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Building Quantum Computers

Plenary talk presented at the 2007 IEEE International Symposium on Information Theory,

Toronto Canada

In theory, quantum computers can be used to efficiently factor
numbers, quadratically speed up many search and optimization
problems, and enable currently impossible physics simulations.
At first, quantum states appeared to be too fragile for implement-
ing large quantum computers. Fortunately, because of theoretical
advances in quantum error correction and fault tolerance, there
are now no fundamental obstacles to realizing quantum comput-
ers. However, building quantum computers is difficult. Current
experiments can barely achieve adequate control of two quantum
bits. Nevertheless, the gap between theoretical and practical
quantum computing is closing. In what follows, | give a brief
explanation of what quantum computers are, explain why we
believe that in principle, arbitrarily large quantum computations
can be accurately implemented, and survey the experimental
state of the art and main implementation challenges.

A simple way to think of a quantum computer is as a traditional,
classical computer with access to a quantum state machine. Thus
quantum computing is an extension of classical computing with
all the classical programming constructs available for problem
solving and control of the quantum state machine. The quantum
state machine is specified by its state space, initial state, transition
operators and readout operators. It can be thought of as the result
of applying the superposition principle to the 2" configurations (bit
strings) of n bit systems together with the ability to exploit inter-
ference, where n may vary during a computation. In particular,
the state space consists of the unit vectors in a 2"-dimensional
Hilbert space with a distinguished orthonormal basis, whose ele-
ments are denoted by |b) with b bit strings of length n. The unit
vectors can therefore be written as superpositions |y) = > ap|b),
where the complex numbers «y are called the amplitudes of the
superposition and >y, lap|? = 1. For n = 1, the state space is that
of a quantum bit (qubit for short). Just as bit strings of length n are
the configurations of n bit systems, the superposition states |y/)
are considered to be states of n qubits. This is done by identifying
the 2"-dimensional Hilbert space with the tensor product of the n
2-dimensional Hilbert spaces associated with the qubits. The dis-
tinguished basis is obtained from the tensor products of the dis-
tinguished basis elements of the component qubits. Note that it is
necessary to clearly distinguish between systems (such as qubits)
and their states. This also makes it easier to understand the rela-
tionship between the formal definition of our state machines and
their physical realizations.

The initial state of a quantum state machine has no qubits. To add
qubits, we can make use of a transition operator that maps the
state of n qubits )", aplb) to the state of n+ 1 qubits ) ap|b0),
where b0 is the length n + 1 bit string obtained by appending 0.
The representation of the states of a quantum state machine as the
states of n qubits is important for defining unitary transition oper-
ators that may be applied to the states. One such operator is the
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acting on one qubit. H can be applied to the k’th of n qubits by
tensoring with identity operators acting on the other n—1
qubits. Another is the Toffoli gate, which acts on three qubits by
linear extension of the map on three bits that flips the third bit if
the first two are 1. To define the linear extension, bit strings are
identified with the corresponding distinguished basis elements.
The Toffoli gate can be applied to three of n qubits by tensoring
with identity operators acting on the remaining qubits. The
Hadamard and Toffoli gates are sufficient for quantum comput-
ing. Nevertheless it is convenient to be able to apply any one-
qubit unitary and the controlled-not gates. The controlled-not
gate is the linear extension of the map that flips the second bit if
the first one is 1. The Toffoli gate can be decomposed into a prod-
uct of one-qubit unitary and controlled-not gates.

Information about the state of a quantum state machine is
obtained by measurement. Suppose that the state of the machine
is > aplb). Afull, destructive measurement returns the bit string
b with probability |op|2 and resets the machine to its initial state.
It is convenient, but not necessary, to be able to make nondestruc-
tive measurements of any one of the qubits. To learn how such
measurements act, and for an introduction to quantum comput-
ing, see, for example, Nielsen and Chuang’s textbook [10].

A phenomenon that is often mentioned as a source of the power
of quantum computing is quantum parallelism, which involves
the application of a classical reversible algorithm implemented by
Toffoli gates “simultaneously” to all bit patterns in a superposi-
tion with exponentially many non-zero amplitudes. This is sim-
ply the generalization of the linear extension principle by which
we defined the Toffoli gate. Transition operators such as the
Hadamard gate must be used to prepare the state. Because the
measurement cannot access amplitudes except by an exponential-
ly complex analysis of the statistics of measurement outcomes,
any use of such quantum parallelism must be followed by large
scale interference of the state’s amplitudes to extract the desired
information. Interference refers to the effect by which one can
reversibly increase amplitudes in some states in a way that is sen-
sitive to relative phases. For example, the Hadamard gate applied
to |0) yields the state %IO) + %Il), which when measured
returns 0 or 1 with equal probability. Applying it again restores
both the state |0) and determinism of the measurement outcome.
If a process that changes the sign of the amplitude of |1) is applied
before the second Hadamard gate, the final state is |1), demon-
strating the sensitivity of the interference effect in the second
Hadamard gate to the relative phases of the amplitudes. It is
worth contrasting these effects to what is possible with proba-
bilistic computing, where instead of superpositions involving
amplitudes, we have mixtures involving probabilities of states.
Gates correspond to Markov processes, which are reversible only
if they are deterministic.

Building quantum computers requires physical systems with
quantum state spaces that are capable of realizing qubit states and
are sufficiently controllable. DiVincenzo [6] gives five require-
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ments for the physical realization of quantum computers that cor-
respond to the earlier specifications of a quantum state machine.
The first is the availability of arbitrarily many independent quan-
tum-information-carrying systems. The second requires that the
quantum systems’ state can be consistently intialized. Skipping
the third requirement for now, the fourth asks for the ability to
apply quantum operations sufficient for implementing arbitrary
gquantum computations efficiently. The fifth involves the ability to
measure the systems so as to enable the required readout. These
four requirements have been demonstrated individually in a
number of physical systems.

The third and so far the most difficult requirement to demonstrate
experimentally is that the states and operations are subject to suffi-
ciently low noise. The continuous nature of the amplitudes and the
sensitivity of interference effects to seemingly small changes in
phases imply that quantum states and gates must be protected not
only from bit flip errors, but from a continuous family of unwanted
effects including changes in the phases of amplitudes. These
unwanted effects are referred to as decoherence. Decoherence is asso-
ciated with incomplete isolation from the environment and imper-
fect calibration of control fields required to implement gates. The
microscopic nature of most suitable quantum systems and the need
for strong interactions with the control and measurement apparatus
makes it particularly difficult to reduce the effects of decoherence.

Like quantum gates, general quantum errors exhibit interference
effects that preclude purely probabilistic models. Nevertheless,
we commonly refer to gates having independent probabilities of
error. This is justified if unwanted effects act independently in
time and space and are unbiased. Although this is not generally
the case, actions can be taken to increase independence and
decrease bias. Alternatively, it is understood that the probability
refers to the square of an amplitude in the operators expressing
the effect of an error. Originally it was believed that in order to
realize a quantum computation of size N, the probability of error
per gate must be sufficiently smaller than 1/N2, where the square
accounts for the possibility that errors add in amplitude rather
than probability. However, as for classical computing with errors,
it has been proven that under reasonable assumptions on the
errors, if the probability of error per gate is smaller than some
constant, then it is possible to efficiently quantum compute arbi-
trarily accurately. This result is known as the threshold theorem.
See Sect. 10.6 of [10] for an overview of quantum fault tolerance
and versions of this theorem. Since there are many ways to para-
meterize quantum error models and many physical constraints
(such as spatial layout) to consider, the error threshold claimed by
the theorem is best understood as defining a region of the relevant
space of parameters and constraints where scalable quantum com-
puting is possible in principle. Note that if the parameters are
near the boundary of this region, the overhead required for
implementing computations fault tolerantly becomes impractical.

Fault tolerant quantum computing involves using quantum error-
detecting and -correcting codes to protect quantum information.
To maintain and compute with the protected quantum informa-
tion, we use carefully designed sequences of gates that ensure that
any errors in the gates themselves do not disturb the protected
information. All schemes for protecting quantum or classical
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information can be understood in terms of subsystems. Consider
the trivial problem of protecting one qubit when we are given
three physical qubits, where only the first two are subject to
errors. The solution is to have the third qubit carry the protected
information. The third qubit is a subsystem of the three-qubit
physical system. Protected states are associated not with single
states but with subspaces of states of the physical system, and the
errors preserve these subspaces. Formally, a quantum subsystem
of a physical system whose state space consists of unit states in
the Hilbert space H is a tensor factor of a subspace of . The other
factor is called the cosubsystem. Equivalently, finite quantum sub-
systems are characterized by subalgebras of the algebra of
bounded operators on H, where the subalgebras are ismorphic to
matrix algebras. From a physical point of view, such subalgebras
of operators consist of the (complex) observables of the subsystem
and characterize the measurements that one can make of the
states of the subsystem. The general scheme for protecting infor-
mation is to determine a subsystem of the physical system that
has the property that, provided the cosubsystem’s state is suitably
prepared, errors perturb only the cosubsystem’s state with high
probability. If the cosubsystem’s state does not matter, then no
action needs to be taken to maintain protection. Otherwise, it is
necessary to periodically restore the cosubsystem to a state that
ensures future protection. In the traditional view, this action is
accomplished by error correction and re-encoding. From the sub-
system view, the protected information never requires “correc-
tion”; it is sufficient to reset the cosubsystem after errors occurred.
One can think of errors as increasing the entropy of the cosubsys-
tems, and the protection procedure as a way of removing the
entropy. Therefore, physical quantum computers generally
require an entropy sink to protect information from errors.

The analysis of fault-tolerant quantum computing leads to strate-
gies for eventually building large-scale quantum computers.
Most suitable physical systems consist of localized quantum sub-
systems with at least two distinguishable states that can repre-
sent qubit states. These physically explicit qubits are normally
subject to a significant amount of decoherence. The first task is to
ensure sufficient control of the physical systems, including the
ability to couple them, and to use whatever experimental tech-
niques are available to reduce the effects of decoherence to the
point where general-purpose error-correction techniques can be
applied according to the threshold theorem. Eventually, fault-tol-
erant techniques are used to protect logical qubit subsystems that
are nontrivially supported by many physical systems.
Depending on the errors, it may be necessary to recursively con-
struct qubit subsystems of lower-level logical qubits, a strategy
known as concatenation. It helps to recognize that there are a
number of common information processing tasks that are much
easier to perform fault tolerantly than implementing unitary
gates on logical qubits. These tasks include state preparation,
measurement and quantum communication. In fact, the con-
straints on errors in physical operations used for these tasks are
significantly weaker than on errors in unitary control. Thus, pro-
vided there is some means of establishing quantum communica-
tion channels between physical systems used to support logical
qubits, one can initially focus on building very accurate quantum
registers with only a small number (three or four) of qubits. One
can rely on communication for computations requiring more
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qubits. Unlike classical communication, quantum communica-
tion and remote computation can be performed by what is
known as quantum teleportation, which has the advantage of hav-
ing no quantum latency. This implies that the speed of remote
computation is not limited by slow quantum processes, only by
the classical communication required for control. Although
focusing on small but accurate quantum registers makes sense
now, the ultimate goal is to ensure that good quantum gates are
not much slower than classical circuit elements. This will require
a tight integration of quantum and classical processing and fault
tolerance.

Targeted experimental efforts to build quantum computers
started with Shor’s discovery of the quantum algorithm to fac-
tor large integers around 1994. Since then there have been
many proposals to build quantum computers using a variety of
physical systems. For a survey, see [1]. The clear current front
runner for building small to medium size quantum computers
is based on atomic qubits in ion traps. There are currently three
other approaches that can claim to have demonstrated coher-
ent two-qubit control: Liquid state nuclear magnetic resonance
(NMR) quantum computing, postselected photonic qubits, and
superconducting qubits. Of these approaches, the first two
have little hope of constructing quantum registers with more
than about ten qubits, because of inherent exponential ineffi-
ciencies that require a significant change or addition to the
underlying technology.

To be able to usefully solve problems currently infeasible on clas-
sical computers with known quantum algorithms requires thou-
sands of qubits and billions of gates. Although up to eight qubits
have been nontrivially manipulated with atomic qubits in ion
traps, at this point no one has clearly demonstrated a computa-
tionally useful two-qubit register. It is expected that this will be
achieved shortly in ion traps.

In ion-trap quantum computing, the physical qubits are repre-
sented by two energy levels of ions that are electromagnetically
trapped. The ions can be manipulated by means of laser pulses.
The combination of the trapping potential and Coulomb repul-
sion leads to common vibrational modes that can be exploited
for applying nontrivial two-qubit gates. This approach to quan-
tum computing can be scaled by having multiple traps with the
ability to move ions between them as proposed by Wineland and
coauthors [12]. All but the requirement for sufficiently low noise
have been individually demonstrated. There are three main
challenges for experimental ion-trap quantum computing. The
first is to realize gates with sufficiently low error probabilities.
Error probabilities of about 0.5% have been demonstrated for
two-qubit gates [2]. The current guidelines for demonstration of
the low-noise requirement are to have less than 0.01% probabil-
ity of error per unitary gate. State preparation and measurement
can have probabilities of error of 1%, which has been demon-
strated in ion traps. The second challenge is to show that all the
requirements can be met in one device. This is a problem of tech-
nology integration and is typically much harder than demon-
strating each requirement independently. The third challenge is
to have an efficient way of quantum communicating between
ion-trap quantum registers, preferably by optical interconnects.
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The first steps in this direction have been taken by Moehring
and coauthors [8].

Superconducting qubits are based on the collective dissipa-
tion-less behavior of electrons in superconducting circuits.
There are a number of different ways to design such circuits
to exhibit the desired two-level subsystems needed to repre-
sent qubits. For reviews of the relevant physics, see [4], [5]. It
was not clear whether the collective effects were experimen-
tally accessible until some coherent control and measure-
ment of qubits in superconducting circuits was demonstrat-
ed by Nakamura and coworkers [9]. Unexpectedly, experien-
tal quantum computing with superconducting qubits is pro-
gressing rapidly and has overtaken other seemingly more
promising approaches. A possible advantage of supercon-
ducting qubits is that it is possible to have gates that are
much faster than is practical with atomic qubits. Because
noise also acts on shorter time scales, this is also a challenge,
requiring high-quality control involving very fast electron-
ics. At this time, slow gates are an advantage as the electron-
ics required for control is off-the-shelf. The path toward large
scale quantum computing with superconducting qubits is
not yet as well defined as for atomic qubits in ion traps, so
the requirements have not been demonstrated as clearly.
Because current realizations of superconducting qubits
require temperatures well below 1 K, the challenge of inte-
grating technology seems more severe at the moment.
Communication with devices in separate refrigeration units
is also difficult and no means for doing so has been demon-
strated so far.

There are many other approaches to building quantum com-
puters that are being investigated experimentally. Promising
ones include atomic qubits of trapped atoms in optical lattices
[3] and various quantum-dot-based schemes [7], both of which
have two-qubit gate demonstrations in progress. There are also
esoteric approaches, such as topological quantum computing
based on anyonic excitations, which is claimed to be intrinsical-
ly robust against noise. Whether and where these excitations
can be found in experimentally accessible condensed matter
phases is a subject of theoretical controversy and experimental
investigation [11].

Since the challenge of building quantum computers has no ana-
logue in the history of computing, this is a great time to be doing
research in quantum technologies. There are many theoretical and
experimental problems to be solved and challenges to be met, and
although difficult, they are likely surmountable. The associated
improvements in quantum control have wide applicability
beyond quantum computing proper. Assuming no fundamental
physics surprises, which would of course be welcome, | expect
the use of quantum mechanics in practical technology and com-
putation to become pervasive.
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