NUREG/CR-5930
NIST SP 500-204

High Integrity Software
Standards and Guidelines

Manuscript Completed: May 1992
Date Published: July 1992

Prepared by

DoloresR. Wallace, Laura M. I ppoalito, D. Richard Kuhn
Systems and Software Technology Division

Computer Systems L aboratory

National Institute of Standards and Technology
Gaithersburg, MD 20899

Prepared for

U.S. Nuclear Regulatory Commission
Washington, DC 20555
NRC FIN # L19762

ABSTRACT

This report presents results of a study of standards, draft standards, and guidelines (all of which will hereafter be
referred to as documents) that provide requirements for the assurance of software in safety systems in nuclear
power plants. The study focused on identifying the attributes necessary in a standard for providing reasonable
assurance for software in nuclear systems. The study addressed some issues involved in demonstrating
conformance to a standard. The documents vary widely in their requirements and the precision with which the
requirements are expressed. Recommendations are provided for guidance addressing the assurance of high
integrity software. It is recommended that a nuclear industry standard be developed based on the documents
reviewed in this study with additional attention to the concerns identified in this report.

TABLE OF CONTENTS

Page
1 INTRODUCTIONetiitiiitteiteeitee sttt ettt st et sb e e st e e sbeesbeesbeesbe e abe e abeeabeesbeesbeesbe e sbeesbeeabeesbeennnenneennnas 1
11 Standards and GUIdElINES REVIEWE.coeiiiiiiiiieiie e 1

2. REVIEW CRITERIA ...ttt sttt st s ittt b e e e e nneenneenneenre s 5
2.1. Levels Of CritiCality/ASSUIANCEcciitiieieie ettt ettt e et e s saee e sabe e s mreeeees 6

2.2. LITECYCIE PESES ...ttt ettt h et e st e e be e e sae e e sabe e nbeeeees 6

2.3. DOCUMENTBLION ...ttt ettt r e b e bt sr e sb e e sb e e sb e e sbeesbeesbeenbeesreenreenreen 7

24. Required Software Functionality Against Hazardscccoceiiiiiiiiieiieeiee e 7

25. Software ENgiNeering PraCliCeS.........ooueiiiiiiiie ettt 8

2.6. ASSUFBNCE ACHIVITIES ...ttt ettt r e e e r e n e e n e ne e 9

2.6.1. Software Verification and Validation (SVE& V)cceeieiiiiiiiiiee e 9

2.6.2. Software Quality ASSUraNCe (SQA) ...eoeiueie ettt 10

2.6.3. Software Configuration Management (SCM)ccooieieiieaiieniiee e 10

2.6.4. Software Hazard ANAlYSIS.......ccooeiiiiieiieeiiee ettt 10

2.7. Project Planning and Management...........cooueiaiieaiieeiiee ettt esne e e 11

2.8. ProCuremMeNt CONCEINS.ciiiriieiiieirie et sre e 11

29. (== 01 (o FO OO O PR UP RO PPOPROPRO 11

2.10. Supplemental INFOrMELIONeii ittt e e be e saee s 11

210, GENEral COMIMENES......eeitieitiesteeiteestee st e st st et e sb e e st e e st e e sb e e sb e e sbeesbeesbeesbeesbeesbeesbeesbeesreesreenreenreens 11

3. COMPARISON OF THE REVIEW DOCUMENTS ..ottt sttt 13
3.1. Levels Of CritiCality/ASSUIANCEccotei ettt ettt sbe e et e b e sbeeeees 13

3.2. LITECYCIE PESES...... ettt ettt e e ebe e e saee e st e e e abeeeees 14

3.3 DOCUMENTBLION ...ttt sb et b bbb e s bt e sbe e sb e e sbe e sbe e s beenneesnnennnas 15

3.4. Required Software Functionality AQainst Hazardsccoieeeiiiiiieeiee e 15

3.5. Software ENgiNeering PraCliCeS........coouuii ittt snee e sabe e 16

3.6. ASSUIBNCE ACHIVITIES ...ttt ettt et ettt r e b e e b e e s b e e sb e e sb e e sreesreenreenreenreens 17

3.6.1. Software Verification and Validation (SV&V)cceviieiiiiiieiieieie e 18

3.6.2. Software Quality ASSUraNCe (SQA) ...eoe ettt 19

3.6.3. Software Configuration Management (SCM)cccoieieiieenienniee e 20

3.6.4. Software Hazard ANAlYSIS.......ccooueiiiiieiiee ettt 20

3.7. Project Planning and Management...........cooieiaiee ettt esre e 20

3.8. ProcuremMeNt CONCEINS.coiiiieiiie et sr e nes 21

3.9. (== 01 (o FO OO OO O PO PR OPPOPROTPTO 22

3.10. Supplemental INFOrMELTIONii it e e be e saee s 22

4, SUMMARY ettt h e r e s bt e s bt e s bt e s E e e s bt e s bt e s Rt e aR e e e Rt e aR e e e R e e nR e e aR e e aR e e aReeaReenReenreenreenreenreen 23
5. REFERENGCES....... oottt ettt et e b et b e bttt b e e bt e bt e bt e bt e b e e b e e bt e bt e b e e are e neenneenne s 25

APPENDIX A. DESCRIPTION OF CRITERIA TEMPLATE ..ot 31

Al Levels Of CritiCality/ASSUIANCEccotiiiei ettt sbe e saee e abe e sbeeeees 31
A.2. LITECYCIE PESES.......eee ettt ettt ettt e e be e e saee e st e e e b e e eees 31
A3 DOCUMENTBLION ...ttt b e bbb e s b e e s b e e sb e e sbe e sbeesne e nnnenneesneas 32
A4, Required Software Functionality AQainst Hazardsccooeeiiiiiiieniiee e 33
A.5. Software ENgiNeering PraCliCeS.........oouuie ittt saae e sabe e 33
A.6. ASSUFBNCE ACHIVITIES ...ttt ettt et r e b e b e e s b e s b e e sb e e sb e e sreesreesreenreenreens 33
A.6.1. Software Verification and Validation (SV&V)ccceeeieiiiiiiiiiiiieie e 33
A.6.2. Software Quality ASSUraNCe (SQA) ...coeiueieiiee ettt 35
A.6.3. Software Configuration Management (SCM)cooiuieiiiiiieniiee e 35
A.6.4. Software Hazard ANAlYSIS.......ccooueiiieieiieeiiee ettt 36
A.T. Project Planning and Management...........cooeioiieeiiee ettt e e e 36
A.8. ProcuremMeNt CONCEINS.ciiiiieiie it sre e sr e nes 36
A9 (== 01 (o FO TSP U PR OPPOPROPRO 36
A.10. Supplemental TNFOrMELIONcoiuiiiiei ettt sae e sabe e beeeees 37
ALL GENErAl COMMENES.....oiuiiiieiiieeite ettt e e s e e s e s e e s abe b e eaneanbeeaneenne s 37
APPENDIX B. REVIEW OF STANDARDS AND GUIDELINES........ccccoiiiinieiee e 39
B.1. ANSI/IEEE-ANS-7-4.3.2-1982: Application Criteria for Programmable Digita
Computer Systemsin Safety Systems of Nuclear Power Generating Stations (1982)................. 40
B.1.1 Levels of CritiCality/ASSUrANCEcoiieieiii ettt 40
B.1.2. LITECYCIE PNESES ...t 40
B.1.3. DOCUMENTBLION ...ttt e 40
B.1.4. Required Software Functionality Against Hazards..........ccccoeeveiiiieenieenen e 40
B.1.5. Software Engineering PraCtiCeSoo i iieiiei et 41
B.1.6. ASSUFBNCE ACHVITIES ...ttt 41
B.1.6.1. Software Verification and Validation (SV&V)ccoeveiiiiiineiniens 41
B.1.6.2. Software Quality Assurance (SQA) ...cooueeeieeeriee e 41
B.1.6.3. Software Configuration Management (SCM)ccocoeereeeiieeriiennns 41
B.1.6.4. Software Hazard ANalySIS........ccoeiiiiiiiiiiiiee e 41
B.1.7. Project Planning and Managementccoieeeiieerieniiee e 41
B.1.8. ProcuremMent CONCEINS.........cuuiiiiiiiie it 41
B.1.9. PrESENTALION. ...ttt e e 41
B.1.10. Supplemental INFOrMELIONc.eiiiiie e 42
B.1.11. GENEral COMMENES......iitieitieriee et r e e 42
B.2. Guideline for the Categorization of Software in Ontario Hydro's Nuclear Facilities With
RESPECE 10 NUCIEAI SAFELY.....coveieieiee e re e 43
B.2.1. Levels of CritiCality/ASSUrANCEcoiiieiiiii ettt 43
B.2.2. LITECYCIE PNESES ...ttt 43
B.2.3. DOCUMENTBLION ...ttt e 43
B.2.4. Required Software Functionality Against Hazards..........ccccceeveiiiecnieenien e 43
B.2.5. Software ENngineering PraCtiCeSooiuiiiieiiiei it 43
B.2.6. ASSUIBNCE ACHVITIES.....veiiieitie sttt 43
B.2.6.1. Software Verification and Validation (SV&V)cccoeveiiiiiiniiniens 43
B.2.6.2. Software Quality Assurance (SQA) ...coveeeieeeriee e 43

Vi

B.3.

B.4.

B.5.

B.2.6.3. Software Configuration Management (SCM)ccocoeeveeinieerienne 43

B.2.6.4. Software Hazard ANalySIS........ocoeiiiiiiiiiiiieeriee e 44
B.2.7. Project Planning and Managementccoieieiieeiieeniee e 44
B.2.8. ProcuremMent CONCEINS.........ciiiiieirie it 44
B.2.9. PrESENTALION. ...ttt e 44
B.2.10. Supplemental TNFOrMELIONc.eiiiiie e 44
B.2.11. GENEral COMMENTS.....eiitieitieitee ittt e r e re e 45
DLP880: Proposed Standard for Software for Computers in the Safety Systems of
NUCIEAr POWET SEALTONS.cteeitieitieitee sttt sttt et b bbb b e e e sneesneenneas 46
B.3.1 Levels of CritiCality/ASSUrANCEooiieieiee ettt 46
B.3.2. LITECYCIE PNESES ...t e 46
B.3.3. DOCUMENTBLION ...ttt e 46
B.3.4. Required Software Functionality Against Hazards..........cccccceeveeiieenieeneneieee 46
B.3.5. Software ENngineering PraCtiCeSooiuiiiiiiiiei ittt 46
B.3.6. ASSUFBNCE ACHVITIES...c.veiiieitie ittt 47
B.3.6.1. Software Verification and Validation (SV&V)ccoeveviviiieiniens 47
B.3.6.2. Software Quality Assurance (SQA) ...cooueeeiieeriee e 47
B.3.6.3. Software Configuration Management (SCM)ccocoeeveeeiieeniennns 47
B.3.6.4. Software Hazard ANalySIS........ocoiiiiiiiiiiieeiee e 47
B.3.7. Project Planning and Managementcooieeeiieeiieniiee e 47
B.3.8. ProcuremMent CONCEINS.........c.eoirieirie it 48
B.3.9. PrESENTALION.c.teeteeeee sttt e 48
B.3.10. Supplemental INFOrMELIONc.eiiiiie e 48
B.3.11. GENEral COMMENTS......iitiiitieitee ettt e e 48
Dependability of Critical Computer Systems 2 - Chapter 1: Guidelines to Design
Computer SYSEEMS FOr SAFELYcciveieiiiieiie et e s sre e e saee e sareans 50
B.4.1. Levels of CritiCality/ASSUrANCEcoiiiiieiei ettt 50
B.4.2. LITECYCIE PNESES ...t 50
B.4.3. DOCUMENTBLION ...ttt 50
B.4.4. Required Software Functionality Against Hazards..........cccccceeveiiiieiniennen e 50
B.4.5. Software ENngineering PraCtiCeSooiuiiiieiiiei ittt 50
B.4.6. ASSUFBNCE ACHVITIES...c.veiiieieeeitee ettt 51
B.4.6.1. Software Verification and Validation (SV&V)cccoeveviiiiieinenns 51
B.4.6.2. Software Quality Assurance (SQA) ...cooueeeiieeiiee e 51
B.4.6.3. Software Configuration Management (SCM)ccocoeeveeeiieeniiennns 51
B.4.6.4. Software Hazard ANalySIS........ccoeiiiiiiiiiiiieeriee e 51
B.4.7. Project Planning and Managementcooieieiieeiieeiiee e 51
B.4.8. ProcuremMent CONCEINS.........cuiiiiieirie it 51
B.4.9. PrESENTALION.c.veeteestee sttt e e 51
B.4.10. Supplemental INFOrMELIONc.eiiiiie et 51
B.4.11. GENEral COMMENES......ieiieitieitieite ettt et re e 52
Dependability of Critical Computer Systems 2 - Chapter 2: Guidelines for the
Assessment of the Safety and Reliability of Critical Computer Systems..........cccovceveieeeneeeneeen. 53
B.5.1. Levels of CritiCality/ASSUrANCEcoiueieiie ettt 53

vii

B.6.

B.7.

B.5.2. LITECYCIE PNESES ...t 53
B.5.3. DOCUMENTBLION ...ttt 53
B.5.4. Required Software Functionality Against Hazards..........ccccoveveiiiicnenicen e 54
B.5.5. Software Engineering PraCtiCeSoo i iiiiiiei et 54
B.5.6. ASSUFBNCE ACHIVITIES ...ttt 54
B.5.6.1. Software Verification and Validation (SV&V)cceeveiiiiiieiniennns 55
B.5.6.2. Software Quality Assurance (SQA) ...cooereiieaiiee e 55
B.5.6.3. Software Configuration Management (SCM)ccocoeeveienieeniennne 55
B.5.6.4. Software Hazard ANalySIS.......ccceiiiiiiiiieiieeiee e 55
B.5.7. Project Planning and Managementccoveeeiieeiieeiiee e 55
B.5.8. ProcuremMent CONCEINS..........ooirieiiieiiie et 55
B.5.9. PrESENTALION. ...ttt s 55
B.5.10. Supplemental INFOrMELIONc.eiiiiie e 55
B.5.11. GENEral COMMENTS.....eiitieitieitierte ettt e e re e 55
Dependability of Critical Computer Systems 2 - Chapter 3: A Questionnaire for System
Safety and Reliability ASSESSMENTeiiiiie ettt re e saee e saeeans 57
B.6.1. Levels of CritiCality/ASSUIANCEouiiei ittt 57
B.6.2. LITECYCIE PNESES ...t 57
B.6.3. DOCUMENTBLION ...ttt 57
B.6.4. Required Software Functionality Against Hazards..........cccccceeveeiiieenieencen e 57
B.6.5. Software ENngineering PraCtiCeSooiuiiiiiiiiieie e 57
B.6.6. ASSUFBNCE ACHVITIES...c.veiiieitee ittt 58
B.6.6.1. Software Verification and Validation (SV&V)cccoeveviiiiieiniens 58
B.6.6.2. Software Quality Assurance (SQA) ...cooeeeiieeriee e 58
B.6.6.3. Software Configuration Management (SCM)ccocoeeveeeiieeniiennne 58
B.6.6.4. Software Hazard ANalySIS........ccceiiiiiiiiieiieeiee e 58
B.6.7. Project Planning and Managementccoieeeiieeieeiiee e 59
B.6.8. ProcuremMent CONCEINS.........cuiiivieirie it 59
B.6.9. PrESENTALION. ...ttt e 59
B.6.10. Supplemental INFOrMELIONcueiiiiieiie e 59
B.6.11. GENEral COMMENTS......ieitieitieitee ettt re e 59
Dependability of Critical Computer Systems 2 - Chapter 4: A Guideline on Software
Quality ASSUranCe and MEBSUIESoeiuiieiieeiiee ettt ettt et sbe e s e s be e sbe e e sbee e saeeesnbeans 60
B.7.1. Levels of CritiCality/ASSUrANCEcoiiteieiii ettt 60
B.7.2. LITECYCIE PNESES ...ttt 60
B.7.3. DOCUMENTBLION ...ttt e 60
B.7.4. Required Software Functionality Against Hazards..........ccocooeieiiii e 60
B.7.5. Software ENngineering PraCtiCeSooiuiiiiiiiii ittt 60
B.7.6. ASSUIBNCE ACHVITIES....veiieeitie ittt 60
B.7.6.1. Software Verification and Validation (SV&V)ccceeveviiiiiiinienns 60
B.7.6.2. Software Quality Assurance (SQA) ...cooueeeieeeriee e 60
B.7.6.3. Software Configuration Management (SCM)ccocoeeveieiieerieenns 61
B.7.6.4. Software Hazard ANalySIS........oceiieiiiiiiiieeiee e 61
B.7.7. Project Planning and Managementccoveeeiieeiien e e 61

viii

B.8.

B.9.

B.10.

B.7.8. ProcuremMent CONCEINS.........coiiiieirieiiii et 61
B.7.9. PrESENTALION. ...ttt e 61
B.7.10. Supplemental INFOrMELIONccueiiiiie i 61
B.7.11. GENEral COMMENTS......iiitieitieieest ettt e e 61
Dependability of Critical Computer Systems 2 - Chapter 5: Guidelines on the
Maintenance and Modification of Safety-Related Computer Systems........cccceeveeeieeviieeicieeene 62
B.8.1. Levels Of CritiCality/ASSUrANCEcoiiiiiiiei ettt 62
B.8.2. LITECYCIE PNESES ... 62
B.8.3. DOCUMENTBLION ...ttt e 62
B.8.4. Required Software Functionality Against Hazards..........ccccceeveieiiecniecncen e 62
B.8.5. Software Engineering PraCtiCeSooiuiiiiiiiei e 62
B.8.6. ASSUFBNCE ACHVITIES.....eeiiieitie ittt 62
B.8.6.1. Software Verification and Validation (SV&V)ccoeveviiiiiiiiniens 62
B.8.6.2. Software Quality Assurance (SQA) ...cooeeeieeeiiee e 62
B.8.6.3. Software Configuration Management (SCM)cccocoeeveeeiieeniennns 62
B.8.6.4. Software Hazard ANalySIS........ocoeiiiiiiiiieiieeiee e 62
B.8.7. Project Planning and Managementccoieeeiieeiiee e 63
B.8.8. ProcuremMent CONCEINS.........cuioirieiiieirie et 63
B.8.9. PrESENTALION. ...ttt e 63
B.8.10. Supplemental INFOrMELIONcueiiiiie e 63
B.8.11. GENEral COMMENTS......iitieitieitee ettt e 63
IEC 880: Software for Computers in the Safety Systems of Nuclear Power Stations................ 65
B.9.1. Levels of CritiCality/ASSUrANCEooiieieiie ettt 65
B.9.2. LITECYCIE PNESES ...t 65
B.9.3. DOCUMENTBLION ...ttt e 65
B.9.4. Required Software Functionality Against Hazards..........cccccceeieieiecnieenec e 66
B.9.5. Software ENngineering PraCtiCeSooiuii it 67
B.9.6. ASSUIBNCE ACHVITIES ...ttt 69
B.9.6.1. Software Verification and Validation (SV&V)cccoeveiiiiiieiniens 69
B.9.6.2. Software Quality Assurance (SQA) ...cooueeeieeariee e 70
B.9.6.3. Software Configuration Management (SCM)ccocoeeveeeiieeniennns 70
B.9.6.4. Software Hazard ANalySIS........ccoeiiiiiiiiieiieeiee e 71
B.9.7. Project Planning and Managementcooveeeiieeiieniiee e 71
B.9.8. ProcuremMent CONCEINS.........cuooirieiiie it 71
B.9.9. PrESENTALION.teeteeseee sttt 71
B.9.10. Supplemental INFOrMELIONcueiiiiie e 73
B.9.11. GENEral COMMENTS.....eiitieitieitieite et r e e 73
45A/WG-A3(Secretary)42: (3rd Draft) Software for Computers Important to Safety for
Nuclear Power Plants as a Supplement to |EC Publication 880ccocoeieiiiiiiiieciiecnieee 75
B.10.1. Levels of CritiCality/ASSUrANCEcoiiiiieiie ettt 75
B.10.2. LITECYCIE PNESES ...ttt 75
B.10.3. DOCUMENTBLION ...t 75
B.10.4. Required Software Functionality Against Hazards..........ccccceeveeeiecnieenen e 75
B.10.5. Software ENngineering PraCtiCeSooiuii it 76

B.11.

B.12.

B.13.

B.10.6. ASSUFBNCE ACHVITIES.....eeiiieitie sttt 76

B.10.6.1. Software Verification and Validation (SV&V)cccoeveiiiiiienniens 76

B.10.6.2. Software Quality Assurance (SQA) ...cooueeeiieeiiee e 77

B.10.6.3. Software Configuration Management (SCM)ccocoeeveeeiieeniennns 77

B.10.6.4. Software Hazard ANalySIS........ccoeiiiiiiiiiiiieeiee e 77
B.10.7. Project Planning and Managementccoieeeiieeiieeniee e 77
B.10.8. ProcuremMent CONCEINS.........c.ooiiiiirie it 77
B.10.9. PrESENTALION. ...ttt e 77
B.10.10. Supplemental INfOrmMationccueiiieiiiiiiii e 77
B.10.11. General COMIMENES......c.eiitieiteertiestiesteesteesteesiee st sbeesteesbeesseesseesbeesseesneeseeesneesneesaeas 77
NPR-STD-6300: Management of Scientific, Engineering and Plant Software..............ccocee..... 79
B.11.1. Levels of CritiCality/ASSUrANCEooiiiieiie ettt 79
B.11.2. LITECYCIE PNESES ...t 79
B.11.3. DOCUMENTBLION ...ttt 79
B.11.4. Required Software Functionality Against Hazards..........ccocooeiiiiiiiieiiciiee 79
B.11.5. Software ENngineering PraCtiCeSooiuiiiiiiiii ittt 79
B.11.6. ASSUFBNCE ACHVITIES ...ttt 79

B.11.6.1. Software Verification and Validation (SV&V)ccceeveviiiiieinienns 79

B.11.6.2. Software Quality Assurance (SQA) ...cooueeeieeeiiee e 80

B.11.6.3. Software Configuration Management (SCM)ccocceeveeeiieeriennns 80

B.11.6.4. Software Hazard ANalySIS........ocoeiiieiiiiieiieeiee e 80
B.11.7. Project Planning and Managementcooieeeiieeiieeiieeeiee e 80
B.11.8. ProcuremMent CONCEINS.........c.ooiiieiiie it 80
B.11.9. PrESENTALION. ...ttt e 81
B.11.10. Supplemental INfOrmMationcouiiiieiiiieiie e 81
B.11.11. General COMIMENES.....cc.eiiteeiiierieeitiesteesieesteesieesieesbeesbeesbeesseesseesseesseesseesseesneesneesaeas 81
P1228: (DRAFT) Standard for Software Safety Plans (IEEE Working Group)ccccee.... 82
B.12.1. Levels of CritiCality/ASSUrANCEouiiieieiei ettt 82
B.12.2. LITECYCIE PNESES ...ttt 82
B.12.3. DOCUMENTBLION ...ttt e 82
B.12.4. Required Software Functionality Against Hazards..........cccccceeveieiecnieenen e 82
B.125. Software Engineering PraCtiCeSoo i iiiiiiii it 82
B.12.6. ASSUFBNCE ACHVITIES ...ttt 83

B.12.6.1. Software Verification and Validation (SV&V)ccoeveviviiiieinienns 83

B.12.6.2. Software Quality Assurance (SQA) ...cooueeeiieeiiee e 83

B.12.6.3. Software Configuration Management (SCM)ccocoeeveeeiieeniienne 83

B.12.6.4. Software Hazard ANalYSIS.......coceiiiiiiiieiiee e 83
B.12.7. Project Planning and Managementcoooeeeiieeiieeniee e 83
B.12.8. ProcuremMent CONCEINS.........cuooiiieirieiiie et 83
B.12.9. PrESENTALION. ...ttt e 84
B.12.10. Supplemental INfOrmMationooueiiieeiiiiiiiie e 84
B.12.11. General COMIMENES.....cc.uiiteeitieiteeiteesteesteesieesiee s sbeesbeesbeesseesseesbeesseesneesseesneesneesnees 84

RTCA/DO-178A: Software Considerations in Airborne Systems and Equipment
100000 1= = (o] o R TP P PP PRTRN 86

B.13.1. Levels of CritiCality/ASSUrANCEoiiiiieiei ettt 86
B.13.2. LITECYCIE PNESES ...t 86
B.13.3. DOCUMENTBLION ...ttt 86
B.13.4. Required Software Functionality Against Hazards..........ccccceeveiiieinieenien e 86
B.13.5. Software Engineering PraCtiCeSoo i iiiiiiei et 86
B.13.6. ASSUFBNCE ACHVITIES.....veiiieitiestee sttt 86
B.13.6.1. Software Verification and Validation (SV&V)cceeveiiiiiieiniennns 87
B.13.6.2. Software Quality Assurance (SQA) ...cooereiieaiiee e 87
B.13.6.3. Software Configuration Management (SCM)ccocoeeveeeiieeniiennne 87
B.13.6.4. Software Hazard ANalySIS........ccoiiiiiiiiiiiiee e 87
B.13.7. Project Planning and Managementcooveeeiieeiieenien e 88
B.13.8. ProcuremMent CONCEINS..........ooirieiiieiiie et 88
B.13.9. PrESENTALION. ...ttt e 88
B.13.10. Supplemental INfOrmMationccuiiiiiiiiiiiie e 88
B.13.11. General COMIMENES.....c.ueiiteeitiarteeriiesteesteesseesiee st sbeesbeesbeesseesseesbeesbeesneesneesneesnnesneas 88
B.14. (DRAFT) Standard for Software Engineering of Safety Critical Software...........cccooevevieenienns 89
B.14.1. Levels of CritiCality/ASSUIANCEouiiei ittt 89
B.14.2. LITECYCIE PNESES ...t 89
B.14.3. DOCUMENTBLION ...ttt 89
B.14.4. Required Software Functionality Against Hazards..........cccccceeveeiiieenieencen e 89
B.14.5. Software ENngineering PraCtiCeSooiuiiiiiiiiieie e 89
B.14.6. ASSUFBNCE ACHVITIES...c.veiiieitee ittt 90
B.14.6.1. Software Verification and Validation (SV&V) ...cccooveiiviiiicniennns 90
B.14.6.2. Software Quality Assurance (SQA) ...cooeeeiieeriee e 90
B.14.6.3. Software Configuration Management (SCM)ccocoeeveieiieeniiennne 90
B.14.6.4. Software Hazard ANalySIS........ocoeiiiiieiiiiiieeiee e 91
B.14.7. Project Planning and Managementcooieeeiieeiiee e 91
B.14.8. ProcuremMent CONCEINS.........ccooirieirie it 91
B.14.9. PrESENTALION. ... veeteestee sttt e 91
B.14.10. Supplemental INfOrmMationooueeiieeiiiiiie e 91
B.14.11. General COMIMENES........eiiieriierieeriiesteesteesteesiee st steesbeesbeesseesseesbeesseesseesneesneesneesneas 92
TABLES
Tahle 1-1 REVIEW QOCUMENTS.cueiitieitieitee ettt sb et s et s e s e e bt s e e s e e e e e e eab e s an e saneeaneenneeaneenne s 2
Table 1-2 Criteria QOCUMENLS........eiiteeiteeitee ittt ee sttt ss e e e st s e sse e s ae e se bt s ab e s e e e san e ean e san e saneeaneeaneenneenne s 3
TahlE 1-3 CriteliAtOMPIBLE ... eee ettt ettt ettt et e bt e s bt e e sbe e e sate e sabeeambe e e abe e e sabeesnbeesnbeeaaees 4
Tahle 1-1 REVIEW QOCUMENTS.cueiiteeitieiiee sttt sttt e e s s s ettt se bt s s b e s s e e e e eab e s an e san e eaneeaneenneenne s 2
Table 1-2 Criteria QOCUMENLS........eiiteeiteeiteesieesiee sttt sttt ettt esae e s et e se s e sae e sa e e san e ean e san e saneeaneeaneenneenneeans 3
TabIE 1-3 CriteiatOMPIBLEee ettt ettt ettt e bt e sttt e eb e e e sabe e s abe e enbe e e abee e sabeesmbeesnbeeeanes 4

Xi

Xii

EXECUTIVE SUMMARY

Under the interagency agreement RES-91-003 between the United States Nuclear Regulatory Commission (NRC)
and the National Institute of Standards and Technology (NIST), NIST is responsible for providing NRC with
current information regarding standards and practices for assuring safety of the software for safety systems in
nuclear power plants. This report presents the results of a study that is defined by the following:

Review current United States (US) and international standards and guidelines for high integrity
software and analyze their potential for use in the nuclear industry with regard to safety applications.
Some documents were selected by NRC and forwarded to NIST for review.

High integrity software is software that must be trusted to work dependably in some critical function, and whose
failure to do so may have catastrophic results, such as serious injury, loss of life or property, business failure or
breach of security. Examples include software used in safety systems of nuclear power plants, medical devices,
electronic banking, air traffic control, automated manufacturing, and military systems. Standards, draft standards,
and guidelines (hereafter referred to as documents) from each of these fields were examined in this study. The
documents reviewed included those recommended by NRC and a few others that collectively reflect the trends of
the standards community for high integrity software. Comprehensive documents that address more than one
software engineering process were examined. From over 50 documents, ten were selected for further study. Most
of these documents have broad scopes and provide guidance across the entire software lifecycle for several software
engineering processes. Documents of narrower scope (i.e., single topic) were used to identify criteria for specific
software engineering practices and processes that should be addressed by standards for high integrity software.

The following principal questions guided the review of the documents:

0 Do the requirements of the document provide assurance of the nuclear safety system software
developed, maintained, and operated according to these requirements? That is, does the document
contain requirements for building verifiably dependable nuclear safety system software?

0 Will the requirements of the document provide NRC auditors with enough information to verify that
the vendor product is in compliance with the requirements and are there clearly measurable
conformance clauses? Is it expected that two auditors will arrive at the same conclusions relative to
the product?

The focus of this study is on software assurance issues (i.e., assurance that the software meets safety requirements).

Usually, the software will be embedded in a system in which software is only one component. Although the
software lifecycle, not the system lifecycle, is the focus, the software lifecycle's relationship to the system lifecycle
must be understood in order to place assurance activities in the proper context. System activities are not included
in the review criteria beyond the extent necessary to evaluate software assurance requirements. While the
documents in this study were reviewed relative to the assurance of software for safety systems in nuclear power
plants, the criteria and recommendations contained in this report are applicable to other critical software safety
systems.

Criteria for answering the principa questions should be derived from a body of knowledge or rigorous technical
specifications for software engineering, especially specifications that are essential in building high integrity
software. For software engineering, the body of knowledge has not yet been rigorously codified but is distributed
among standards, guidelines, technical reports, conference presentations, and information proprietary to
organizations. Few documents reviewed in this study reflect the growth of the knowledge base found in technical
reports and conference presentations, which are not subjects of this review. The criteria used for this study are
based on the authors' experience and knowledge derived from these various sources of information.

Documents were reviewed against a template (see Appendix A) of detailed criteriain several categories: levels of
criticality/assurance, lifecycle phases, documentation, required software functionality against hazards, engineering
practices for the development of software, project planning and management, and assurance activities which
include software verification and validation, software quality assurance, software configuration management, and
software hazard analysis. The template also includes procurement issues. The template's Presentation category
provided a mechanism for objectivity in identifying how well an auditor can demonstrate compliance of a system
with a specific document's requirements.

Each document was analyzed according to the criteria to answer the principal questions. The relative strengths
and weaknesses of the documents were compared. No single standard or guideline reviewed for this study
completely satisfies all the evaluation criteria, although most documents satisfy requirements for at least one
category of criteriain the template.

No standard can guarantee the safety of a particular software system. In other words, no one can ever say "If a
developer follows this standard, the system will be safe.” The judgement of safety for a particular installation must
be made by the appropriate authorities. Ideally, standards should state what is required for evaluating the safety of
a system, and to determine if the software complies with the standard. That is, "These are the things that must be
done to enable NRC to judge whether the system is safe enough to not pose an undue risk to public health and
safety.”

It is recommended that NRC considerations of consensus standards, draft standards, and guidelines include the
concerns identified in this report. While information from all of the documents can be used in developing a
rigorous standard, other concerns must be addressed. For example, the scope of the standard within system and
software lifecycles must be clearly identified. The standard should require that software is always assured in the
context of the particular system under evaluation. Guidance for assurance of high integrity software should either
describe al practices or cite acceptable standards for them, encompassing at least the criteriain Appendix A.

Xiv

ACKNOWLEDGEMENTS

Leo Beltracchi of the United States Nuclear Regulatory Commission (NRC) provided substantial guidance to the
authors of thisreport. Franklin Coffman and Julius Persensky, NRC, also contributed to this report.

XV

XVi

ABBREVIATIONS

Acronyms used in this report (other than those used to refer to documents) are listed below.

CASE Computer Aided Software Engineering
CM Configuration Management

DID Design Input Documentation

FMEA Failure Modes and Effects Analysis

FTA Fault Tree Analysis

V&V Independent Verification and Validation
O&M Operation and Maintenance

QA Quality Assurance

SCM Software Configuration Management

SCMP Software Configuration Management Plan
SDD Software Design Description

SDP Software Development Plan

SQA Software Quality Assurance

SQAP Software Quality Assurance Plan

SRS Software Reguirements Specification
SSP Software Safety Plan

SvV&v Software Verification and Validation
SVVP Software Verification and Validation Plan

V&V Verification and Validation

XViii

1 INTRODUCTION

Under the interagency agreement RES-91-003 between the United States Nuclear Regulatory Commission (NRC)
and the National Institute of Standards and Technology (NIST), NIST is responsible for providing NRC with
current information regarding standards and practices for assuring safety of the software for safety systems in
nuclear power plants. This report presents the results of a study that is defined by the following:

Review current United States (US) and international standards and guidelines for high integrity
software and analyze their potential for use in the nuclear industry with regard to safety applications.
Some documents were selected by NRC and forwarded to NIST for review.

While the documents in this study were reviewed relative to the assurance of software for safety systems in nuclear
power plants, the criteria and recommendations contained in this report are applicable to other critical software
safety systems.

1.1. Standards and Guiddines Reviewed

This report contains the results of a review of current US and international standards and guidelines (hereafter
referred to as documents) for high integrity software and their analysis relative to potential use in the nuclear
industry with regard to safety applications. High integrity software is software that must be trusted to work
dependably in some critical function, and whose failure to do so may have catastrophic results, such as serious
injury, loss of life or property, business failure or breach of security. Some examples include software used in
safety systems of nuclear power plants, medical devices, eectronic banking, air traffic control, automated
manufacturing, and military systems [NIST190]. Documents from each of these fields were examined in this study
including those recommended by NRC and a few others that collectively reflect the trends of the standards
community for high integrity software.

Comprehensive documents that address more than one software engineering process were examined. From over 50
documents, ten were selected for further study. One of these is a book of five chapters produced by a European
committee™; this study considered each of the five chapters as a separate document. Therefore, 14 documents were
reviewed. The titles of these documents and their respective acronyms used in this report are in Table 1-1.
Complete references are in Section 5.

Most of these documents have broad scopes and provide guidance across the entire software lifecycle for several
software engineering processes. Documents of narrower scope (i.e., single topic) were used to identify criteria for
specific software engineering practices and processes that should be addressed by standards for high integrity
software. Titles and acronyms of documents that were used to provide additional criteria are listed in Table 1-2.

Complete references are in Section 5.

Table 1-3 lists the categories of criteria used to respond to the principal questions that were derived from the
documents listed in Table 1-2.

The other books [EWICSL, EWICS3] produced by the same committee are NOT reviewed in this study.

Acronym Number and title (complete references are in Section 6)

ANS7432 ANSI/IEEE-ANS-7-4.3.2-1982: Application Criteriafor Programmable Digital Computer
Systems in Safety Systems of Nuclear Power Generating Stations

CATEGORY | Guideline for the Categorization of Software in Ontario Hydro's Nuclear Facilities with
respect to Nuclear Safety, Revision 0, 1991

DLP880 DLP880: (DRAFT) Proposed Standard for Software for Computers in the Safety Systems of
Nuclear Power Stations (based on |EC Standard 880)

EWICS2-1 Dependability of Critical Computer Systems 2, Chapter 1: Guidelines to Design Computer
Systems for Safety, 1989

EWICS2-2 Dependability of Critical Computer Systems 2, Chapter 2: Guidelines for the Assessment of
the Safety and Reliability of Critical Computer Systems, 1989

EWICS2-3 Dependability of Critical Computer Systems 2, Chapter 3: A Questionnaire for System Safety
and Reliability Assessment, 1989

EWICS2-4 Dependability of Critical Computer Systems 2, Chapter 4: A Guideline on Software Quality
Assurance and Measures, 1989

EWICS2-5 Dependability of Critical Computer Systems 2, Chapter 5: Guidelines on the Maintenance
and Modification of Safety-Related Computer Systems, 1989

IEC880 IEC 880: Software for Computers in the Safety Systems of Nuclear Power Stations, 1986

IECSUPP 45A/WG-A3(Secretary)42: (DRAFT) Software for Computers Important to Safety for Nuclear
Power Plant, 1991

NPR6300 NPR-STD-6300: Management of Scientific, Engineering and Plant Software, 1991

P1228 P1228: (DRAFT) Standard for Software Safety Plans (IEEE Working Group), 1991

RTCA178A RTCA/DO-178A: Software Considerations in Airborne Systems and Equipment Certification,
1985

SOFTENG Standard for Software Engineering of Safety Critical Software, Rev. 0, 1990

Table 1-1 Review documents

Acronym

Number and title (complete references are in Section 6)

ANS104 ANSI/ANS-10.4-1987: Guidelines for the Software Verification and Validation of Scientific
and Engineering Computer Programs for the Nuclear Industry

ASMENQA2 | ASME NQA-2a-1990: Quality Assurance Requirements for Nuclear Facility Applications

FIPS101 FIPS 101: Guidelinefor Lifecycle Validation, Verification, and Testing of Computer Software,
1983

FIPS132 FIPS 132: Guidelines for Software Verification and Validation Plans, 1987

FIPS1401 FIPS 140-1: Security Requirements for Cryptographic Modules, 1990

|IEEE828 ANSI/IEEE Std 828-1983: IEEE Standard for Software Configuration Management Plans

IEEE1012 ANSI/IEEE Std 1012-1986: |EEE Standard for Software Verification and Validation Plans

|IEEE1058 ANSI/IEEE Std 1058.1-1987: |EEE Standard for Software Project Management Plans

IEEE7301 ANSI/IEEE Std 730.1-1989: |EEE Standard for Software Quality Assurance Plans

1SO9000 SO 9000: International Standards for Quality Management, 1990

ITSEC ITSEC 1.1989: Criteriafor the Evaluation of Trustworthiness of Information Technology (IT)
Systems

MODQ055 Interim Defence Standard 00-55: The Procurement of Safety Critical Software in Defence
Equipment, 1991

NIST180 NIST Special Publication 500-180: Guide to Software Acceptance, 1990

NIST190 NIST Special Publication 500-190: Proceedings of the Workshop on High Integrity Software;
Gaithersburg, MD; Jan. 22-23, 1991

SAFEIT Safel T, Department of Trade and Industry, 1990

TCSEC DoD 5200.28-STD: Department of Defense Trusted Computer System Evaluation Criteria

Table 1-2 Criteria documents

Levels of Criticality/Assurance

Lifecycle Phases

Documentation

Required Software Functionality Against Hazards

Software Engineering Practices

Assurance Activities
Software Verification and Validation (SV&V)
Software Quality Assurance (SQA)
Software Configuration Management (SCM)
Software Hazard Analysis

Project Planning and Management

Procurement Concerns

Presentation

Supplemental Information

Genera Comments

Table 1-3 Criteriatemplate

Section 2 of this report provides a description of the criteria for each category in this template, that is, the detailed
requirements. Section 3 contains a comparison of the documents for each of the review criteria. Section 4 contains
the summary of this study. Appendix A identifies some of the features against which each document was analyzed.
Appendix B contains the review of each document based on the criteria.

2. REVIEW CRITERIA

This study required a review of documents potentially useful for assuring high integrity software in safety systems
of nuclear power plants. The focus of this study was on software assurance issues (i.e., assurance that the software
meets safety requirements). Usualy, the software will be embedded in a system in which software is only one
component. Although the software lifecycle, not the system lifecycle, is the focus, the software lifecycle's
relationship to the system lifecycle must be understood in order to place assurance activities in the proper context.
In general, system activities are not included in the review criteria beyond the extent necessary to evaluate software
assurance reguirements.

The documents were reviewed according to criteria devel oped to answer the following principal questions:

0 Do the requirements of the document provide assurance of the nuclear safety system software
developed, maintained, and operated according to these requirements? That is, does the document
contain requirements for building verifiably dependable nuclear safety system software?

0 Will the requirements of the document provide NRC auditors with enough information to verify that
the vendor product is in compliance with the requirements, and are there clearly measurable
conformance clauses? If so, isit expected that two auditors will arrive at the same conclusions relative
to the product?

To meet the first set of questions, the software system must be of high integrity. To build a high integrity system,
developers, assurers, and customers need a body of knowledge or technical specifications for high integrity
software. For many engineering disciplines, that body of knowledge may be found in handbooks and rigorous
standards. For software engineering, the body of knowledge has not been rigoroudly codified. Software
engineering knowledge is distributed among standards, guidelines, technical reports, conference presentations, and
information proprietary to organizations. It is important to understand this distinction between software
engineering and older engineering disciplines. Due to this lack of codified information, this review was based on
criteria which reflect the authors knowledge and experience derived from various sources of information,
including technical reports, conference proceedings, and related standards. NIST has published two such technical
reports that address high integrity software issues. One identifies the range of requirements (e.g., functional,
interface, performance, security, safety, and quality) for inclusion in defining a software system [NIST180%. The
other report identifies current practices and issues in developing and assuring high integrity systems [NIST190].

The second set of principal questions deals with the customer and is designed so that the requirements of the
documents would be interpreted objectively. The customer must be able to determine that the software system has
met the requirements. A standard serves as a measuring tool to apply to the software. The customer must be able
to use the standards and guidelines to determine how the software satisfies the specific contractual requirements of
the software. Another important point considered was whether or not the document clearly defines what
conformance to the document means. The presentation of a document heavily influenced the answers to this set of
guestions.

2Acronyms for documents used in this section are defined in Table 1-2.

The template in Appendix A summarizes some of the criteria used to review the documents. Other criteria are
based on standards for specific processes, technical articles, and staff experience. The rationale for the criteria are
described in the remainder of Section 2.

2.1. L evels of Criticality/Assurance

Computer software is used to drive many types of systems (e.g., air traffic control, medical devices, rail
transportation, nuclear power systems, and software systems that stand alone). Failure of these systems may have
different consequences, which can be assigned a level of seriousness or criticality. The most serious of these
consequences is usually considered to be loss of life and is assigned the highest level of criticality. For these
systems, the most rigorous software standards and practices must be invoked. Other levels of criticality take into
account how serious a failure is relative to the completion of the task the system is responsible for, and how
devastating the failure may be relative to destruction of property and environment, injuries, and other losses.
While software systems used for safety systems in nuclear power plants are at the highest level, not all of the
documents reviewed in this study are written at this level. A trend observed after examining many documents is
that documents identify requirements according to levels of criticality not only for the principal system but for its
support software and for software used to develop and assure it. Other factors (e.g., new technology, importance of
mission, project size) may affect the needed level of assurance, but in this report the concern is the criticality level
based on the consequences of failure.

2.2. L ifecycle Phases

For this study, the scope of each document relative to the software lifecycle is identified. While there are many
representations of the software lifecycle and names for lifecycle phases, this report uses the following names to
represent the lifecycle phases:

Initiation

Requirements

Design

Code (Implementation)

Integration and Test

Installation

Operation and Maintenance (O& M)

The phases are used only to help in identifying the scope of each document; this study was not concerned with a
particular lifecycle management (e.g., waterfall, spiral). While some activities in software development and
assurance need to be performed at certain timesin the lifecycle (e.g., system test planning during requirements), no
judgments are made on lifecycle management. The priorities centered on the activities themselves and how well a
document addresses a particular phase. Therefore, it is not necessarily undesirable if a document addresses only
some phases. For completeness, assurance of a software system relies on all aspects of software; that includes the
entire lifecycle. By identifying documents that address partial lifecycles, it may become clear which documents, or
parts of them, may be used together.

In standards dealing with the system lifecycle, it is sometimes difficult to know when a requirement is imposed on
the software, or takes effect only after integration of the software with system components (e.g., configuration
management (CM)). The focus of this study was on the set of activities that should be levied on the software.

2.3. Documentation

Documentation of a software system serves many purposes, including the following:

0 Developer uses documentation to understand the software system, to enhance teamwork among the
developer's staff, to enable continuity of development if staff leave, and/or to control changes during
development.

0 Customer needs documentation to use the system, to decide if a change would be reasonable, to

implement a change, and/or to verify that the delivered product is the requested product.

0 Auditor uses the documentation to perform an audit of the system relative to its contract and any
standards the vendor was to have used.

0 Assurers (e.g., reviewers, verifiers, testers) need documentation not only to perform their reviews and
audits but also as the information on which tests are based.

This study uses a small set of documentation (based on an examination of many documents) as a baseline for
review. The list does not include documentation for software quality assurance (SQA), software CM (SCM), and
software verification and validation (SV& V) because these topics are addressed in other sections of the template.
This study concentrated on software documentation. However, system requirements may be included with software
documentation when the system requirements specification levies requirements on the software. The following
types of questions were considered:

0 How thorough are the document's requirements for specific documentation?

0 Does the document specify the content that must be described in documentation? Or, does it specify
the description of elements of the content?

0 Does the document provide a quantified description of attributes that should be present in the
documentation (e.g., rules for maintainability, consistency)?

A standard may be used by a vendor to build a product and by an auditor to verify compliance to the standard. A
useful documentation tool that aids both the vendor and auditor is a checklist of the requirements.

2.4. Required Softwar e Functionality Againgt Hazards

Critical systems require defensive functions to prevent unintended functions and to allow operation to continue

despite errors and component failures. At the system level, a hazard analysis provides information concerning the
types of hazards or threats that could adversely affect system behavior. From the system hazard analysis, some
software functions may be identified to prevent hazards or to mitigate the effect of problems. Additionaly, a
software hazard analysis may be conducted to reveal other functionality. Special software functions are often
included to detect, tolerate, override, or recover from failures. Examples include the use of prompts that query the
operator as to whether or not a keyed-in command should actually be executed, and the use of software devoted to
error detection and correction (e.g., telephone switching systems where, typically, 50% or more of the software
serves this function). Defensive functions should be a consideration in a standard for safety critical software.

Some specia software functions which may be generic to any system concerned with software safety or computer
security are listed in Appendix A. Not all of the functions are essential in all systems, but an auditor should look
for the use of these functions, or reasons why they are not needed in a particular system. Thelist is not necessarily
complete nor does reference to such a list eliminate the need for system and software hazard analyses to identity
software functions for a specific system.

2.5. Softwar e Engineering Practices

Certain software engineering practices can either contribute or detract from the safety and reliability of a system.
For example, systems constructed from modules that each perform a single, well-defined function are likely to be
more reliable than those where modules perform a mixture of functions (e.g., both control and data input/output).
Choice of programming language is another example. Systems written in assembly language tend to be much
more error-prone than those developed in modern high-level languages such as Pascal, C, and Ada[NRC91]. The
National Research Council has recommended the use of simple modules and high-level languages [NRC91].

A standard for safety critical software should give guidance on software engineering practices that contribute to
high integrity. Rigid rules for the use of specific software engineering practices are not aways appropriate. In
some cases, it may not be possible to develop software for a particular application in a way that is normally
considered good software engineering practice in other applications. For example, it is normally considered good
practice to separate critical functions from the rest of the system, placing critical functions in a small module that
can be more readily analyzed than a large system. It has been argued that some safety critical systems cannot be
built in this way because, in some systems, safety concerns are present in all functions.

However, it is essential that developers use established and acceptable practices as much as possible, and explain
cases Where established practices were not used. Section A.5 lists practices for consideration in all projects, even if
not all techniques are appropriate for all projects. The major types of software engineering practices considered in
this review are explained below.

Specifications - A good specification must be clear, unambiguous, and analyzable, so that flaws can be found
before the system is built. Specifications can be characterized as informal (English text and block diagrams),
semi-formal (pseudo code or "structured English” plus standardized notation such as structure charts and data-flow
diagrams), or formal (mathematics such as logic and set theory). Formal specifications make it possible to do the
kind of rigorous mathematical design analysis that is conducted in traditional engineering. With less formal
specifications, thisis not possible; thus formality in specifications is desirable.

Component isolation - Ideally, components that are critical to system safety should be isolated from other parts of
the system. Safety functions should be kept separate from one another.

Modularity - All systems should be constructed in a modular fashion, where each module performs a single,
well-defined function.

Language - Programmers are more likely to make errors using assembly languages than in using high-level
languages such as Ada, Pascal, Fortran and C [NRC91]. The tradeoff may be that the high-level language compiler
itself may have errors but the compiler should have the same level of software assurance as the software systems
that will be built with it. The extra expense of assurance for the compiler will be offset by reduced expense in
assuring one or more software systems built with it. Many reasons for using high-level languages are cited in
NRC91. Standards should encourage the use of high-level languages and discourage assembly language, except
where absolutely necessary.

Deprecated programming practices - Many programming practices, such as floating point arithmetic or use of
interrupts, result in systems whose behavior is difficult to analyze. Standards for critical software often discourage
such practices in order to make the software evaluation more effective [MODOQ055].

Quality Attributes - While many standards require SQA activities to check for quality of software products, few
specify what the qualities should be, or specify requirements for those qualities. Standards should identify quality
attributes and definitions of those attributes. For example, some of the documents require that a specification be
"complete." Because "completeness’ can be ambiguous, it is important to clearly state the rules of completeness.
For example, one rule may be that a document require the types of requirements to be defined (e.g., functional,
performance, safety, security, quality, and interface requirements from the software to the system).

2.6. Assurance Activities

This section of the template identifies the activities that will locate problems (e.g., errors, faults) in the
development process and products, and will provide evidence that the software complies with its specifications.
These activities are performed from the beginning of the software lifecycle, through development, to maintenance
of software. Results from the activities may affect the software requirements, design, or code, and sometimes the
system itself. The template in Appendix A addresses activities performed during the software lifecycle and, in
some cases, these activities require as input the system requirements specification and reports of system hazard
analyses. It should be noted that this template does not address activities of assurance that are specific to the final
evaluation of a product before delivery (e.g, acceptance test, final audit, system validation).

2.6.1. Software Verification and Validation (SV&V)

Software verification is "the process of determining whether or not the products of a given phase of the software
development cycle fulfill the requirements established during the previous phase.” Software validation is "the
process of evaluating software at the end of the software development process to ensure compliance with software
requirements.” [IEEE1012] The definitions for verification and validation may be different in the system context
than they are in the software context. In the system context, the activities of verification are separate from those of
validation, which is performed on the completed system. In the software context, the distinctions between
verification and validation (V&V) may be less clear. Within the full system lifecycle, SV&V may occur between
system requirements specification and system validation. All testing of the software is included under SV&V.
That part of system validation that exercises software is also the final step of SV&V. Fina system validation is not
included as part of this study because the scope of the documents under examination does not cover this step.

There are two standards which together have comprehensive requirements for SV&V. These are ANS104 and
FIPS132, which references IEEE1012. The criteria in the template provide a brief summary of those standards
reguirements.

2.6.2. Softwar e Quality Assurance (SQA)

The criteria for SQA are derived from IEEE7301. This standard relies heavily on the existence of project
documentation. SQA is the planned and systematic pattern of all actions necessary to provide adequate confidence
that the item or product conforms to established technical requirements. The thrust of SQA is product assurance.

A theme which began to develop in the late 1980's is that of process. process assurance, process improvement,
quality of the process related to quality of the product. Some evolving standards are beginning to cite process
rather than either phase or product for discussions on quality. The new set of SQA activities focuses on evaluating
the processes by which products are developed or manufactured. This study reviews SQA activities primarily
relative to product.

Because |IEEE7301 requires an SCM plan (SCMP), this report notes whether IEEE7301 or a similar standard is
cited in the documents. Anocther consideration was whether requirements for SCM were included as part of SQA.
The inclusion is neither a negative nor positive attribute, but rather provides information about how complete the
reguirements of the document are for SCM.

2.6.3. Softwar e Configuration Management (SCM)

SCM is the discipline of identifying and documenting characteristics of items in software development and
maintenance, to baselining the items, and controlling changes to them. Typical activities consist of configuration
identification, configuration control, configuration status control, and configuration audit. The criteria for SCM
are taken from IEEE828. This standard is presently serving as a base document for an ISO/IEC JTC1 SC7
(Software Engineering) working group for developing a standard on SCM. Requirements for SCM should be
included or referenced in a document for high integrity software.

Broad-based system documents may treat CM only at the system level. Software used in safety systems for nuclear
power plants is often only one of many components comprising the total system, and, at the system level, software
CM may not be adequately provided for. Hence, the treatment of SCM during software development, before system
integration, was examined carefully.

10

2.64. Software Hazard Analysis

A pre-requisite for any critical system is an analysis of the hazards or threats that the system must protect against.
For example, a power plant safety shutdown system must continue to function even during a power failure. While
the study was mostly concerned with hazard analyses applied to software, it should be noted that software hazard
analysis (e.g., software fault tree analysis (FTA)) is an integral part of system hazard analysis, and both should be
conducted in order to assure that all hazards have been identified. Both types of hazard analysis are essential in
designing a system for fail-safe operation (e.g., protection against division by zero). In response to a software
hazard analysis, some software requirements, software design features, or software code may be changed.

2.7. Project Planning and M anagement

Well-defined project management procedures are as important for the development of high integrity software as
they are for any quality product. The documents reviewed are broad in scope and should contain some
requirements for how the development of software will be planned, managed, and monitored. Criteria in the
template are derived partially from IEEE1058.

2.8. Procurement Concerns

Some evolving standards are addressing concerns of the customer. For example, the customer of a system may
have some concerns about the people building and evaluating the software. Are they capable? Should evaluators
be independent of the vendor? What should their training plans look like? Do the companies have a quality
management policy? Some standards also address assessment of qualifications of the vendor and vendor plans for
remaining qualified. Another procurement issue involves the use of automated support to build and verify the
system and the use of pre-existing software in the software system; the issue is whether this software should be at
the same level of assurance as the system. Some standards may include clauses that identify what conformance to
the standard means; this is also a procurement concern. Any topics included in the documents that affect the
customer at contract are discussed in this section of the template.

2.9. Presentation

One of the major problems with using a standard and verifying compliance with it is that all too often the
"requirements’ of the standard are not specified in a non-ambiguous, orderly manner. While rewriting a
document, or reporting on every ambiguous statement was beyond the scope of this study, some examples of
poorly-formulated statements were stated. In many cases, different categories of requirements were specified in
documentation requirements. For example, required software functionality against hazards and required software
engineering practices for a process should be stated separately rather than in the documentation requirements for a
specific process (e.g., design).

11

2.10. Supplemental Information

Properties of a document that are not covered anywhere else on the template are described in this section. For
example, the template does not provide criteria specifically for maintenance. Requirements of documents
addressing maintenance are described in this part of the template.

2.11. General Comments

This section contains an overall analysis, based on the two sets of principal questions. The first set deals with
reasonable assurance, not absolute assurance, and certainly judgment is subjective. The answer to the second set
relies heavily on the findings in the Presentation section.

12

13

3. COMPARISON OF THE REVIEW DOCUMENTS

This section compares the documents for each major evaluation category, while Appendix B describes documents
individually. The degree to which documents address each category varies widely. Some of the documents were
draft documents at the time of evaluation. The purpose of including these documents is to identify the current
thinking of the experts concerning standards for assurance of high integrity systems, especialy software systems
for the nuclear industry. The comparison of all the documents can assist in identifying proven requirements of
standards, new requirements to be added, and organization and presentation format that will make standards easier
to use, and easier for auditors to show compliance.

3.1 L evels of Criticality/Assurance

Among the documents reviewed for this report, most address levels of criticality, but in different ways. Canadian
documents DLP880° and SOFTENG do not address levels at al. DLP880 implicitly assumes it is addressing
critical software, and SOFTENG is for safety-critical systems (highest level of requirements). However, the
purpose of the third Canadian document, CATEGORY, isto provide guidance on classifying software according to
the consequences of failure but it does not associate software engineering practices with those categories.

IEC880 makes no distinctions concerning assurance needs in the main sections of the document. While Appendix
B identifies recommendations for design and programming practices by three levels of priority or importance, no
guidance is given on a definition of priority or importance. One would expect that because one purpose of
IECSUPP is to clarify and supplement IEC880, IECSUPP would address priority. IECSUPP does this only in
specifying diversity requirements, depending on reliability requirements. Even ANS7432 neglects to address levels
of assurance, but it does require that the tools used for verification must have SQA measures on them
commensurate with their importance to the verification process.

EWICS2-1 states that the design constraints should be associated with the level of criticality. In EWICS2-2, seven
levels of criticality are related to types of systems and values for attributes like unavailability and failure
probability.

RTCA178A discusses three levels of criticality, and the levels must be addressed in the certification plan for the
software. RTCA178A is currently undergoing revision; the current draft defines five levels of criticality and
provides guidance for determining the level of a system.

There is some disagreement within the software engineering community with respect to levels of assurance and the
requirements that are appropriate for each level. Two questions must be resolved: How many levels of assurance
should the standard provide? What activities are needed at each level? The levels of assurance specified in
computer security standards are the result of concerns that are unique to security, so there is no reason to use the
same divisions for a huclear safety standard.

There are at least two other efforts addressing criticality assessment and levels of assurance. One is the High

3Acronyms for documents used in this section are defined in Tables 1-1 and 1-2.

14

Integrity Software project at NIST, and the other is the working group for the revision of IEEE1012. A
recommendation from the Workshop on High Integrity Software held at NIST on January 22-23, 1991, is that
criticality assessment should be based on four levels. The IEEE1012 working group discussions are leaning toward
five levels. In both efforts, the intention is to assign engineering and assurance practices according to the level of
criticality.

NIST recognizes the difficulty of assigning software engineering practices and assurance techniques to lifecycle
processes based on levels of criticality. However, NIST recommends that this should be accomplished. For at least
the highest level of criticality, requirements are already well-defined in several standards and guidelines; these
requirements need to be stated in one document. The primary difficulty comes from the refinement of the
activities, that is, eliminating or changing them for the middle levels. Different levels will cost developers and
assurers overhead in establishing and managing their practices at different levels. There will also be cost involved
in the training of staff and the performance of activities at different levels. There will be cost also for auditors to
understand the different levels. For other evaluation methods, accredited laboratories will need to establish
methods for each of the levels. It isimportant for standards makers to be able to demonstrate that requirements at
four or five different levels are significant and sufficient to satisfy the criticality needs of the product at a given
level.

3.2. L ifecycle Phases

The trend today is to discuss lifecycle not so much by phase, but by processes necessary to produce assured
software. While phases are identified in this report, whether a document has requirements for necessary processes,
including those for assurance, was also considered.

Some documents are special purpose documents and address those parts of the lifecycle phases that they affect. For
example, the categorization document, CATEGORY, is concerned with procedures and guidelines for categorizing
software; the categorization is assigned at the initiation of a project. EWICS2-1 provides guidelines for the design
of safety critical systems and does not provide guidance on other lifecycle issues. The primary concern in
EWICS2-1 is the process of design at the system level with some guidance on software considerations.

Some of the documents deal strictly with requirements for the software lifecycle (e.g., 1EC880, IECSUPP,
SOFTENG, and RTCA178A). However, they do place the software phases in context with system phases.
DLP880 and ANS7432 also address system requirements and integration of hardware and software. The EWICS
documents are concerned at the system level, with some specific references to software. In amost all of these
documents, there is often confusion as to whether system or software is the focus of activity.

For safety systems in nuclear power plants in which software is embedded and must always be related to the
system, the following issues on lifecycle are especially important:

0 Does the document relate software activities to system requirements?

0 By treating software as part of the system, does the document remove necessary emphasis on software
(e.g., CM requirements at the system level only)?

15

0 Are dl lifecycle processes covered well by combining requirements of the documents?

No single document provides sufficient requirements for the first two questions. The combination of the
documents provides coverage, at least minimally, in the lifecycle processes. While IEC880, in spite of its problems
with presentation, comes close, it does not address project management. Other documents do a better job in other
areas (e.g., NPR6300 on reuse and corrective action). While ANS7432 does address the software-system
relationship, overal its requirements for software for al lifecycle processes are either minimal or nonexistent. If
taken as a whole, the EWICS documents address (system) design and maintenance, but provide little guidance on
other aspects of the software lifecycle processes. However, EWICS2-4 and SOFTENG are the only two documents
which address quality attributes and measures. With respect to maintenance, IEC880 and EWICS2-5 provide more
guidance than the other documents.

RTCA178A provides rather generic requirements for most lifecycle processes. It is currently under revision; the
revision will probably be oriented more toward processes, not phases, and may contain rigorous requirements.

The combination of the best features of the documents reviewed may provide reasonable coverage for lifecycle
processes.

3.3. Documentation

None of the documents specifically address documentation. Their requirements for documentation range from a
simple statement for each type of document to a complete description of the quality attributes of a document.
ANS7432 falls into the terse category (e.g., completeness, consistency, and documentation standards are implied).
The most complex set of documentation requirements are in DLP880 where documentation is to be written in
formal specification languages.

Only one document, SOFTENG, provides rigorous guidance on the quality attributes that should be inherent in
documentation. For each document, criteria are identified for each required quality attribute.

One of the features of several documents, especially IEC880 and SOFTENG, is that documentation requirements
included requirements for the software itself. For example, designing modules with a single well-defined function
is a software engineering practice that designers apply through their thinking processes to structure the system for
the best possible design for the system's operational capability and assurance. The primary purpose of
implementing this practice is not documentation. In other cases, functional requirements were hidden in
documentation requirements. It is recommended that standards make the distinction between documentation
reguirements and requirements for software engineering practices and software functionality against hazards. The
documentation requirement may be that the software engineering practices should be documented separately, for
example, MODQO055's requirements for a"Code of Design Practices.”

In most of the reviewed documents, separate documentation is specified for each lifecycle phase or process. An
exception is RTCA178A which treats the software development and verification plan as one document.

Several documents contained checklists of varying degrees of clarity and completeness. Thisis a positive feature.

16

34. Required Softwar e Functionality Againgt Hazar ds

IEC880 and EWICS2-3 included lists of functions that can be used to counter specific hazards. Of these two, the
guestionnaire in EWICS2-3 is the more comprehensive. 1EC880 contains annotations indicating what each
function is "good for" and "good against,” but these are generally obvious, so the annotations provide little useful
guidance. For example, the annotation for retry procedures indicates that retries are useful against sporadic
hardware faults, and range checking of variablesis said to help guard against "yet undetected errors."

The inclusion of checklists of functions to guard against hazards is helpful in a standard, but it is probably not
appropriate to mandate specific functions when a standard covers a broad category of systems. Some functionality
that is considered essential for all nuclear safety systems (e.g., range checking) might be required, but, in general,
some functions may not be appropriate for all systems. Thisis consistent with standards for high integrity systems
supporting security. Standards for general purpose secure systems have less prescribed functionality than those for
a more narrow range of applications, such as data encryption. It may be beneficial to consider supplemental
standards for specia purpose systems.

3.5. Softwar e Engineering Practices

Software engineering practices are either those techniques recommended or required to prevent errors from being
entered into the system during construction, or are properties to be built into the system for high integrity. An
example of the first type is the use of formal specification languages, and an example of the second type is the use
of modularity.

The documents reviewed vary enormously in their recommendations regarding software engineering practices.
Most contain at least some guidance on good practices. The only two documents which do not cite any software
engineering practices are RTCA178A and NPR6300. Thereis little agreement on the practices that are mentioned.
While EWICS2-4 and EWICS2-5 do not address software engineering practices, the other EWICS documents
provide comprehensive coverage and address software engineering practices. Summaries of the more significant
software engineering practices are given below approximately in order of consensus among the documents.

Modularity and critical component isolation - The software engineering practices cited by most of the documents
are the use of modularity in design and the isolation of critical components. In this regard, the documents are
consistent with current thinking in the software engineering community and with other standards for critical
software.

Programming Language - Several documents state principles for programming languages. The consensus in this
areaisfor use of high-level languages (e.g., C, Fortran, Ada) rather than assembler, and for languages that support
automatic checking of data types and function arguments. For example, Ada or C++ will warn if a function is
called with an integer argument when it is expecting a character string. Here again, the documents are consistent
with current thinking in the software engineering community and with other standards for critical software.
Another programming consideration is the use of structured programming (the use of restricted control structures
rather than arbitrary branching). Structured programming is now nearly universally accepted as good practice.
The documents reviewed reflect this acceptance.

17

Formal methods - Over the past decade, there has been increasing interest in the use of formal methods for
complex software. Formal methods refers to the use of mathematical logic and related areas of mathematics to
specify and model the behavior of software. Formal methods are required by only one of the documents reviewed
(DLP880). Anocther, the supplement to IEC880 (IECSUPP), says that "formal methods should be considered for
the highest requirement of safety importance.” EWICS2-3 gives preference to the use of formal specifications over
informal ones, but does not require the use of formal methods. IEC880 notes only that "a formal specification
language may be a help to show coherence and completeness of the software functional requirements.” A trend
toward greater reliance on formal methods is evident in the documents reviewed. DLP880 and IECSUPP were
1991 drafts, EWICS2-3 was written in 1989, and IEC880 in 1986. In the area of formal methods, the nuclear
documents reviewed lag behind other standards for critical software. In the fields of computer security and data
communications, formal methods have become accepted practice, and are required at the higher levels of all
significant security standards and by MODOO055.

Documentation of software engineering practices - A mechanism frequently used is to define documentation as a
description of a lifecycle process. For example, in IEC880 and SOFTENG, documentation for a software
requirements specification often specifies the principles or functions the system must embody, or in the case of
SQA, the activities to be performed. Software engineering practices are hidden in documentation requirements.
Those practices are discussed in this report in Section 3.3. Taken together, the documents reviewed gave adequate
treatment to most aspects of software engineering practices, except in the area of formal methods. (This statement
reflects the documentsin general. As noted, there was much variation.)

Quality attributes - Only SOFTENG and EWICS2-4 provided either specific requirements or measures for quality
attributes like completeness, consistency, and maintainability.

3.6. Assurance Activities

In the nuclear power industry, asin many other industries, software is one component of a company's business, and
of a power plant. At the top management level, the view is of the whole, not a part. Therefore, system CM and
system validation are the engineering concepts that make sense to executives of manufacturing companies. For
software companies, executives think in terms of software CM and software validation. The difference is non-
trivial and has caused much misunderstanding in the development of standards. Software is deeply embedded in
systems where software cannot fully stand alone, yet some other components of these systems are not only plug-in
but are built to precise, accredited standards. CM and testing of these components during their development is an
expected activity. Software should be treated similarly. For testing this has not been always possible. For one
thing, software systems have been unique for each system in which they will be embedded. There is no precise set
of validated specifications. Second, their full functionality usually can only be simulated and cannot be tested in
real-time during software development.

The purpose of this study was to discover how well the documents provide assurance of the software and how well
the software will fulfill its system responsibilities. Few of the documents reviewed focused entirely on software.

There was a lot of second-guessing whether system level requirements were applied at the software development
level or only at the point when software was integrated with the system. If the requirements are unclear, how can
auditors check for exact compliance? If accredited, precise standards for software existed, as they do for other

18

components (e.g., pipes, power cables), then this review would have been simpler. This study reemphasized the
growing recognition that the software industry must identify some precise standards for software that permit
measurement of its quality.

For the assurance activities, P1228 focuses on safety issues and requires specific assurance activities in al the
categories of Section 3.5 of this report. Under P1228, al documentation for assurance activities may serve as
specia sections of plans for those activities (e.g., safety requirements for the SV&V plan (SVVP), safety
reguirements for the SQA plan (SQAP), for the SCMP). The assumption of the P1228 draft is that the other IEEE
Software Engineering Standards, or similar standards, will be used. For computer security planning, which may be
important to the nuclear industry as dependency grows on large databases and distributed computing, perhaps the
documentation requirements of P1228 can be adapted for computer security.

3.6.1. Software Verification and Validation (SV&V)

The difference between system and software viewpoints stands out in the documents reviewed for this study. For
example, ANS7432 is concerned with computer system validation and not particularly concerned with software
issues. Software verification is the software testing; in the software world, this can be confusing. Part of the
rationale for not treating SV&V as separate functions in IEEE1012 is to avoid this confusion. The final step of
SV&YV is the system validation, as in system standards; SV&V consists of these activities applied as the software
evolves to assure the internal properties of the software and the external relationships to the system.

DLP880 refers to software verification but isin reality SV&V. One caution with DLP880 is the assumption that
the vendor may produce the verification plan which is then implemented by an independent team. One should not
think this is the only meaning of 1V&V, because the fullest possible benefit of independence is the independent
planning process in which the IV&V brings a different perspective to the types of analysis and test strategies.

Two documents, EWICS2-1 and P1228, focus on the safety requirements; this is acceptable since these documents
are intended to augment other more general standards and the intent is to ensure attention to the safety functions.
EWICS2-3 should be used by verifiers to guide them in checking features of the software, and auditors to check
how well the developers and verifiers have followed guidelines.

IEC880 specifically addresses software verification, and is reasonably thorough. There are weaknesses, however.

The major weakness is that of presentation; a reader has to search several places before finding all the
requirements for a given process, in this instance, verification. Technical weaknesses include a lack of specific
reguirements for requirements traceability.

Some documents recommend several test strategies and test conditions (e.g., stress test, logic test, boundary test)
but the selections are not the same in all the documents. For example, IEC880 has long lists of strategies and
conditions but omits stress testing, while SOFTENG includes stress testing. Error anaysis should be a
requirement in all SV&V or SQA standards or sections of standards addressing SV&V or SQA. Error analysisis
important for uncovering a type of error (e.g., misunderstanding of trigonometry) that could appear elsewhere in
the system. When the type of error is made because of a misunderstanding or a wrong specification, it is important
to check other places in the program that are based on the same assumptions, especially if the same person is
responsible. Otherwise, a potentially critical error could slip through.

19

While RTCA178A provides the most detailed and best organized set of requirements for software verification
(including validation), the software verification assurance matrix is too high-level to be truly useful for auditors.

From the review of these documents, including the base documents IEEE1012 and ANS104, recommendations for
improving standards for SV&V include

0 clearer relationship and requirements to the system

0 practices based on levels of criticality

0 distinctive requirements for different test types

o] detailed checklists

0 application of SV&V when modern development technologies are used (e.g, no document addressed

SV&YV for prototyping or expert systems)
0 error analysis

0 definition of the quality attributes for which verification is required
3.6.2. Softwar e Quality Assurance (SQA)

As ageneral comment, NRC should note that these documents are concerned strictly with SQA of the product, not
the vendor processes. Current and evolving SQA standards are addressing process as well as product. When NRC
audits a particular product, will NRC be concerned about whether a vendor has changed processes mid-stream, or
for the next product? Probably not. For a current audit, NRC will likely be interested in whether a given product
has the required quality level. But, when new SQA standards are written, what happens if they require activities
for both process and product? NRC needs to study this question to determine if process quality is outside the scope
of their requirements.

Several documents addressed SQA in a general manner. For example, ANS7432 requires that SQA be addressed
in the software development plan (SDP). IEC880 simply requires an SQAP. Thisis not sufficient because it will
not be clear what is required of the vendors. For audit and review purposes, NRC must know the following:

0 the minimum set of SQA activities that are to be performed
0 to what degree SCM and SV&V areincluded in SQA

Some documents permit national standards to be used. NRC would need to ensure specification of an SQA
standard or expect their auditor to know every SQA standard quite well.

Design and code inspections can be either SQA or SV&V activities. In addition, requirement for inspections was
not consistent in the documents. Both ANS7432 and EWICS2-1 provide detailed procedures for SQA of design

20

and EWICS2-4 addresses SQA entirely.

There is a growing recognition that SQA procedures are needed for existing software programs and for reuse of
software modules. NPR6300 provides detailed guidance and it appears that IECSUPP will address the topic also.

The SQA sections of the documents, like those for SV&V, are in general weak concerning anomaly reporting,
corrective action and follow-up, and error analysis.

3.6.3. Softwar e Configuration Management (SCM)

Software CM is another process that sometimes is addressed only at the system level. While the size of software
systems used in safety systems for nuclear power plants may be small, the critical role of software for safety
mandates that SCM be required for all the lifecycle processes and products of such software. IEC880's requirement
for system CM is insufficient. ANS7432 and EWICS2-3 simply ignore the topic. Several documents, DLP880,
SOFTENG, RTCA178A, and NPR6300, require SCM activities with varying degrees of rigor. The international
community (ISO/IEC JTC1 SC7) is presently using |IEEE828 as a base document for producing an international
standard on SCM. When the international standard is published, NRC and the standards community in general
may consider simply citing this SCM standard directly.

3.64. Software Hazard Analysis

Typically the initial hazard analysis is performed from a total system, environmental perspective and the results
may affect the system requirements and design. From the software perspective, the results of that analysis should
be an input to the software assurance activities. By examining these results, the software experts identify what
potential hazards have an impact on the software, or may be mitigated or prevented by software. For the same
reason, results of other system hazard analyses should be required inputs to software assurance activities.
Additionally, hazard analyses specific to software should be conducted. There is some debate over whether the
software hazard analyses and related analyses should be considered development or assurance activities. The
recommendation here is that the perspective of software assurance may lend itself somewhat better to conducting
software hazard analyses and using system hazard analyses to check the safety impact of the software.

While many of the documents of the study addressed system hazard analysis, it was quite difficult to determine if
the hazard analysis was conducted on software features. When the hazard analysis report was strictly system, its
report was not usually required as an input to any software development or assurance activities.

Two documents specifically addressed software safety analysis. P1228 requires the results of the preliminary
system hazard analysis and requires additional software safety analyses throughout the lifecycle. SOFTENG
reguires a code hazard analysis and a report with ten requirements. Examples of items that must be identified in
the report include input conditions which could lead to the software causing an unsafe state, failure modes related
to instructions in code which could lead to an unsafe subsystem failure, and code modifications which would
eliminate the identified failure modes.

21

3.7. Project Planning and M anagement

Most of the documents in this study either do not address project management activities or do so indirectly through
other governing principles. For example, requirements on planning for SQA and SCM may be considered
requirements for project planning. SOFTENG includes requirements for project management in requirements for
the SDP. EWICS2-4 addresses project management through acceptance criteria. The P1228 draft expects a
project management plan, and requires that the plan be augmented to address software safety issues.

3.8. Procurement Concerns

One concern that NRC has is whether or not assurance activities should be performed by independent teams.
ANS7432 uses a hon-binding statement in the foreword to recommend independence and requires independence of
the verification group at the system level. Others, like DLP880 and IEC880, recommend that verification plans be
written so that an independent team may implement the plan. 1ECSUPP suggests complete separation of
development and verification teams. EWICS2-1 and EWICS2-2 ask for an IV&V assessment. P1228 aso
recommends IV&V. SOFTENG asks for independence between development and verification; management of the
developers is different from managers of the verifiers (but does not require a separate organization). These
recommendations present another problem; nowhere is there a standard definition of independence and of the tasks
of IV&V. A non-exclusive list of possible meanings of IV&V duties includes the following:

0 The independent team writes all test plans and executes them.
0 The independent team performs static analyses on the software design.
0 The independent team only performs test execution.

Additionally, can the "independent" team be simply another department within a vendor's organization? What
conditions make the team "independent?’ Unless the document clearly specifies a definition of V&V,
requirements for IV&V are ambiguous.

Most of the documents do not specify contractor capability assessment athough the EWICS documents do ask for
compliance with 1SO9000 which requires assessment of contractor's quality system. P1228 requires the software
safety plan (SSP) to specify qualifications for the personnel performing software safety activities.

The permission to tailor a standard to a project may present two problems. One, the tailored version may not
produce a satisfactory assurance of the product. Two, an auditor may have difficulty assessing compliance.
SOFTENG has a statement that all requirements of the standard must be met for compliance.

22

For an auditor to verify vendor compliance to a standard, it is helpful to have a statement of conformance within
the standard. Only two of the reviewed documents have firm conformance clauses. SOFTENG states that
conformance means all its requirements must be met. Of the five separate chapters in EWICS2, all except one
have strong conformance clauses that list specific requirements. For example, EWICS2-1 requires written
procedures that identify the existence of activities corresponding to each and every step of the guideline. EWICS2-
3 consists of a questionnaire; a conformance clause is inappropriate.

Several of the documents suggest that the use of pre-existing software in a product falls under the requirements of a
document. Some also require the same level of assurance for automated development or assurance tools. For
example, P1228 states that pre-existing software must be in compliance with P1228 and the verification of support
tools depends on the level of assurance of the system. While IEC880 has requirements on the use of operating
systems, it does not require that automatic development and verification aids be tested.

3.9. Presentation

The documents reviewed have a variety of problems with their presentation. The major problem lies with usage of
words to indicate requirements: "shall,” "should,” "must,” "may." When the words "shall" and "should" appear in
the same paragraph, it can be confusing to vendors, assurers, customers, and auditors. Requirements and
recommendations need to be clearly distinctive from one another. Ambiguous statements in several documents
(e.g., "the software must be easy to test” [IEC880]) are meaningless. An example of language that does impose
meaningful constraints on qualities may be found in SOFTENG.

Another concern is that features required to be present in the software, development practices, and descriptions of
the software are often specified in documentation. It is recommended that standards keep separate different
categories of requirements.

3.10. Supplemental Information

The Supplemental Information section for each document (see Sections B.x.10 of this report) contains information
about the documents that was not covered by the template categories. The important findings are that only two
documents (IEC880, EWICS2-5) address software maintenance in detail and only NPR6300 addresses problem
reporting and corrective action in detail.

23

4, SUMMARY

In general, no standard can guarantee the safety of a particular software system. In other words, no one can ever
say "If avendor follows this standard, the system will be safe.” The judgement of safety for a particular installation
must be made by the appropriate authorities. Ideally, standards should state what is required for evaluating the
safety of a system, and to determine if the software complies with the standard. That is, "These are the things a
vendor must do to enable NRC to judge whether the system is safe enough to not pose an undue risk to public
health and safety."

No single standard or guideline reviewed completely satisfies the evaluation criteria, and there is relatively little
consensus among the documents. None of the documents positively answered the first set of principal questions
"Do the requirements of the document provide assurance of the nuclear safety system software developed,
maintained, and operated according to these requirements? That is, does the document contain requirements for
building verifiably dependable nuclear safety system software?' However, most of the documents satisfy at least
one category of criteria.

The documents reviewed have several common problems. It is unclear whether the system or software is the focus
of the activities. There is a lack of system information provided to the software. Process requirements are
specified under documentation requirements. Specification of required software functionality against hazards is
usualy insufficient. And, in general, conformance to most of the documents would be difficult to demonstrate.

The scope of a standard must be clearly identified relative to system and software lifecycles. The requirements for
software must ensure that the software is always assured relative to its relationship to the system. Documentation
requirements should be limited to what should be included in the document and how this content should be
presented. Requirements for software engineering practices and software functionality against hazards (what
should be done) should be listed separately. The functions listed in Appendix A are not all essential to all systems,
however, standards should provide guidance on what functions are necessary for specific types of systems.

It is important to develop a standard with rigorous requirements for documentation, required software functionality
against hazards, software engineering practices, SV&V, SQA, SCM, software hazard analysis, and project
management. It is acceptable to cite specific standards to provide requirements for any of the categories (e.g.,
IEEE1012* or ANS104 for SV&V). In fact, a standard that is self-contained or has reference to specific standards
helps to prevent omissions and conflicts among standards. Software engineering practices and assurance
techniques should be assigned based on levels of criticality/assurance. The activities for each level may all be
defined within one standard, or different standards may be developed for each level of criticality/assurance.

The language of a standard must be non-ambiguous. Requirements should be clearly stated and contained within
the body of the standard (e.g., not in appendices). Until software engineering practice is rigorously codified in
handbooks as in other engineering fields, standards for the assurance of high integrity software should describe all
practices or cite acceptable standards for them, which encompass at least the criteriain Appendix A.

“Acronyms used in this section are defined in Tables 1-1 and 1-2.

24

There was some consensus among the documents on certain software engineering practices including the use of
modularity and critical component isolation, high level programming languages, formal methods, documentation
of software engineering practices, and quality attributes. But, in general, the guidance is enormously varied.

Frequently, the documents did not distinguish between documentation requirements and those for software
engineering practices and software functionality against hazards. This distinction should be made in the
documents. Besides the benefit of vendors improved understanding of their requirements, the distinction should
facilitate the task of verifying compliance with a standard.

Procurement issues such as independent evaluations, contractor capability assessments, pre-existing software and
support software should be addressed in standards. At a minimum, a standard definition of independent
organization should be developed. While such a definition may have variants, a standard for high integrity
software can cite the required variant of independence. The customer is also interested in whether the system has
built in conformance with the standard. To verify vendor compliance to a standard, it is helpful to have a
statement of conformance within the standard.

It is recommended that NRC considerations of consensus standards, draft standards, and guidelines include the
concerns identified in this report. While information from all of the documents can be used in developing a
rigorous standard, other concerns must be addressed. For example, the scope of the standard within system and
software lifecycles must be clearly identified. The standard should require that software is always assured in the
context of the particular system under evaluation. Guidance for assurance of high integrity software should either
describe al practices or cite acceptable standards for them, encompassing at least the criteriain Appendix A.

25

S. REFERENCES

ANS7432
ANSI/IEEE-ANS-7-4.3.2-1982, "Application Criteria for Programmable Digital Computer Systemsin
Safety Systems of Nuclear Power Generating Stations,” American Nuclear Society, 1982.

ANSHAL
ANSI/ANS-4.1-1978, "Design Basis Criteria for Safety Systems in Nuclear Power Generating
Stations,” American Nuclear Society, 1987.

ANS104
ANSI/ANS-10.4-1987, "Guidelines for the Verification and Validation of Scientific and Engineering
Computer Programs for the Nuclear Industry,” American Nuclear Society, May 13, 1987.

ASMENQA1
ASME NQA-1-1989, "Quality Assurance Program Requirements for Nuclear Facilities," The
American Society of Mechanical Engineers, 1989.

ASMENQA?2
ASME NQA-2a-1990, "Quality Assurance Requirements for Nuclear Facility Applications,” The
American Society of Mechanical Engineers, November 1990.

CATEGORY
"Guideline for the Categorization of Software in Ontario Hydro's Nuclear Facilities with respect to
Nuclear Safety,” Revision O, Nuclear Safety Department, June 1991.

DLP880
DLP880, "(DRAFT) Proposed Standard for Software for Computers in the Safety Systems of Nuclear
Power Stations (based on IEC Standard 880)," David L. Parnas, Queen's University, Kingston,
Ontario, March, 1991.

EWICS1L Redmill, F. J. (ed.), Dependability of Criticdl Computer Systems 1, The European Workshop on
Industrial Computer Systems Technical Committee 7 (EWICS TC7), Elsevier Science Publishers
LTD, 1988.

EWICS2-1

Redmill, F. J. (ed.), Dependability of Critical Computer Systems 2, Chapter 1, "Guidelines to Design
Computer Systems for Safety,” The European Workshop on Industrial Computer Systems Technical
Committee 7 (EWICS TC7), Elsevier Science Publishers LTD, 1989.

26

EWICS2-2

EWICS2-3

EWICS2-4

EWICS2-5

EWICS3

FIPS101

FIPS132

FIPS1401

IEC880

Redmill, F. J. (ed.), Dependability of Critical Computer Systems 2, Chapter 2, "Guidelines for the
Assessment of the Safety and Reliability of Critical Computer Systems," The European Workshop on
Industrial Computer Systems Technical Committee 7 (EWICS TC7), Elsevier Science Publishers
LTD, 1989.

Redmill, F. J. (ed.), Dependability of Critical Computer Systems 2, Chapter 3, "A Questionnaire for
System Safety and Reliability Assessment,” The European Workshop on Industrial Computer Systems
Technical Committee 7 (EWICS TC7), Elsevier Science Publishers LTD, 1989.

Redmill, F. J. (ed.), Dependability of Critical Computer Systems 2, Chapter 4, "A Guideline on
Software Quality Assurance and Measures,” The European Workshop on Industrial Computer Systems
Technical Committee 7 (EWICS TC7), Elsevier Science Publishers LTD, 1989.

Redmill, F. J. (ed.), Dependability of Critical Computer Systems 2, Chapter 5, "Guidelines on the
Maintenance and Modification of Safety-Related Computer Systems,” The European Workshop on
Industrial Computer Systems Technical Committee 7 (EWICS TC7), Elsevier Science Publishers
LTD, 1989.

Bishop, P. G. (ed.), Dependability of Critical Computer Systems 3 - Techniques Directory, The
European Workshop on Industrial Computer Systems Technical Committee 7 (EWICS TC7), Elsevier
Science Publishers LTD, 1990.

FIPS 101, "Guideline for Lifecycle Validation, Verification, and Testing of Computer Software,” U.S.
Department of Commerce/National Bureau of Standards, 1983 June 6.

FIPS 132, "Guideline for Software Verification and Validation Plans” U.S. Department of
Commerce/National Bureau of Standards, 1987 November 19.

FIPS 140-1, "Security Requirements for Cryptographic Modules,” U.S. Department of
Commerce/National Institute of Standards and Technology, 1990 May 2.

IEC 880, "Software for Computers in the Safety Systems of Nuclear Power Stations,” International
Electrotechnical Commission, 1986.

27

IECSUPP

|EEEGO3

|IEEE828

IEEE830

|EEE983

IEEE1012

IEEE1016

IEEE1042

|IEEE1058

IEEE1074

45A/WG-A3(Secretary)42, "(DRAFT) Software for Computers Important to Safety for Nuclear Power
Plants as a Supplement to IEC Publication 880," International Electrotechnical Commission Technical
Committee: Nuclear Instrumentation, Sub-Committee 45A: Reactor Instrumentation, Working Group
A3: Data Transmission and Processing Systems, May 1991.

IEEE Std 603-1980, "Standard Criteria for Safety Systems for Nuclear Power Generating Stations,”
The Institute of Electrical and Electronics Engineers, Inc., 1980.

ANSI/IEEE Std 828-1983, "IEEE Standard for Software Configuration Management Plans,” The
Institute of Electrical and Electronics Engineers, Inc., 1983.

ANSI/IEEE Std 830-1984, "IEEE Standard for Software Requirements Specifications,” The Institute
of Electrical and Electronics Engineers, Inc., 1984.

ANSI/IEEE Std 983-1986, "IEEE Standard for Software Quality Assurance Planning," The Institute of
Electrical and Electronics Engineers, Inc., 1986.

ANSI/IEEE Std 1012-1986, "IEEE Standard for Software Verification and Validation Plans,” The
Institute of Electrical and Electronics Engineers, Inc., November 14, 1986.

ANSI/IEEE Std 1016-1987, "IEEE Standard for Recommended Practice for Software Design
Descriptions,” The Institute of Electrical and Electronics Engineers, Inc., 1987.

ANSI/IEEE Std 1042-1987, "IEEE Standard for Guide to Software Configuration Management,” The
Institute of Electrical and Electronics Engineers, Inc., 1987.

ANSI/IEEE Std 1058.1-1987, "IEEE Standard for Software Project Management Plans,” The Institute
of Electrical and Electronics Engineers, Inc., 1988.

ANSI/IEEE Std 1074-1991, "IEEE Standard for Developing Software Lifecycle Processes,” The
Institute of Electrical and Electronics Engineers, Inc., 1991.

28

IEEE7301

1SO9000

ITSEC

MODQ0055

NIST180

NIST190

NPRO006

NPR6300

NPR6301

NRC91

P1228

ANSI/IEEE Std 730.1-1989, "IEEE Standard for Software Quality Assurance Plans” Ingtitute of
Electrical and Electronics Engineers, Inc., October 10, 1989.

SO 9000, "International Standards for Quality Management,” International Standards Organization,
SO Central Secretariat, Case Postale 56, CH-1211, Geneve 20, Switzerland, May 1990.

ITSEC 1.1989, "Criteria for the Evaluation of Trustworthiness of Information Technology (IT)
Systems,” GISA - German Information Security Agency, 1989.

Interim Defence Standard 00-55, "The Procurement of Safety Critical Software in Defence
Equipment,” Parts 1 and 2, Ministry of Defence, 5 April 1991.

NIST Specia Publication 500-180, "Guide to Software Acceptance” U.S. Department of
Commerce/National Institute of Standards and Technology, April 1990.

NIST Specia Publication 500-190, "Proceedings of the Workshop on High Integrity Software;
Gaithersburg, MD; Jan. 22-23, 1991," U.S. Department of Commerce/National Institute of Standards
and Technology, August 1991.

NPR-STD-0006, "NPR Configuration Management Plan,” Office of New Production Reactors, U.S.
Department of Energy.

NPR-STD-6300, "Management of Scientific, Engineering and Plant Software* Office of New
Production Reactors, U.S. Department of Energy, March 1991.

NPR-STD-6301, "Configuration Item Identifiers” Office of New Production Reactors, U.S.
Department of Energy.

"Computers at Risk," National Research Council, National Academy Press, 1991.

P1228, "(DRAFT) Standard for Software Safety Plans (IEEE Working Group),” The Institute of
Electrical and Electronics Engineers, Inc, July 19, 1991.

29

RTCA178A
RTCA/DO-178A, "Software Considerations in Airborne Systems and Equipment Certification,” Radio
Technical Commission for Aeronautics, March, 1985.

SAFEIT
"Safel T," Volumes 1 and 2, Interdepartmental Committee on Software Engineering, ICSE Secretariat,
Department of Trade and Industry, London SW1E6SW, UK, June 1990.

SOFTENG
"Standard for Software Engineering of Safety Critical Software,” Draft, Rev. 0, Ontario Hydro,
December 1990.

TCSEC

DoD 5200.28-STD, "Department of Defense Trusted Computer System Evaluation Criteria,"
Department of Defense, December 1985.

30

31

APPENDIX A. DESCRIPTION OF CRITERIA TEMPLATE

The template for analyzing a standard or guideline is designed such that the following questions can be answered:
FIRST SET OF PRINCIPAL QUESTIONS:
Do the requirements of the document provide assurance of the nuclear safety system software
developed, maintained, and operated according to these requirements? That is, does the document
contain requirements for building verifiably dependable nuclear safety system software?
SECOND SET OF PRINCIPAL QUESTIONS:
Will the requirements of the document provide NRC auditors with enough information to verify that
the vendor product is in compliance with the requirements, and are there clearly measurable
conformance clauses? If so, isit expected that two auditors will arrive at the same conclusions relative

to the product?

The features identified in this template represent the major topics against which the documents were analyzed.

A.l L evels of Criticality/Assurance

0 Are there levels? If yes, how many?
0 Are the levels associated with practices or assurance techniques?
0 Is independence of evaluators associated with levels?

A.2. L ifecycle Phases
What phases of the lifecycle does the document address using the following as a baseline lifecycle:

Initiation
Requirements

Design

Code (Implementation)
Integration & Test
Installation

o&M

32

Documentation

Which of the following are NOT specified by the document (at a minimum these documents should be
specified):

reguirements document

design document

code documentation

user manual

test documentation

installation document
operations manual

mai ntenance manual

project planning documentation
source code

O OO0 O O o Oo0OOoOOoOOo

Is a standard referenced?

Isformat specified?

I's content specified?

Are there traceahility requirements to other documentation?
Is there a checklist for specific documents?

Arethe required attributes (e.g., completeness) of the document expressed in quantified language?

33

AA4. Required Softwar e Functionality Againgt Hazar ds

Does the document address

self-testing of critical functions

memory, storage integrity checking

redundant hardware components

redundant software components

fault tolerance, automated error recovery

two or more independent operations specified for activation of critical functions
safety from single bit failuresin flags, addresses

safe shutdown or safe state in case of error

safety/security checking functions that are non-bypassable
parameter checking

checks on sequence of operations

malicious manipulation of system and data

security control: access

override of operator “mis-key' or other unintended functions

O O 0O OO O0OO0OO0OO0OO0OOoOOoOOoOOo

>
o

Softwar e Engineering Practices

0 What methodologies are used to build the system? What features of design should the system have?
0 What kind of specifications are addressed: formal? semi-formal? informal?

0 Are critical components isolated from other parts of the system?

0 Is modularity/information hiding used?

0 What kind of language is specified (high-level, assembler)?

0 Does the document prohibit or recommend limiting the use of particular programming and design
practices, and, if so, why?

0 Definitions of and criteriafor quality attributes.

A.6G. Assurance Activities

A6.1 Software Verification and Validation (SV&V)
o] Is a standard referenced?

0 Does the SV&V cover al lifecycle phases (initiation, requirements design, code, integration and test,
installation, O& M)?

0 Does the document require the following activities:

traceability analysis

evaluation (e.g., analysis, review, audit) of development products (see document list)
separation of test types (unit, integration, system, acceptance)

documentation requirements for testing

management of SV&V

review of SV&V products (e.g., test results)

O O 0O o oo

0 Does the document provide the following:
0 checklists
0 suggested or required techniques for performing SV&V

0 guidance on independence of developers and V&Vers will be noted under Section A.8, and
information on levels based on the criticality under Section A.1

Note: Standards used to provide the requirements for this section are FIPS132/IEEE1012 and ANS104.
0 Testing activities:
0 Isastandard referenced?
0 Arethere detailed testing requirements? Minimal requirements? None?
0 Arethefollowing specified:
unit test (component, module)
integration test
subsystem test
system test (hardware/software)

acceptance test

o]
o]
o]
o]
o]
0 reliability testing

35

test plans

test cases and procedures
procedures for anomaly resolution
test strategies

test coverage

O O 0O O o

0 Aretest plansfor system, acceptance test required during the requirements process?

A.6.2. Softwar e Quality Assurance (SQA)

o} Is a standard referenced?

0 Are additional (other than what is specified in Section A.6.1) testing activities specified?
0 Under SQA, isaminimum set of documents specified?

0 Does SQA establish the standards, practices and procedures for the project?

0 Are the following reviews specified:

0 software requirements review
0 software design review (both high-level and detailed)
0 review of SVVP

0 Are audits specified?

0 Are any metrics specified, or is SQA required to specify any metrics?

0 Does SQA specify problem reporting and corrective action procedures?

0 Is SQA responsible for identifying procedures for maintaining and storing controlled versions of the
software?

0 Is there a checklist for any of the SQA activities?

Note: Look for requirements for organization of SQA and for activities based on levels of assurance.

A.6.3. Softwar e Configuration Management (SCM)

o} Is a standard referenced?
0 Are both system and software configuration activities identified?
0 Are there requirements for the following:

o] interface control

36

O O 0O o o o

>
~

A.8.

a configuration control board
configuration baseline identification
configuration control

configuration status accounting
configuration reviews and audits

O O O O o

Look for requirements for organization, and for activities based on levels of assurance.

Software Hazard Analysis

Isthere aninitial system hazard analysis from which software "impact” is analyzed?

As additional system hazard analyses are conducted, are results provided to software processes?
Is there a software hazard analysis?

Does the software hazard analysis include a criticality analysis?

When in the lifecycle is software hazard analysis to be performed?
What techniques are specified?

Project Planning and M anagement

Is a standard referenced?

Are there detailed requirements? minimal requirements? none?
Are measurements on progress required?

When assurance activities reveal problems:

0 arethose problems traced to specific processes?
0 has management granted authority to anyone to change the affected processes?

Are progress or problem measurements used to change items other than the affected process (e.g.,
training of current staff, change of staff)?

I's there guidance regarding authority/communication for changes to products?
Procurement Concerns
Arethere requirements for IV&V?

Is a contractor capability assessment specified?

Does the document contain conformance clauses?

37

0 Are there requirements on pre-existing software or software used for development and assurance
activities?

>
©

Presentation

How well are the topics organized within the document?

Is ambiguous language used (should vs. shall)?

Cite examples of problems.

Is material repeated throughout the document?

Are words such as "easy," "suitable," and "appropriate” used without further definition?

O O 0O O o

A.10. Supplemental Information

Include important information not covered in the sections above.

A.11. General Comments

Commentary on the document as awhole.

38

39

APPENDIX B. REVIEW OF STANDARDSAND GUIDELINES

The review of each of the documents followed the format of the template in Table 1-3. The principal questions are
answered under the General Comments section of each template. Because of the large volume of information,
comments under each template heading are kept as terse as possible and are not aways in sentence form.
Commentary for each sub-topic within a template category is provided as a separate item or paragraph.

The words "Not addressed" are given whenever a document contains no material on a principal topic. In some
cases, the topic may be outside the scope of a document and, hence, not applicable. 1t is, therefore, not necessarily

undesirable that a document fails to address a certain subject.

Acronyms used in this section appear in Tables 1-1 and 1-2.

40

B.1. ANSI/IEEE-ANS-7-4.3.2-1982: Application Criteria for Programmable
Digital Computer Systems in Safety Systems of Nuclear Power
Generating Stations (1982) [ANS7432]

B.1.1 Levesof Criticality/Assurance

Not mentioned except that while the tools used for verification do not require verification, the SQA measures on
these tools must be established relative to their importance to the verification process.

B.1.2. Lifecycle Phases

Hardware requirements, software requirements, hardware-software integration requirements for the computer
system.

At a minimum a development plan, design, and implementation phase are included in the software development
process.

B.1.3. Documentation

The hardware-software integration requirements document includes the general QA plan for hardware/software
integration and integration test procedures with acceptance criteria. Hardware requirements that impact software
must be documented; several categories of these requirements are listed.

The software requirements document specifies items for description including security requirements.

The SDP includes a list of items to be defined, including organization, methodology for achieving software
attributes, assurance for auditability and testing, and SQA provisions and program.

A design document is required. Minimum detail is given on this document other than it requires traceability.
Implementation procedures are to be documented.

B.1.4. Required Softwar e Functionality Against Hazar ds

The Foreword® states that functional and design criteriaare fully covered in ANS41 and | EEE603.

The Foreword states that the joint working group writing this standard has not specifically required self-checking.
The SDP must include requirements for achieving error tolerance.

*The Foreword is NOT a part of this standard.

41

B.15. Softwar e Engineering Practices
The SDP must identify requirements for achieving modularity.

The Foreword states that functional and design criteria are fully covered by ANSA41 and |EEEGOS.

B.1.6. Assurance Activities
B.1.6.1. Softwar e Verification and Validation (SV& V)

Minimum requirements for the verification plan are described for organization, review and audit, and software test
and analysis.

The hardware/software integration testing results shall be described in areport.

The computer system validation testing, including static and dynamic simulation, formal test plan, and evaluation
of results by those not involved in design or implementation, shall be specified in atest report.

B.1.6.2. Softwar e Quality Assurance (SQA)

SQA isaddressed in the SDP.

B.1.6.3. Softwar e Configuration M anagement (SCM)
Not addressed.

B.1.6.4. Softwar e Hazard Analysis

Not addressed.

B.1.7. Project Planning and M anagement

Not addressed.

B.1.8. Procurement Concerns

The Foreword addresses the need for independent verification as does Section 7.1.
B.1.9. Presentation

Since this standard is superseded by ASMENQA2, which incorporates the quality requirements, it is inappropriate
to comment on its presentation at this time.

42

B.1.10. Supplemental Information

The Foreword claims that conforming to this standard does not guarantee adequacy of a system, however, not
meeting the criteria of this standard ensures inadequacy. It also states that the following topics are planned for
future work: quantitative software standards, computer security, self-testing, distributed computer systems,
techniques for independent validation, firmware, and "simplification" objectives.

B.1.11. General Comments

This standard is currently under revision. The draft of the new ANS 7-4.3.2 is significantly different. The quality
requirements of the current ANS 7-4.3.2 are captured by ASMENQA2.

Response to the First Set of Principal Questions:

0 While this standard presents general system-level requirements, this review is concerned with the
assurance activities for software, and how those activities relate to the system. This standard does
address some issues of the hardware/ software integration. Documentation for the hardware must
identify all requirements that impact software. The document does not require that a hazard analysis
or criticality analysis be performed relative to those software requirements. Specific requirements for
SCM, software integration, and types of software testing are lacking or are too genera to be useful.

Response to the Second Set of Principal Questions:

0 The requirements of this standard are stated so that an auditor could verify for at least minimum
compliance, that is, details on the activities are not usually required.

43

B.2. Guiddine for the Categorization of Softwarein Ontario Hydro's Nuclear
Facilities With Respect to Nuclear Safety [CATEGORY]

B.2.1. Levelsof Criticality/Assurance
The purpose of this guideline is to provide the rationale for determining levels of criticality of software systems
used in nuclear power plants. Four levels of classification are defined, depending on impact of software failure. 1t

isintended that other standards will be developed to associate software engineering practices to levels of assurance.
At the highest level, a draft Standard for Software Engineering of Safety Critical Software exists.

B.2.2. Lifecycle Phases

Addresses categorization at initiation of project.

B.2.3. Documentation

Not addressed.

B.2.4. Required Softwar e Functionality Against Hazar ds
Not addressed.

B.2.5. Softwar e Engineering Practices

Design features are listed (both hardware and software) for lessening impact of failure.
B.2.6. Assurance Activities

B.2.6.1. Softwar e Verification and Validation (SV& V)

Not addressed.

B.2.6.2. Softwar e Quality Assurance (SQA)

Not addressed.

B.2.6.3. Softwar e Configuration Management (SCM)

Not addressed.

B.2.6.4. Softwar e Hazard Analysis
Criticality Assessment:
The four categories are:
1 Software is critical to nuclear safety (safety critical software).

2. Software has significant effect on nuclear safety, but effect of failure can be mitigated by
special safety system action.

3. Software has some effect on nuclear safety, but failure does not prevent system from
meeting its design intent, and failure does not require mitigating system action.

4. Software whose failure has no effect on nuclear safety.
Software failure impact type:
Three categories of failure impact are defined, according to specific loss of functionality.
M ethodology:
Specia safety systems are identified (e.g., shutdown systems, emergency coolant systems) and
usualy have areliability requirement or unavailability target. First the safety significance of the

system is identified and then the type of software failure impact is identified. Tables help to
determine the final category.

B.2.7. Project Planning and M anagement
Not addressed.

B.2.8. Procurement Concerns

Not addressed.

B.2.9. Presentation

The methodology is clearly stated and examples are provided.

45

B.2.10. Supplemental Information

This guideline is a draft that will eventually become part of afamily of software engineering documents for Ontario
Hydro.

B.211. General Comments

NRC should encourage the use of a categorization standard similar to this document. Use of a categorization
would support

0 prevention of tailoring out requirements of other standards by stating no tailoring allowed for the
highest category
0 identification of whether there is separation of required software functionality against hazards

(protection) and assurance requirements (e.g., completeness, consistency) in a standard

Response to the First Set of Principal Questions:

o} This guideline's scope is restricted to identifying a methodology for criticality assessment and
assessment of impact of failure. It does this well, in a manner that would assure appropriate
assignment of levels of criticality within a system.

Response to the Second Set of Principal Questions:

0 An auditor should be able to verify that the methodology has been implemented according to the
guideline.

46

B.3. DLP880: Proposed Standard for Software for Computers in the Safety
Systems of Nuclear Power Stations[pLpsso]

B.3.1. Levelsof Criticality/Assurance

Assumes that the software for which this standard is used is at the highest level of criticality.

B.3.2. Lifecycle Phases

Development includes system requirements, computer system design, software requirements, software behavior,
software decomposition, module interface design, module internal design, and program design.

Maintenance and modification: Forma modification control procedure is specified in detail for modification
request and executing a modification. Includes SV&V. Maintenance occurs as modification for the same reasons,

with the addition of responding to an anomaly report.

Software verification is performed after each lifecycle phase.

B.3.3. Documentation

The management and integral processes documentation are not specified.

Requirements for the technical documentation for the development processes are in mathematical notation. Format
and content are specified for the computer systems requirements document, system design document, software

requirements document, software function specification, software module guide, module interface specifications,
internal design documents, and program function specifications and displays.

B.3.4. Required Softwar e Functionality Againg Hazards

The programming language and its translator should not prevent error-limiting constructs; translation-time
checking; nor, run-time type and array bound check, and parameter checking.

B.3.5. Softwar e Engineering Practices

The principles applied in devel oping the requirements of the standard include

o} use of formal methods
0 top down design
0 information hiding, modularity

The computer programming language used should have a thoroughly tested translator. If not, additional
verification should justify the correctness of the translation.

47

"The languages should be completely and unambiguously defined, otherwise the use of the language shall be
restricted to completely and unambiguously defined features.” (p. 12)

The standard "strongly" prefers high-level languages over machine dependent ones.
"Automatic testing aids should be available." (p. 12)

The standard recommends the use of automatic tools.

B.3.6. Assurance Activities

B.3.6.1. Softwar e Verification and Validation (SV& V)

A detailed software verification plan is required. The plan describes the activities to be conducted after each phase
that demonstrate the requirements specification is met. Software verification addresses testing, independence,

documentation and review of results.

A software test specification and test report are required as part of the software verification plan and detailed
content is specified.

An integrated system verification test report is specified.

Computer system validation is required, and specific types of functions and properties are specified. A computer
system validation report is required. Results must be maintained in an auditable form.

Identifies criteria to be checked for, in each phase document. These are listed, but not defined.
B.3.6.2. Softwar e Quality Assurance (SQA)

An SQAP isrequired. Inspections are cited as are "dispute resolution mechanisms."

B.3.6.3. Softwar e Configuration M anagement (SCM)

Documentation must be under configuration control.

B.3.6.4. Softwar e Hazard Analysis

Not addressed.

48

B.3.7. Project Planning and M anagement
Indirectly addressed through general principles that govern the software project. These include principles on tasks

of phases, SQA, error reporting and correction, and configuration control. There is no requirement for a project
plan identifying how these principles will be implemented.

B.3.8. Procurement Concerns

Under the Verification section recommendations are made regarding independence and type of personnel skills
needed to review the products of each phase.

B.3.9. Presentation
The content specification for documentation exceeds the "what" and becomes a "how.” One example is that the

trace assertion specifications for module interfaces may be considered a methodology for performing traceability.
There may be other methods equally acceptable.

B.3.10. Supplemental Information
This document was prepared by Dr. David Parnas under the sponsorship of the Atomic Energy Control Board of

Canada. The version reviewed was issued in March 1991; comments on it were due in September. NIST has not
yet received information on the document's current status.

B.3.11. General Comments
Response to the First Set of Principal Questions:

0 This document provides rigorous requirements for software at the highest level of criticality, however,
there is no requirement for hazard analysis.

Response to the Second Set of Principal Questions:

0 This document provides a rigorous way of showing that a safety system conforms to its requirements,
and the requirements of the standard are sufficiently precise to show conformance to the document.

0 Auditors will need to be trained in the use of formal specification languages to be able to audit for
compliance with the standard to understand:

o0 therequirementsthey must audit for
o how well those requirements have been implemented

The following are the review comments that the authors of this report sent to Ontario Hydro:

49

"The draft provides a rigorous way of showing that a safety system conforms to its requirements, and
the requirements of the standard are sufficiently precise that it is possible for a developer to show
conformance to the standard. It should be noted that this rigorous way may also be considered a
methodology specification.

"There should be a requirement for some type of hazard assessment, i.e., a description of the hazards
to be protected against. This should be described in terms of the monitored and controlled variables.
This requirement could be placed in section B.1 which states the general principles to govern al work
in a software project.

"It isdifficult to claim that a system is safe without some definition of safety.
"The glossary should contain a general definition of safety.
"Suggestions for formalizing the definition of safety to nuclear power stations are the following:

The scope of this document identifies specific applications that fall under the requirements of this
proposed standard. The requirements document for any of the systems to which this standard
applies must identify the safety principles the system must meet.

There should be a "safety policy” describing how the hazards identified in the hazard assessment
are countered by the system. The policy should be stated in terms of the monitored and
controlled variables. A formal statement of the safety policy should then be defined, with
convincing argument that the informal to formal policy mapping is correct. If Sis a predicate
defining the safety policy, then, using the terminology of the proposed standard, it should be
possible to show that REQ(m’) => S.

"As noted in Section 9, the use of traces should be considered only as an example of an acceptable
method; other rigorous techniques should be acceptable. Sections 9 and 10 therefore need to be moved
to an appendix, since they specify a particular method. They should be replaced with paragraphs that
specify what is required, but do not prescribe a particular method."

50

B.4. Dependability of Critical Computer Systems 2 - Chapter 1: Guiddinesto
Design Computer Systemsfor Safety [ewicsz-1

B.4.1. Levelsof Criticality/Assurance

Suggests associating design constraints with level of criticality (separation of control, protection functions,
redundancy, diversity).

B.4.2. Lifecycle Phases

System design: Chapter addresses elements that must be considered in the design of the system; principles should
be practices; response mechanisms to be used against failures; principles for man-machine interfaces.

B.4.3. Documentation

Not addressed.
B.4.4. Required Softwar e Functionality Against Hazar ds

self-testing of critical functions

memory, storage integrity checking

redundant hardware components

redundant software components

fault tolerance, automated error recovery

diversity (e.g., product diversity for hardware, functional diversity for software)
safety from single failure

safe state when "external™ problems happen
safety/security checking functions are non-bypassable
parameter checking

checks on sequence of operations

O 0O 0O OO O0OO0OO0oOOoOOoOOo

(NOTE: Required on-line software checks could include several of above; also required integrity checks.)

B.4.5. Softwar e Engineering Practices

System design: Chapter concentrates on the system but does address some software engineering practices (in more
detail than template provides for). Requires proven modules and monitoring tools.

51

B.4.6. Assurance Activities
B.4.6.1. Softwar e Verification and Validation (SV& V)

Requires a system validation plan for demonstra