraction

An earlier version of the direction finder, based on the ridge-valley fingerprint binarizer
described in [9], produced a grid of directions spaced 16 pixels apart horizontally and vertically,
for atotal of 840 (28 X 30) vectors as shown in Figure 9. The ridge directions were then registered
by shifting the fingerprint “core” to alocation which isthe median core location from alarger sam-
ple of handmarked core data. Wegsteins' [10] routine was used to find the core location for each
fingerprint. Figure 10 shows an example of aincorrect registration point found before filtering and
Figure 11 shows that after filtering a correct registration point was found.

The current version of the direction finder [11] produces better classification results by using
the same number of vectors, but arranged in a fixed unequally spaced pattern which concentrates
the vectorsin certain areas at the expense of less important regions (see Figure 12).The location of
the dense ridge directions was determined by hand marking the location of cores and deltas in a
large sample of images and then adding up the number of cores and deltas|ocated in each 32 X 32
grid of theimage. A mapping of the most dense core and deltaregions was used to determine where
the dense ridge regions should be located. Each 32 X 32 pixel tile of the raster gets either 1, 4, or
16 direction vectors. First, agrid is produced with the vectors spaced every 8 pixels (but still using
16 X 16 pixel averaging windows); this grid has 16 vectors per tile. Grids with 4 vectorg/tile and 1
vector/tile are produced from this original grid by two averaging steps. Then, some tiles receive
their vectorsfrom the coarse grid. some from the medium grid, and some from the fine grid, accord-
ing to a pattern produced as follows. L et the number of tilesthat receive 1, 4, and 16 vectors be nq,
Ny, and nyg. There are 15 X 16 = 240 tiles, so ny + ny + nyg = 240. The total number of vectorsis
fixed at 840 for comparability with the earlier version, so ny + 4n, + 16n,5 = 840. Using these two
equations in three variables, integer values of nyg with 0 <= n;g <= 40 produce ny and n, values
that are non-negative integers. Meaningful values for the three variables were produced by simply
picking nqg vValues and solving for the other two variables, since there is not a unique meaningful
solution. Through experimentation it was determined that the best classification error rate was
obtained using a nyg value of 10.

The 840 output vectors were then reduced, using a Karhunen Loeve (KL) [12] transform, to
approximately 120 features for use in with the Neural Network classifier. The dimensionality
reduction was accomplished by first calculating the covariance matrix of the training data and
determining the principle eigenfunction set using EISPACK routines. The KL transform uses the
output vectors along with the mean output vector (calculated from the training data) and principle
eigenfunctionsto produce the reduced feature set for each image. In the transform, the mean output
vector is first subtracted from the output vector and then the result is multiplied by a matrix con-
taining the principle eigenvectors. Sincethe KL features are ranked in order of decreasing variance
it issimple to reduce the number of features used by selecting thefirst n features. Through testing
it was determined that no differencein error rate was seen when using more than 96 input features.

18



A
L T B |

\
LSRN S A}

-
e N A T T |

e e o e W,
N

- e o e

A
-

[ PR A AN
Lt brr b AP sy
ERP AV AV S
VPV AV AV SV
LRV AV AV AV S P S
Vv A AP
Ll A A A A S
s
e
e

!

— et = = e - R
- - o e -
o P
el et ot m

[ e

L

L L Y

T N

—_ e = o
P ———— = - - -
——— ——

P R e ——

LI T )

_—— e

- ——
—_—_— -

., T e, N
——— i, e W Mg,
e N N
~ e

e
A
-

s
1
\
Y
1
\
Y
Y
\
\
\
Y
i
AS
i
k!
i
i
\
k!
i
i
1

I P P R A A
P Y I I A A A N

i e e Y
e
[ ——— e )

e ——— e —— =

Al
-
e
LA I T
I

e e

e —————— = o |
.

-

R T T T T W
17~ ¢ -
-
- e
L
L Y

P |

’

N ARt

o

s

—_——
19

P |

1

—_————— -
RPN D P U P |

—_——— - -
o ————— Y

B A e T

—_——— = = — =

-
- = e

e
| = = momm e
—_— e e ———— e,

i T T N
—_————— -~
R

e
R e

Figure 9: Equally spaced direction vectors of non-filtered image.
Figure 10: Registered equally spaced direction vectors of non-filtered image.
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Figure 12: Registered non-equally spaced direction vectors of filtered image.
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6 PNN Classifier

The classification algorithm used was a Probabilistic Neural Network (PNN)[2][13]. The
unknowns are classified by summing the values of the kernel functions of the prototypes for each
output class i, and then weighting these “output activations’, Dj(y), by a compensating factor
involving the a priori probability of each output class, p(i) and the number of examples for each
class, M;. The activations are then normalized and the highest activation is selected as the hypoth-
esized class. The kernel function used isaradially symmetric Gaussian kernel parameterized by a
smoothing variable ¢ that was optimized by trial and error.

p() 2exp<——d x",y)) (6)

I j—l

D,(y) =

where the euclidean distance of the unknown y to thejth prototype X; is:

"y = Y (v -x M= T dk? W
k=1

k=1

A modification was made to the classifier which decreased the time of classification by afactor
of 4 with no cost to classification accuracy. The method takes advantage of the KL features being
ranked in order of decreasing variance by applying athreshold factor which keeps only those pro-
totypes which make a significant contribution to the computation of the discriminant function
shown above. The exponential in the discriminant function results in the closer prototypes having
by far the most significant contribution to the summation. Taking this into account, the function
can be approximated by discarding those prototypes with exponential terms contributing less than
10 times the largest term. Meaning, a prototype of any given class, xj() can be deleted from its
discriminant summation if:

exp (— 5 () ) <107ep (-0 (¢ ) (®

where X is the closest prototype without regard to class.

By taking logs and changing sign this condition can be expressed more usefully in the squared
distance domain. If we define the set of eligible prototypes of classi as

s = (il (" y) <202MIn10+d? (x; ) } ©)
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then the discriminant summation of (6) can be abbreviated,

p (i) 1 2
D;(y) = M Z exp(_?&d (Xj Y)) (10)

i je g

so that only those prototypes whose squared distanceis|essthan or equal to the distance of the clos-
est prototype, X, plus the factor controlled by A as defined in (9). Note that X, isthe closest proto-
type without regard to class. The error associated with this approximation is controlled by setting
A to asufficiently large value. The value used in these experiments was A = 4, insuring error rates
did not change between traditional PNN and the optimized PNN.

One advantage to this calculation is that an outer limit distance is determined by the current
closest prototype’s squared distance and the 26°\In10 factor. If anew prototype becomes the clos-
est, the threshold criteriais reapplied and the set is redefined. The main execution timeis saved by
the fact that as soon as any distance summation (7) islarger than the criteria set by 262\In10in 4,
the calculation can be stopped with k < n and the prototype discarded. This becomes very useful
with the KL transform because the expected value for the contribution of agiven featureis propor-
tional to the variance of that feature. Formally, over all prototypes, x;, the expected value of d(k)2
in equation (7) for agiven unknowny is:

E(d(K)?) = E(X(K?) —2E(x (KYy(k) +E(Y(K)?) (11)

Then, by substituting in the sample estimates:

N N
1 1
E(d(k)?) = Nj;xj (k) 2=2y (k) Nj;x,- (k) +y (k)2 (12)

For KL features the mean value of x(K) is zero, so the expression reduces to:
E(d(k)?) =Var (x(k)) +y (k)2 (13)
and if the unknown feature vectors are identically distributed as the prototypes then:
E(d(k)?) =2Var (x(k)) (14)

Sincethe KL transform ranksthe featuresin order of decreasing variance, thefirst few features
contribute most to the distance calculation. Normally, only 4 or 5 features are used in the distance
calculation before the distance to the prototype exceeds the del etion criteria(202xl n10) and the cal-
culation can be stopped.

22



Each filter process was tested twice, the first time using the f rollings from volume 1 as the pro-
totype set and the srollings of volume 2 as the test set and the second time using the f rollings of
volume 2 as the prototypes and the s prints of volume 1 asthe testing. This testing method insured
that no other rollings of a print in the prototype set occurred in the testing set making the results
using the PNN classifier morerealistic. It al'so checked for some consistency in the results over the
two sets of data.

7 Method of Rejection

After selecting the class based on the highest output activation as described in Section 6, the
highest activation is used a confidence measure to determine wether or not to reject the fingerprint
as unclassifiable. Rejecting fingerprints was done by comparing a threshold value to the highest
output activation and any output activation below the confidence threshold level is rejected as
unclassifiable. The reason for doing thisisto discard any prints that appear ambiguous to the clas-
sifier resulting in alow output activation.

8 Results

8.1 Accuracy

Asisshown in Table 2 an improvement of approximately 2 percentage points was seen in the
overall classification error rate when filtering was applied to the fingerprint data. No one filtering
method seemed to do significantly better than the other suggesting that the classifier is not
extremely sensitive to the technique used to reduce noisein theimage. Since most of the printsmis-
classified at high reject levels are not of bad quality one would not expect more filtering to result
in better error rates at high levels of regject. Improved filtering could still help reduce error rates at
lower reject levels. Figure 13 and Figure 14 show plots of the error rate versus the percent reject
for volumes 1 and 2 of NIST Special Database 9.

The scoring method used to present these results was a simple method of dividing the number
of wrong prints by the number of accepted prints shown in the equation below. This differs from
some previous work reported which used the a priori probabilities to calculate the error rates [2].
Using the a priori probabilities after rejecting some of the prints may actually be invalid because
it assumes that after rejecting a percentage of the printsthe probability of occurrence for each class
has not changed. This may actually be true but at this point we do not have the data to compute
these probabilities.

E. = 100.0 Y
i = UX (A) (15)

8.2 Speed

There was a significant difference seen in the time required to filter images with the three dif-
ferent filters. The fastest time seen for the localized FFT filter was approximately 2 seconds per
image when run on a DAP 510ct massively parallel architecture. The fastest times for the direc-
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tional FFT filters were approximately 9 seconds per image (version 1) and 5 seconds per image
(version 2) when run on ai860X P 50 MHz processing board?. The execution timeson aSUN sparc
2 workstation® were approximately 30 seconds (localized FFT filter), 5 minutes (version 1 direc-
tional filter) and 3 1/2 minutes (version 2 directional filter).

Volume 1 Prototypes Volume 2 Prototypes
Volume 2 Testing Volume 1 Testing
% error with % error with
I mage Enhancement % error | 10% rejects o % error | 10% rejects o

Equally Spaced Grids
No Filter or Registration| 18.91 14.68 2.19 21.33 16.67 2.10

Registered 17.05 12.81 2.01 18.39 13.56 1.83

Non-Equally Spaced Grids

Registered 15.63 11.32 2.18 15.79 11.12 1.93
Localized FFT Filter 13.73 9.33 247 13.23 8.85 2.54
Directional FFT filter 1 | 14.89 10.45 2.23 14.04 9.31 221

Directional FFT filter 2 | 14.81 10.66 2.43 14.37 10.01 2.83

Table 2: Classification results for NIST Special Database 9 Volumes 1 and 2.

1. Certain commercial equipment isidentified in order to adequately describe the subject matter of thiswork.
In no case does such identification imply recommendation or endorsement by the National Institute of Stan-
dards and Technology, nor doesit imply that the equipment identified is necessarily the best available for the
purpose.
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Percent of Error

Error vs. Rglect when Testing s Print of Volume 1 NIST Special Database 9
Usef Prints of Volume 2 as Prototype Set

25
No Filtering using equally spaced grids
No Filtering registered and equally spaced grids
No Filtering registered and non-equally spaced grids
20
Direction FFT filter 1 registered and non-equa spaced
grids
Direction FFT filter 2 registered and non-equal spaced
grids
Local FFT filter registered and non-equal spaced grids
15 /
10
5
0
0 5 10 15 20 25

Percentage of Rejects

Figure 13: Error vs. reject plot for Volume 1 of NIST Special Database 9.
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Percent of Error

Error vs. Reglect when Testing s Print of Volume 2 NIST Special Database 9
Usef Prints of Volume 1 as Prototype Set

25
No Filtering using equally spaced grids
No Filtering registered and equally spaced grids
20 No Filtering registered and non-equally spaced grids
Direction FFT filter 2 registered and non-equal spaced
grids (same size dashes)
Direction FFT filter 1 registered and non-equal spaced
grids (long and short dashes)
Local FFT filter registered and non-equal spaced grids
15
10
5
0
0 5 10 15 20 25

Percentage of Rejects

Figure 14: Error vs. regject plot for Volume 2 of NIST Special Database 9.
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9 Conclusions

Thefirst point that needs to be made about the results are that they can not be compared to pre-
vious results reported using NI ST Special Database 4 for two main reasons. First the data setswere
collected using different techniques which affected the quality and orientations of the images. Sec-
ond the test performed in this report do not use thefirst rollings of a set of prints as the training set
and the second rollings of the same prints as the testing set aswas done in previous tests. Test have
shown that using different rollings of a print in the prototype and testing sets result in significantly
better error rates (3-4%) versus using different prototype and testing datawith aPNN classifier. For
thisreason, al testsin thisreport are done using a set of prototypes that does not contain any roll-
ings of the prints in the testing set. This testing method produces more realistic results since one
can not always expect arolling of afingerprint in the testing data to appear in the prototype data.

The use of filtering accomplished the main goal of providing better features the classifier as
shown by improved registration and ridge flow data (Figure 9-Figure 12) and improved error rates
(Table 2). Theimprovement from the feature vectorsin Figure 9 to those in Figure 11 is shown by
two facts. First the feature vectors have smoother flow from one orientation vector to the next. Sec-
ond the length of the linesin the figures shows the amount of confidence that the orientation is cor-
rect, the confidences are clearly better in Figure 11. There was aso an improvement of
approximately 2% consistently observed for rejection rates up to 50%. Currently our system uses
the localized FFT filter because it is more than twice as fast as the next fastest filter and provides
the best error rates.

After carefully observing the results it was also determined that further filtering will result in
very little gain in overal error rate with the current system. In a separate test a printout was made
of al thefingerprintsincorrectly classified after rejecting 35% of the classified prints. The printouts
showed that approximately 45% were double loop whorlswith accurate ridge flow data and correct
registration points (as defined by the current algorithm). The problem isthat the classifier ishaving
trouble distinguishing between certain double loop whorls (Figure 15a and Figure 15b show an
example print with registration point and corresponding ridge features) and loops. The same prob-
lem was occurring approximately 15% of the timewith central pocket whorlsthat had asmall num-
ber of ridges completely circling the center core (see Figure 16a and Figure 16b). The classifier
also had difficulty with tented arches confusing them with loops and arches (10% of the errors).
Taking into account these three cases approximately 70% of the error occurring needs to be solved
by some other method than improving image enhancement.
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Figure 15b: Feature vectors for fingerprint image in Figure 15a
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Figure 16a: Example of misclassified central pocket whorl with marked registration point.
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