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We study the coherent nonlinear tunneling dynamics of a binary mixture of Bose-Einstein condensates in a
double-well potential. We demonstrate the existence of a type of mode associated with the “swapping” of the
two species in the two wells of the potential. In contrast to the symmetry-breaking macroscopic quantum
self-trapping �MQST� solutions, the swapping modes correspond to the tunneling dynamics that preserves the
symmetry of the double-well potential. As a consequence of two distinct types of broken-symmetry MQST
phases where the two species localize in different potential wells or coexist in the same well, the corresponding
symmetry-restoring swapping modes result in dynamics where the two species either avoid or chase each other.
In view of the possibility to control the interaction between the species, the binary mixture offers a very robust
system to observe these novel effects as well as the phenomena of Josephson oscillations and � modes.
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I. INTRODUCTION

Ultracold laboratories have had great success in creating
Bose-Einstein condensates �BECs� �1� in a variety of atomic
gases such as rubidium �Rb�, lithium �Li�, sodium �Na�, and
ytterbium �Yb�. These quantum fluids exist in various isoto-
pic forms as well as in different hyperfine states. The rapid
pace of development in this field has led to condensates
which are robust and relatively easy to manipulate experi-
mentally. In particular, the tunability of interspecies and in-
traspecies interactions �2� via magnetic and optical Feshbach
resonances makes the BEC mixture a very attractive candi-
date for exploring new phenomena involving quantum coher-
ence and nonlinearity in a multicomponent system.

The subject of this paper is to investigate the tunneling
dynamics of a binary mixture of BECs in a double-well po-
tential. A single species of BEC in a double well is called a
bosonic Josephson junction �BJJ�, since it is a bosonic ana-
log of the well-known superconducting Josephson junction.
In addition to Josephson oscillations �JO�, the BJJ exhibits
various novel phenomena such as � modes and macroscopic
quantum self-trapping �MQST�, as predicted theoretically
�3,4�. In the JO and the � modes, the condensate oscillates
symmetrically about the two wells of the potential. In con-
trast to this, the MQST dynamics represents a broken-
symmetry phase as the tunneling solutions exhibit population
imbalance between the two wells of the potential. These vari-
ous features have been observed experimentally �5�. Our mo-
tivation is to explore whether new phenomena arise when
there are two interacting condensates trapped in a symmetric
double well.

Although our formulation and results are valid for a vari-
ety of BEC mixtures, our main focus here is the Rb family of
two isotopes, namely, the mixture of 87Rb and 85Rb, moti-
vated by the experimental setup at JILA �6�. The scattering
length of 87Rb is known to be 100 a.u. while the interspecies
scattering length is 213 a.u. In experiments, the scattering

length of 85Rb can be tuned using the Feshbach resonance
method �7�.

The ability to tune the scattering length of one of the
species makes this mixture of isotopes an ideal candidate for
studying the coupled BJJ system. First, it opens up the pos-
sibility of exploring the parameter space where the
85Rb-85Rb scattering length is equal to the 87Rb-87Rb scat-
tering length. As will be discussed below, this symmetric
parameter regime simplifies the theoretical analysis of the
system and also captures most of the new phenomena that
underlie the dynamics of the binary mixture. Furthermore,
the tunability of the 85Rb scattering length can be exploited
to study a unique possibility where one of the species has a
negative scattering length, a case which strongly favors the
�-mode oscillations that have not been observed so far.

In our exploration of nonlinear tunneling dynamics of
coupled BJJ systems, the MQST states are found to be of two
types. In the broken-symmetry MQST state, the two compo-
nents may localize in different wells resulting in a phase
separation or they may localize in the same well and hence
coexist. By varying the parameters such as initial conditions,
the phase-separated broken-symmetry MQST states can be
transformed to a symmetry-restoring phase where the species
continually “avoid” each other by swapping places between
the two wells. In other words, if the dynamics is initiated
with both species in the same potential well, the sustained
tunneling oscillations are seen where the two species swap
places between the well one and the well two. From the
coexisting MQST phase, one can achieve symmetry restoring
swapping dynamics by initiating the dynamics with two spe-
cies in the separate wells. In this case, the emergence of the
swapping modes can be interpreted as a phase where the two
species “chase” each other.

The paper is organized as follows. In Sec. II, we discuss
the model and use the two-mode approximation to the
Gross–Pitaevskii �GP� equation to map it to a system of two
coupled pendulums with momentum-dependent lengths and
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coupling. Section III discusses the stationary solutions and
Section IV discusses their stability. These results enable us to
look for various qualitatively different effects without actu-
ally solving the GP equations. Section V describes the nu-
merical solutions of the GP equations as various parameters
of the system are tuned. Although we have explored the mul-
tidimensional parameter space, the novelties attributed to the
binary mixture in a double-well trap are presented in a re-
stricted parameter space where the scattering lengths of the
two species are equal. Additionally, in our numerical results
described here, we fix the ratio of 87Rb-87Rb interaction to
85Rb-87Rb interaction to be 2.13. This restricted parameter
space is accessible in the JILA setup and provides a simple
means to describe various highlights of the mixture dynam-
ics. Section VI provides additional details of the JILA setup
relevant for our investigation. A summary is given in Sec.
VII.

II. TWO-MODE GP EQUATION
FOR THE BINARY MIXTURE

In the semiclassical regime where the fluctuations around
the mean values are small, the two-component BEC is de-
scribed by the following coupled GP equations for the two
condensate wave functions �l�x , t�, with l=a ,b representing
the two species in the mixture:

i��̇a = �−
�2

2ma
�2 + Va��a + �ga��a�2 + gab��b�2��a,

i��̇b = �−
�2

2mb
�2 + Vb��b + �gb��b�2 + gab��a�2��b.

Here, ml, Vl, and gl=4��2al /ml denote, respectively, the
mass, the trapping potential, and the intra-atomic interaction
of each species, with al as the corresponding scattering
length. gab=2��2�1 /ma+1 /mb�aab is the interspecies inter-
action, where aab is the corresponding scattering length. For
the JILA experiment, in view of the tight confinement of the
condensate transverse to the trap, it is sufficient to consider
the corresponding one-dimensional Gross-Pitaevskii
equations �GPE�.

The condensate wave functions satisfy the normalization
conditions

� d3r��l�2 = Nl. �1�

The total number of atoms in the mixture is N=Na+Nb.
Previous studies have investigated the stability of binary

BEC mixture characterized by three different scattering
lengths �8� and have pointed out the possibility that the cou-
pling parameters may depend upon each other. Our studies
investigating the tunneling dynamics of the BEC mixture in a
double well will focus on robust behavior that exists in a
wide range of parameters and initial conditions and should
be observable in experiments that typically have multiple
knobs that tune the parameters.

In the weakly linked limit, the dynamical oscillations of
the two-component BEC can be described by two wave func-

tions representing the condensate in each trap labeled by k
=1,2, with the spatial and the temporal contributions fac-
tored as follows �3,9–11�:

��a

�b
� = ��1

a�x��1
a�t�

�1
b�x��1

b�t�
� + ��2

a�x��2
a�t�

�2
b�x��2

b�t�
� �2�

The localized spatial modes �k
�l��x� are computed as sums

and differences of the symmetric and antisymmetric solu-
tions of the time-independent coupled GP equations �3,9�. To
derive the equations of motion in the two-mode approxima-
tion, we introduce zl�t�, the population imbalance, and �l�t�,
the relative phase of species l between the left and right sides
of the double-well potential,

zl�t� = ���1
l �2 − ��2

l �2�/N , �3�

�l�t� = ��1
l − �2

l � , �4�

where �k
�l��t�= ��k

�l��t��exp i�k
�l� are the time-dependent coeffi-

cients in the two-mode equations.
Following the methodology of previous works related to

single-component BEC �3,9� we substitute Eq. �2� into the
coupled GP equations. Using the orthogonality and the defi-
nite parity of the spatial modes, we integrate out the spatial
degrees of freedom �9�. We would like to emphasize that we
follow the so-called “improved-two-mode” approach �9�
where we retain all overlap integrals. In the case of single
species, this has been shown to be an improvement over the
previous approach �3� where the overlap integrals involving
the spatial modes �1 and �2 were neglected. In other words,
given the ansatz �2�, we average over the spatial part from
the coupled partial differential equations �coupled GPE�, re-
sulting in coupled ordinary differential equations. The spatial
averaging leads to the renormalization of the bare coupling
parameters gi.

The four coupled nonlinear ordinary differential equations
which we refer to as the “two-mode” model are

Ża = − K̄a
	1 − Za

2 sin �a, �5�

Żb = − K̄b
	1 − Zb

2 sin �b, �6�

�̇a = 	̄aZa + 	abZb + K̄a
Za

	1 − Za
2
cos �a, �7�

�̇b = 	̄bZb + 	abZa + K̄b
Zb

	1 − Zb
2
cos �b, �8�

where Zl=zl / f l. In the above equations, f l=Nl /N denotes the
fraction of atoms of species l, while the renormalized param-

eters K̄l and 	̄l are given by

K̄a = Ka − 2faCa
	1 − Za

2 cos �a + fbDab
	1 − Zb

2 cos �b,

K̄b = Kb − 2fbCb
	1 − Zb

2 cos �b + faDba
	1 − Za

2 cos �a,
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	̄a = 	a + Ca,

	̄b = 	b + Cb.

In the above, the space and time-independent parameters Kl,
	l, 	ab, Cl, and Dab can be expressed in terms of various
microscopic parameters that appear in GP equation and the
localized modes, �k

l �x�, and their overlap �integrated over
spatial degrees of freedom�. The explicit expressions for
these parameters are given in the Appendix.

The parameters Kl describe the tunneling amplitude while
	l is related to the corresponding scattering length of the
species. The parameters Cl and Dab have their origin in the
overlaps between the spatial modes �1 and �2 and are ex-
pected to be small in the weak tunneling limit. These over-
laps modify the bare parameters denoted by the interaction
	l and the tunneling Kl. Consequently, we have a variable

tunneling model, since the tunneling parameters K̄l depend
explicitly on the dynamical variables Zl and �l.

It should be noted that the coupled Eqs. �5�–�8� and the
relationship between the bare and the renormalized tunneling
amplitudes as given below Eqs. �5�–�8� reveal a simple pat-
tern suggesting straightforward generalization to more than
two-component systems. In our analysis, we will mostly re-
strict ourselves to the case where the two species are equally
populated, namely, fa= fb=1 /2. In this case, the above sys-
tem of Eq. �8� can be viewed as the Hamiltonian equation in
terms of the canonical variables Zl �momenta� and �l �coor-
dinates�, with the Hamiltonian given by the following form:

H =
1

2
�	̄aZa

2 + 	̄bZb
2 + 2	abZaZb� − 


l=a,b
K̄l

	1 − Zl
2 cos �l.

�9�

For the case where the overlap between the spatial modes

�1 and �2 can be neglected and the effective tunneling K̄l can
be replaced by its bare value Kl, the above system can be
viewed as a coupled pair of nonrigid pendulums, with
momentum-dependent lengths. The coupling between the
pendulums is also momentum dependent.

We parenthetically remark that this system can also be
mapped to a pair of classical spins with Cartesian compo-
nents

Sx
l = 	1 − Zl

2 cos �l,

Sy
l = 	1 − Zl

2 sin �l,

Sz
l = Zl,

so that �Sl�2=1. Thus the spin vector locates a point on the
unit sphere given by polar angles �l ,�l, with Zl=cos �l. The
corresponding spin Hamiltonian, written in terms of bare
variables, can be shown to be

H = 

l=a,b

�1

2
�	l + Cl��Sz

l�2 + Cl�Sx
l �2 − KlSx

l�
+ 	ab�Sz

aSz
b� − Dab�Sx

aSx
b� .

The spin mapping provides an alternative means to visu-
alize the effective interaction between the two species during
the tunneling. If we ignore the spatial overlap integrals be-
tween the localized modes in two wells, �Cl=0,Dab=0�, the
binary mixture of condensates in two-mode approximation
maps to two Ising-type spins in a transverse magnetic field.
The full two-mode variable tunneling feature induces
XY-like spin interaction.

In this paper, we find it convenient to exploit mapping to
the coupled pendulums for exploring tunneling dynamics in
the coupled BJJ. Although we have explored the full two-
mode variable tunneling model, we will only discuss the

constant tunneling case �K̄l replaced by Kl and 	̄l replaced
by 	l� as the overlap integrals are small and the various
novel effects of the mixture described here are found to be
robust and unaffected by the variable tunneling parameters.

III. STATIONARY SOLUTIONS: FIXED POINTS

The solutions of the coupled system are characterized by
the interactions 	l, the ratio of the tunneling amplitude for
the two species, Ka /Kb which we denote by R as well as the
initial phase difference �l�t=0�, and the initial population
imbalance Zl�t=0�. In the multidimensional parameter space
the equilibrium or fixed-point solutions, in which the right-
hand-sides of Eq. �8� are zero, provide an effective tool to
classify different categories of behavior of the system.

In general, these fixed-point equations are transcendental
and have to be solved numerically. However, in the symmet-
ric case where 	a=	b=	, Ka=Kb=K, the fixed-point equa-
tions can be tackled analytically. Further, as can be seen from
Eq. �8�, the parameter K can be eliminated in this case by
rescaling t�t→Kt� and redefining 	x as 	x→	x /K. Our de-
tailed analysis shows that this special case captures many
relevant phenomena characterizing the binary mixture in a
double well. In this case, the fixed points belong to two
broad categories as stated below, resulting in two types of
small amplitude oscillations about these two fixed points:

�i� Zero-mode fixed points ��a
�=�b

�=0�,
�1� Za

�=Zb
�=0,

�2� Za
�=−Zb

�= 

	��	ab−	�2−4K2�

��	ab−	�� .
�ii� �-mode fixed points ��a

�=�b
�=��,

�1� Za
�=Zb

�=0,

�2� Za
�=Zb

�= 

	��	ab+	�2−4K2�

��	ab+	�� .
It should be noted that the mixed-mode fixed points, �a

�

=0 and �b
�=�, Za

�=Zb
�=0, are unstable for the restricted pa-

rameter regime we are considering here and hence will not
be discussed.

The small oscillations about the fixed-point �Z�=0,��

=0� result in zero mode while small oscillations about
�Z�=0,��=�� lead to � mode. The oscillation frequencies
are in Sec. IV.

The nontrivial fixed points �Z��0� result in solutions
with population imbalance and lead to tunneling dynamics
with macroscopic quantum self-trapping or the MQST. In
view of the a-b symmetry, we have two sets of stationary
solutions: Zx

� and −Zx
��, �x=a ,b�. This suggests the possibility

of modes where each species oscillates about the binary fixed
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points, going back and forth between the two wells. Unlike
MQST, these modes will preserve the symmetry of the
double well. However, in contrast to zero modes, these
modes are nonlinear and give rise to “swapping phase” that
will be discussed later.

The emergence of fixed points with opposite signs for the
two species �Za

�=−Zb
�� in the zero mode phase suggests that

MQST in zero mode is accompanied by phase separation of
the two species. In contrast, in the �-mode MQST phase, the
two species could coexist in the same potential well as
�Za

�=Zb
��. Therefore, the fixed-point equations suggest that �

modes mimic attractive interaction between the two species.
The onset from oscillatory to MQST phase corresponds to

the values of the parameters where the nontrivial fixed points
move from the complex to the real plane. Alternatively, the
condition for the broken-symmetry phase can be obtained by
linear stability analysis of the fixed-point equations. This is
discussed in Sec. IV.

In the asymmetric case when 	a�	b the fixed points are
obtained by solving the coupled transcendental equations

�− 1�p KaZa
�

	1 − �Za
��2

+
1

2
�	Za

� + 	abZb
�� = 0,

�− 1�p KbZb
�

	�1 − �Zb
��2�

+
1

2
�	Zb

� + 	abZa
�� = 0,

where p=0�1� for �a
�=0��� and �b

�=0���. Analogous to the
symmetric case, both the zero and the �-mode solutions in-
cluding those corresponding to MQST can be found numeri-
cally. As expected, for the MQST fixed points Za

��−Zb
� in the

zero mode and Za
��Zb

� in the � mode and we do not have the
permutation symmetry or the a-b symmetry. However, unlike
the symmetric case, Kl’s do not scale time t and the param-
eters and hence the ratio R=

Ka

Kb
emerge as a new parameter.

IV. NORMAL MODES: LINEAR STABILITY
ANALYSIS OF FIXED POINTS

Frequencies of small amplitude oscillations about
�Z�=0,��=0� and �Z�=0,��=��, respectively, referred to as
the zero mode or the � modes, are given by

�2 =
1

2
�Ka	a

� + Kb	b
��

+
1

2

 �	�Ka	a

� − Kb	b
��2 + 4KaKb	ab

2 � ,

where

	a
� = �− 1�pKa + 	a,

	b
� = �− 1�pKb + 	b,

where p=0 for the zero mode and p=1 for the � mode. In
the symmetric case, with 	a=	b and fa= fb, the normal-
mode frequencies �0 and �� simplify to

�0
2 = K2 + K�	 
 	ab�/2,

��
2 = K2 − K�	 
 	ab�/2.

The condition for the instability of the fixed point is de-
termined when one of the normal-mode frequencies becomes
complex. This gives rise to new fixed points where Zx

��0
resulting in MQST phase where there is a population imbal-
ance between the two wells of the double-well potential for
each species. The condition for the existence of MQST is
given by

fafb	ab
2 � 	a

�	b
�. �10�

In the zero-mode case, this inequality gives the condition
for phase separation �see Sec. V C for further details� of the
two species as Za

�=−Zb
�. It should be noted that in the weak

tunneling limit when Ki
	i, the above equation is reminis-
cent of the phase-separation condition, gab

2 �gagb, obtained
using Thomas-Fermi approximation. Our analysis is in fact
valid only in the weak tunneling limit, when the renormal-
ized parameters 	i can be assumed to be linearly related to
the bare parameters, namely, the scattering lengths gi �see the
Appendix�. Emergence of this important relationship from
two independent approaches and approximations strengthens
the validity of the criterion for phase separation.

For the parameter values where both the zero and the �
modes coexist, �-mode frequencies are smaller than the
zero-mode frequencies. Figure 1 shows the values of 	a ,	b
where the tunneling is governed by the zero mode and the �
mode. For 	b�0, the regime where the � modes exist is
small but finite. However, by tuning 	b to negative values,
the � modes that have not been seen in earlier studies can be
observed. Variation with the parameter R, the tunneling ratio
for the two species, leads to similar results, with the param-
eter space for the existence of � mode increasing slightly
with R. The unshaded regime corresponds to MQST phase.

V. TUNNELING DYNAMICS WITH �a=�b

We now describe the numerical solution of the tunneling
equations, solved using the standard numerical �sixth order�

FIG. 1. �Color online� The upper �black� and the lower �yellow�
shaded regime corresponds to the parameter values for the existence
of stable zero mode and � mode with R=Ka /Kb=1.
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Runge-Kutta method. For small population imbalance, we
confirm the dynamics predicted by the fixed points as dis-
cussed above. However, numerical solutions also illustrate
nonlinear modes not described by the fixed-point analysis.
The fact that new features continue to exist in the nonlinear
regime assures their robustness.

In our numerics, we set 	ab=2.13	 and study the dynam-
ics for different values of 	. These conditions can be
achieved by first tuning the gb via a Feshbach resonance so
that 	a=	b. The variation of 	 corresponds to varying the
number of atoms in the double-well trap. As already men-
tioned, K can be eliminated by using t→Kt and 	→	 /K.
The dynamics is governed by 	 and the initial conditions
Za�0�, Zb�0�, �a�0�, and �b�0�.

As we discuss below, tunneling solutions belong to three
broad categories:

�i� zero-phase mode, characterized by 
�l�=0;
�ii� �-phase mode characterized by 
�l�=�;
�iii� “running-phase mode” characterized by 
�l� propor-

tional to t, where 
A� represents the time average of A. In the
single species case, 
�l�=0 also corresponds to 
Zl�=0.
However, as we discuss below, in a binary mixture, we can
have 
�l�=0 but 
Zl��0. This gives rise to a broken-
symmetry MQST phase in zero modes as well.

A. Zero modes

For 	
	c
0�1.77, �a�0�=�b�0�=0 and �Zl�0���1, both

species execute small amplitude oscillations �such as oscilla-
tions of a nonrigid pendulum� with 
Zl�t��=0 and 
�l�t��=0
as shown in Fig. 2. Such modes exhibit quasiperiodic dy-
namics characterized by superposition of sinusoidal modes
with two competing frequencies. As Zl�0� increases, we see
large amplitude nonsinusoidal oscillations. Therefore, in
spite of the repulsive interaction between the two conden-

sates, the two species execute a coherent oscillatory dynam-
ics as expected from the zero-mode fixed-point analysis
described earlier in Sec. III.

B. � modes

If the dynamics is initiated with �a�t=0�=�b�t=0�=�,
both species oscillate in � mode provided 	
	c

0�0.67 and
initial population imbalance is small ��Zl�0���1�. Analogous
to the zero mode, the dynamics in the � mode is in general
quasiperiodic. As seen in the Fig. 3, the motion is in phase
with the slow mode and out of phase with the other. Com-
parison to the zero- and the �-mode oscillations show that
species move more sluggishly in � mode compared to the
zero mode as the zero-mode frequencies are larger than those
of the � mode.

C. Symmetry breaking and phase separation: MQST
in zero mode

Beyond a critical value of 	, the system enters the
symmetry-breaking MQST phase, as predicted by the fixed-
point analysis earlier. One of the novel aspects of the binary
mixture is the existence of zero-mode MQST accompanied
by phase separation of the two species. Even with the initial
conditions corresponding to abundance of both species in the
same well, the two components localize in the two different
wells. In this case, transition to MQST is accompanied by
phase separation: although the two species overlap for some
time, the 
Za�t�� and the 
Zb�t�� have opposite signs. In the
symmetric case, the condition for phase separation �10� re-
duces to 	ab�	.

D. Symmetry restoring and phase separation: Swapping mode

As 	 increases further, the system exhibits “swapping
modes” where the two species swap places between the two

FIG. 2. �Color online� Time series for Zl �top�, �l �middle�, and
phase portrait for 	=0.6 with initial conditions shown in the figure.
The thin line �red� and the line with crosses �blue� correspond to the
a and the b species, respectively.

FIG. 3. �Color online� Same parameters as Fig. 2; the only ex-
ception being that �l�t=0�=� here.
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wells but remain phase separated as shown in Fig. 4. As seen
in the figure �at t=0�, the dynamics is initiated with positive
population imbalance of both species. However, the resulting
dynamics corresponds to back and forth motion where the
two species swap places between the two wells. In contrast
to MQST, the swapping dynamics restores the symmetry of
the tunneling solution in the double well. However, the two
species remain mostly phase separated, avoiding each other
by swapping.

In other words, the swapping phase is characterized by

Za�t��= 
Zb�t�=0, but 
Za�t�Zb�t�� 
0�. That is, at a given
instant of time, the two species are more likely to be found in
separate wells. Thus in the swapping mode, the two species
oscillate back and forth between the two wells and still man-
age to avoid each other. The swapping is found to occur in
the nonlinear zero mode as well as in the running mode.
Furthermore, a transition from MQST to swapping phase can
be achieved either by varying 	 �Fig. 5� or by varying the
initial conditions �Fig. 6�.

E. Symmetry breaking in � modes: Coexistence phase

For 	
	c�0.67, �a�t=0�=�b�t=0�=� and �Zl�t=0��
�1, both species execute small amplitude oscillations with

Zl�t��=0� and 
�l�t��=�, as shown in Fig. 7. Such modes
are characterized by superposition of sinusoidal modes with
two competing frequencies and the resulting dynamics is in
general quasiperiodic. As expected from the fixed-point
analysis, the two species with both interspecies and intraspe-
cies repulsive interactions can self-trap in the same well.
That is, we have MQST where the species coexist in the
same potential well, in spite of repulsive interaction among
them.

F. Swapping in � modes

As illustrated in Fig. 8, within the �-mode phase, if the
dynamics of the two species is initiated in separate wells,

that is, Za�t=0� and Zb�t=0� have opposite signs, the MQST
phase can be destroyed when the initial population imbal-
ance increases beyond a critical value. The tunneling solu-
tions become symmetric as MQST is replaced by swapping
modes. In this case the swapping can be viewed as the two
species “chasing” each other.

It should be noted that the swapping dynamics in the zero
and the � modes is very similar. However, swapping in the
zero mode corresponds to two species avoiding each other
while swapping in the � mode corresponds to one compo-
nent chasing the other. This is because in the zero mode,
species prefer residing in the separate wells while in the �

FIG. 4. �Color online� Transition from Josephson oscillations
�top with 	=1.6� to MQST with phase separation �bottom, with
	=1.8�, obtained by varying 	. The left and right plots show the
time series and phase portraits, respectively.

FIG. 5. �Color online� Symmetry restoring transition by varying
	 where the upper panel with 	=2.3 shows MQST phase with
phase separation while the lower panel with 	=2.5 shows phase
separation due to swapping mode.

FIG. 6. �Color online� Symmetry restoring transition obtained
by changing initial conditions �Zl�t=0�� slightly for fixed 	=2.
Figure shows the time series as well as the phase portraits of two
species shown, respectively, with a line �blue� and line with crosses
�red�.
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mode, they like to stay in the same well. This unique type of
coherence between the two different species is one of the
most fascinating aspects of the binary mixture dynamics in
double-well potential.

VI. EXPERIMENTAL REALIZATION

The effects described in this paper should be realizable for
condensate mixtures that already exist in the laboratory. One
example in particular is a mixture of 85Rb and 87Rb atoms

that has been created in several recent experiments at JILA
�7,12�. This system is relevant to the analysis in this paper
because the scattering length, a85–85, that characterizes the
interaction between 85Rb atoms is tunable by an external
magnetic field via a Feshbach resonance centered at approxi-
mately 155 �13�. Additionally, the interspecies scattering
length, a85–87, is also tunable with two Feshbach resonances
�for a �2,−2�85 / �1,−1�87 collision� located at approximately
B=267 G and B=356 G.

In the most recent experiment �12�, a 85Rb / 87Rb BEC
mixture was produced by trapping a thermal-gas sample of
the mixture and performing evaporative cooling on the 87Rb
which sympathetically cools the 85Rb. The cold gas mixture
is then transferred to an optical trap that provides tight con-
finement transverse to the trapping beam and loose confine-
ment along the beam. If an additional pair of beams were
applied along this direction as was done in the Albiez experi-
ment �5�, it would create a setup to which the analysis in this
paper would apply.

VII. SUMMARY

Existence of a variety of BEC species with tunable inter-
and intraspecies scattering lengths makes BEC mixtures one
of the most attractive candidates for exploring novel phe-
nomena involving quantum coherence and nonlinearity. Our
analysis, based on the two-mode GP equation for the two
interacting species of BEC in a double-well trap unveils a
variety of phenomena describing broken symmetry as well as
subsequent restoration of symmetry, as we change the pa-
rameters or the initial conditions. Such coherence is found to
exist over a broad range of parameters, establishing the ro-
bustness of the effects.

To make direct comparison with experiments, we need to
solve the coupled GP equations to obtain various parameters
of the effective coupled pendulum system in terms of the
microscopic parameters of the system and work in this direc-
tion is in progress. Furthermore, by quantizing the Hamil-
tonian �coupled pendulum or the spin Hamiltonian�, we hope
to study quantum dynamics of number fluctuations that may
code the emergence of new quantum phases in the system.
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APPENDIX: TWO-MODE EQUATION PARAMETERS

We follow the improved two-mode approximation �9�
where the localized spatial modes �1�2�

x in each well of the
double well are constructed by using 
 combinations of the
symmetric ��+� and the antisymmetric ��−� functions, �1,2

x

=
�+

x
�−
x

	2
. Here �


x �x�= 
�

x �−x� are the solutions of the time-

independent coupled GPE equations

� j
�a�� j

�a��x� = −
�2

2ma

�2� j
�a�

�x2 + Va�x�� j
�a� + gaNa�� j

�a��2� j
�a�

+ gabNb�� j
�b��2� j

�a�, �A1�

FIG. 7. �Color online� Transition to MQST in � modes. 	
=0.6 �top� and 	=0.8 �bottom� describe, respectively, the small
amplitude �-mode oscillations and MQST in � mode. The two
species are, respectively, shown with a line �blue� and a line with
crosses �red�.

FIG. 8. �Color online� Transition from broken symmetry
�MQST in � modes� to symmetric configurations, obtained by
changing the initial population imbalance, with fixed 	=0.7. The
three plots correspond to three different initial conditions �Z�0��
which can be read from the plot at t=0.
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� j
�b�� j

�b��x� = −
�2

2mb

�2� j
�b�

�x2 + Vb�x�� j
�b� + gbNb�� j

�b��2� j
�b�

+ gbaNa�� j
�a��2� j

�b�, �A2�

where j=
 and labels the ground and the first-excited state
of the system.

Thus �1
x��2

x� is localized in the left �right� well of the
double-well potential. We define ḡx=gxN /��x=a ,b ,ab� and
follow the methodology described in the earlier studies for
the single-component problem �9� obtaining the following
parameters that determine the tunneling dynamics for the
binary mixture:

	a�b� = ḡa�b�� „2��+
a�b��−

a�b��2 − 1/8����−
a�b��2 − ��+

a�b��2�2�…dr ,

	ab = 2ḡab� ��+
a�−

a�+
b�−

b�dr ,

�a�b�

 = ḡa�b�� ���


a�b��4�dr ,

�̄a�b� = ḡa�b�� ���+
a�b��2��−

a�b��2�dr ,

��a�b� = �a�b�
− − �a�b�

+ ,

��ab = ḡab� ���−
a�−

b�2 − ��+
a�+

b�2�dr ,

��̄ab = ḡab� ���−
a�+

b�2 − ��+
a�−

b�2�dr ,

Ka = ��Ea − fa��a − fbDab�/� ,

Kb = ��Eb − fb��b − faDab�/� ,

Ca = ��+
a + �−

a − 2�̄a�/2� ,

Cb = ��+
b + �−

b − 2�̄b�/2� ,

Dab = ���ab − ��̄ab�/2� .

Here �Ex=�x
+−�x

− represents the difference in the chemical
potential between the �symmetric� ground and the �antisym-
metric� first-excited state of the coupled time-independent
GPE equations. It should be noted that within the two-mode
ansatz, the tunneling Eqs. �5�–�8� with dressed parameters as
given above are exact.

The above equations signify the importance of spatial
modes in determining the temporal dynamics of the two spe-
cies in the double-well potential. The 	x describes the renor-
malization of the bare coupling parameters gx due to averag-
ing over the spatial degrees of freedom. As expected, the
renormalized couplings 	a�b� depend upon the corresponding
spatial mode �a�b� while the coupling 	ab is determined by
the overlap integral between the two species. The tunneling
parameters Kx that depend only on �E for noninteracting
systems are appropriately affected by the interaction between
the species.
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