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Abstract

Reduction in the size and complexity of neural network is essential to im-
prove generalization. reduce training error. and improve network speed. Most
of the known optimization methods heavily rely on weight sharing concepts
for pattern separation and recognition. The method presented hore focuses on
network topology and information content for optimization. We have studied
the change in the network topology aud its effects on information content dy-
namically during the optimization of the network. The clianges in the network
topology were achieved by altering the uumber of nonzero weights. The pri-
mary optimization is scaled conjugate gradient and the secondary method of
optimization a Boltzmann method. The conjugate gradient optimization serves
as a conunection creation operator and the Boltzinann method serves as a com-
petitive connection anuihilation operator. By combining these two methods its
is possible to generate small networks which have similar testing and training
accuracy. good generalization, from small training sets. Qur findings demon-
strate that for a difficult character recoguition problem the number of weights
in a fully connected network can be reduced hy over 90%.

1 Introduction

The size and the complexity of neural network applications has grown rapidly.
The search for small networks with large information content and generaliza-
tion capability is ongoing. Aost of the optimization stratepies are a trade-off
hetweewn error and network complexity. The known optimization schemes[1.2.3]
have used this trade-off to wminimize the cost function. Among various com-
plexity measures, Vapnic-Chervonenkis (VC) dimensionality [4]. concentrates
on information content and distribution of information in the network. The
error term associated with increasing V'C dimension can be reduced by greatly
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expanding the size of training set or by reducing the VC dimension of tle net-
work.

Boltzmann methods have heen used as a statistical method for combinatorial
optimization and for the design of learning algorithms{5.6]. This method caw be
used in conjunction with a supervised learning method to dyvnamically reduce
network size. The strategy used in this research is to remove the weights using
Boltzmann criteria during the training process. Information content is used as
a measure of network complexity for evaluation of the resulting network.

The competing mechanisis involved when the Boltzimann method is used in
conjunction with SCG are shown in table 1. This table lists five points where
these two methods can be compared. The Boltzmmann method is self-organizing
while the SCG method is a supervised learning method. The Boltzmann method
secks to minimize the the number of weights while maintaining the information
content of the network. The SCG wmethod seeks to minimize an error function
on the training set. The important controlling parameter for the Boltzmana
method is the information in the network is the iteration time. f. as t — .
The controlling informational parameter for the SCG method is the information
provided at t = () in the initial weights. The algorithnic control in the Boltz-
mann method is the temperature sequence applied during the iteration. The
equivalent controlling parameter for the SCG method is the restart sequence.

Boltzmann Method SCG Method
Self-Organization Supervised Learning
information minimization error optimization
generalization in testing error in training
Info (t — oo) Info (¢t = 0)
Temperature sequence Restart sequence

Table 1: Cowmpeting mechanisms when Boltzmann and SCG methods are combined
for concurrent network optimization
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PRUNING VIA BOLTZMANN METHODS

2 Pruning via Boltzmann Methods

In this paper a fully connected network is optimized using the Scaled Conjugate
Gradient method (SCG) developed by Moller [7] and modified by Blue and
Grother [8]. The SCG method is used as a starting network for the Boltzmann
weight pruning algorithm. The network has an input layer with thirty-two input
nodes, a variable size hidden layer with sixteen. thirty-two or sixty-four nodes
and an output laver with ten nodes. Tlhe initial network is a fully connected
network. The pruning was carried out by selecting a normalized temperature,
T. and removing weiglits based on a probability of removal:

P, = exp{—|u;|/T)

The values of P; are cowpared to a set of uniformly distributed random
numbers. ;. on the interval [0.1]. I the probability P, is greater than R,
then the weight is set to zero. The process is carried out for each iteration of
the SCG optimization process and is dynamic. If a weight is removed it may
subsequently be restored by the SCG algorithm: the restored weight may survive
if it has sufficient magnitude in subsegnent iterations.

The dynamic effect of this is shown in figure 1 for five temperatures between
0.1 and 0.5 at 0.1 intervals. starting from a fully converged and fully connected
network. As the size of the temperature change increases the number of weights
removed initially increases, but the effect of later iterations of optimization and
pruning is to decrease the rate at which weights are removed. The number of
weights in the initial network was 1386. including bias weights. At all tem-
peratures the initial iterations are very effective in reducing the weights. The
decrease in the rate of pruning is the result of a critical phenomena character-
ized by a critical temperature. T,.. at which the new information added by the
SCG training balances the imformation removed by pruning. At this critical
point networks trained on small training sets will achieve identical testing and
training accuracy even wheun tested ou large test sets.

The effect of the number of hidden nodes can be seen in figures 2, 3 and 4.
Figure 2 shows the effect on the network with 32 hidden nodes used in figure
1. As the temperature is increased the accuracy of the network for recoguition
decreases slowly for temperatures up to 0.4. As the temperature approaches
0.5 the rate of weight removal showu in figure 1 slows and the rate of accuracy
decay accelerates. The two curves plotted are the training set and testing set
accuracy of the network. The training set accuraey is initially greater than the
testing accuracy. At a critical temperature, T... the testing accuracy and training
accuracy are identical. In figure 2. at the critical temperature of (.58, read from
figure 2. chaotic behavior sets in the vicinity of T, due to a critical effects of
weiglt removal. The behavior of the 32-64-10 network i figure 4 is similar to
the 32-32-10 network. The 32-16-10 network in figure 3 shows an increase in
temperature. T,. and a decrease in accuracy at T,.. This increase in T, is caused
by the reduced set of possible pruned coufigurations in the 32-16-10 network:
the initial 32-16-10 network is too small.
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Figure 1: Weights removed as a function of iteration and temperature for T =
0.1.0.2. 0.3. 0.4, 0.3. The lower curve is for T = 0.1: the upper curve is for T = (0.5
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Figure 2: Change in testing and training accuracy as a function of temperature for a
32-32-10 network after 1000 iterations at cach temperature.
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Figure 3: Change in testing and training accuracy as a function of temperature for a
32-16-10 network after 1000 iterations at each temperature.

ACCURACY %

X TRAINING

0 TESTING

0.1 0.2 0.3 0.4 0.5 0.8 o.7 0.8

TEMPERATURE

Figure 4: Change in testing and training accuracy as a function of temperature for a
32-64-10 network after 1000 iterations at cach temperature.
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Figure 5: Weight distribution below 7. at T = 0.53.
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Figure 6: Weight distribution above I, at T = 0.0



b

PRUNING VIA BOLTZMANN METHODS

ad

30—
S
(2]
g 20
=
=
i3

10—

N I'[]'IHl'"”I'I I'I”H yl7
o — T ¥ T | T
-10 -5 o 5 10

Loa(wi)

Figure 7: Information in weights. 3 log, (|wy|). below T,. at T = 0.35.
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Figure 8: Information in weights. 3 log,(|wy]). above T, at T = 0.6.
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3 Weight Reduction and Information Con-
tent

The effect on the information coutent of the network can be evaluated by exawm-
ining the the distribution of weiglits in the network as a function of temperature.
Figure 5 shows the distribution of the absolute value of the weights at a tem-
perature near. but below. T,.. Figure 6 shows the distribution of the absolute
value of the weiglits at a temperature near. but above. T,.

These distributions illustrate the mechanism involved in the collapse of test-
ing and training accuracy near T.. The accuracy collapse is cansed by the large
increase in weights near zero created hy the most recent SCG iteration. In a
given training cycle some weights are removed. I these weights are redundant
they will be compensated for by other weights in the network. If these weights
are critical they will be restored by the SCG optimization. The peak in the
distribution near zero in hotl fignres 5 and G is caused by this process. At T,
the SCG creatiou process i1s just halanced by the Boltzinann pruning,

The effect of the near-zero weights is more mportant whea viewed as in-
formation contewt. The VO dimension and the information coutent are both
approximately 3 (log,(|w[) + 1). A weight distributions of this kind are shown
in figures 7 and 8 for T above and below T.. When large nnmbers of near-zero
weights exist. their contribution fo the sun dominates the network information.
Under these conditions the network is dominated by recently created weights
which have not been optimized by SCG iterations. This lowers network aceuracy
without reducing VC dimension.

To evaluate the generalization capability of the pruned network the network
associated with a temperature T = .35 was tested on a sample of 221.000 digits
[9]. The predicted accuracy from T, data was 75.5%: the accuracy achieved in
the test was 72.6% . In this region the change in accuracy of the network is about
3% for each AT of 0.001 so that this agreemeunt is cousistent with an acenracy
of T, of £.0005 with a value of T, = (0.582.

4 Conclusions

A method of network optimization has been developed which reduces by 80% to
90%. the number of weights required for moderately accurate character recogni-
tion. The method is based on achieving equilibrinm between the informnation in
the training set and the number of network weights by concurrent weight cre-
ation by SCG optimization and Boltzmmaun weight removal. These reductions
allow both smaller training sets and smaller classification networks to he used.
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