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Abstract

Propagation of an outdoor fire front in wildland or in a combination of wildland and structural fuels
(the so-called wildland-urban interface or WUI fire), can be modelled as an initial-value problem using
either a Lagrangian or an Eulerian description. The equations associated with each description are pre-
sented, and the methods used to solve the equations are discussed. Some comparisons between the two
methods are also made. The emphasis in this report is on the Eulerian equations and on the level-set
numerical method. Earlier studies had presented the Lagrangian formulation, and a method-of-lines so-
lution. Advantages of the Eulerian/level-set method are discussed, and several examples that illustrate
these advantages are presented.

1 Introduction

In earlier papers, [1]-[4], mathematical models for the propagation of wind-driven fire fronts in a combi-
nation of wildland and structural fuels, i.e., models for Wildland-Urban Interface (WUI) fires, have been
presented and discussed. The fire front in the wildland fuel is often treated as a front of zero thickness
and is tracked in a Lagrangian description. The initial front is spatially discretized into a set of nodes
whose time evolution are determined as the solution of a set of ordinary differential equations (ODES)
by the method-of-lines (MOL). Results for the behavior of the front were reported for wind-blown fires
in the presence of single or multiple burning structures on level or uneven terrain, Rehm [2] and Rehm
and Mell [4].

The model presented in these papers, [1]-[4], is unique in that it attempts to describe the behavior
of wind-blown WUI fires, not just wildland fires. Although Lagrangian models for front propagation in
wildland fuels, i.e., wildfires, have been around for a few decades, no one has attempted to extend the
methodology to WUI fires. In Section 2 of this report, for comparison, we summarize the Lagrangian
formulation and its solution for wind-blown fire-front propagation presented in references [1]-[4]. Then,
in Section 3, we present an Eulerian formulation of fire-front propagation and, in Section 4, a solution to
these equations by the numerical technique known as the level-set method.

2 Lagrangian Equations

For simplicity in this section, we consider only fire-front propagation in the presence of burning struc-
tures over level ground (no topography). We follow the formulation presented in the Appendix of Rehm
[2]. The governing equations are the ordinary differential equations (ODES) describing the propagation



of an element of the fire front in the horizontal plane:
1) — = (U-f)n

The equations are given in vector foRn= xiy +yiy, whereiy, iy are unit vectors in the x and y directions.
U= UXTX+UyTy is the spread rate (or the rate of spread (ROS) vector in m/s) of the fire front at the location
(x,y), andny, ny are the components of the unit normal to the fire front directed toward the unburnt fuel.

At each point, the fire front is advanced in the direction normal to the front at a speed determined by
the local ROS for the fire. This ROS, in turn, can depend on several variables including the total wind
speed at that location. L&t = Vyiy +Vy?y be the total wind velocity at a specified height. Assume that
the linear relation for Australian grass, Cheney et al [9], given below, is valid for the normal ROS and
the local normal wind velocity:

Un = F0(1+Can)

whereU, = U - andV,, =V - Al with fo = 0.165 m/s andt; = 3.24s/m. Then

R _
2 :Tt =fo(1+csV-A)A
If the fire front curve at any specified tinhés described by the vector functidr(s,t),y(s,t)), where
sis a parameter specifying the curve, then, the unit tangent vector can be written as

-1 [0x-> oy-
3) T:m <aslx+asly>
where|0g| = /(0x/0s)2 + (dy/ds)2. The unit normal vector is

1 oy-  0X-

In component form, the equations can be written

dx
a = Unnx
dy
where
Un=Fo [ 14cr (—0y/0s)Vy + (0%/0s)Vy
\/(0%/0s)2 + (dy/0s)2

3 Eulerian Equations

At this point, we turn to the development of the equations for the front propagation in Eulerian form.
As in the book of Sethian [5], assume that the front is defined by the copfauy;t) = O of the front
function@. Let Uy, Uy be the components of the spread velocity normal to the ftbrt, Uyiy + UyTy.

If, as above, we take the paramed¢o be the distance along the surfage, y,t) = 0 from a specified
point along the front, then

0@\ dx 0p\ dy
© <6x) ds " <6y) ds 0
o) that%s‘ R —g—‘)f and%s’ 2 g—‘)‘(’. Then, the unit tangent vector can be written
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while the unit normal vector becomes

_ 1 (99  O¢-
®) n= O <0><'X+ ay'y>

where|0@| = /(0¢/0x)2 + (¢/dy)2.
Write out the complete Eulerian equations:

()] =+ Ux

where

Ux:~0(1—|—Cf\7'ﬁ)nx = f(\\7\,\7~ﬁ/|\7|)nx,
(10) Uy=Ffo(l+eiV-Mny = F(VL.V -/ ),

The spread vectoflUy,Uy), is normal to the fire front and has a magnitude equal to the "speed function”
defined by Wolff and Fendell [6], For the examples shown below, the speed function is taken to be
fo(1+c¢V - A). Generally, the speed function depends upon the wind sjpeethd the angl® between

the normal to the front and the wind velocity: Ai/|V| = cos8.

4 Level Set Numerical Method

In this section we present our method for solving the level set equation (9). The method is generally
second-order in space and time but uses flux limiting schemes to preserve monotonicity of the scalar
field.

The 2D spatial domain ikx x Ly with uniform grid spacingéx andAy in the x andy directions,
respectively. The scalag(iAx, jAy, nAt) and the speed function (i.e. rate of spreddiAx, jAy, nAt) are
node centered:= 0:Ny, j = 0:Ny, nis time step index. No flux, or zero gradient, boundary conditions
are applied along each of the boundaries. The initial conditiopfsrarbitrary, except that there must
be some initial curve or curves representing the fire front initially for wigichy,t = 0) = 0.

In general, the speed function depends on the scalar gradient at the node location. However, to
preserve monotonicity of the scalar field, the scalar gradient is obtained from a flux limiter which is
based on the speed function. We avoid this circular problem by computing the speed function using a
scalar gradient obtained from a central difference (no limiter). This speed function is then used in the
PDE and also in determining the limited scalar gradient for the PDE. The basic steps of the numerical
procedure are as follows:

Step 1: Given the scalar field at tinf& the first step in the numerical procedure is to compute the
node-centered scalar gradient by a central difference,

(11) (2;?) m“mfﬁ L
5o\" @i
(12) <5y)| j B 20y ’

whered/8x, for example, represents the numerical approximation to the partial derivative. In what
follows we will drop the time stamp until discussion of the time integration scheme.

Step 2: Use the differences obtained in Step 1 to determine the fire front unit normal vector (8) and
compute the speed function via (10).

Step 3: Given the front velocity at each node from Stdﬁ’?, determine the monotonicity preserving
scalar gradient for the PDE. The limiter scheme choices in our level set code (in order of increasing
accuracy) are: (1) first-order upwinding, (2) minmod, and (3) Superbee [10]. As an example of how the
flux limiter is implemented, consider the computation of the limited scalar gradient ix divection.
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We imagine a cell of width\x centered at the node location. The gradient is determined from a central
difference of the scalar face values for the cell,

0P Qeast— Qwest
(13) X N

The scalar face values are determined from the flux limiter scheme. In this example, let us compute the
value for the east face { %) and assume that, > 0. In the limiter scheme, the first step is to compute
the local and upwindiata variations

(14) Doc = @11j—@j,
(15) Dip = @j—@-1j.
These values are used to form the lodata ratio,

Aup

16 r=—.
( ) AIoc

In practice, we sat = 0 if Ao = 0. The face value is now simply determined from

1
(17) Peast= @, +5B(@+1) —B.j),

whereB is the flux limiter function evaluated from one of the following, Toro [10]:

Br)y = 0 first-order upwinding,
(18) B(r) = max0,min(1,r)) minmod,
B(r) = max0,min(2r,1),min(r,2)) Superbee.

Note that wherB = 1, the scheme recovers second-order central differencing.

Step 4: Time integration. We have now discussed all the details associated with computing the right
hand side (RHS) of the scalar partial differential equation (PDE). To advance the field in time, we use
a second-order Runge-Kutta scheme, Gottlieb [11]. This scheme is simply a linear combination of two
Forward Euler steps. Lé&t(¢g) = U - Op denote the advective terms of the PDE obtained via Steps 2 and
3 above;d denotes the limited discrete gradient operator. The time integration proceeds as follows:

@ = (PPJ A”:'l
(19) ap = Q‘WiﬂLg(‘ﬂfj—A“:ui((P*))-

The fire front is obtained from the zero level crossing of the scalar field. In Matlab this level set is
easily visualized using theontourutility.

5 Initial Results using the Level-Set Method

The speed functiorf(V, 8) and the assumption that the front moves normal to itself into the unburned
fuel determine how the fire front will propagate, Sethian [5], Fendell and Wolff [6], and Rehm and Mell

[4]. A general form for the speed function has been suggested by Fendell and Wolff [6]. It appears that
the speed function can be specified by three measurements: (1) the head-fire speed (measured in the
direction of the wind), (2) the flank speed (measured in the cross-wind direction), and (3) the tail speed
(measured opposite to the wind speed). However, neither the form nor the parameters used in this form
are established generally for wildland fires, in large part because the field measurements are difficult to
make. Earlier studies, Rehm [2] and Rehm and Mell [4], used a speed function appropriate for Australian
grass fireso”(1+cf\7 -1), since both the form and the parameters were found by Cheney et al. [9] to
match reasonably well field measurements. Some results reported here use this speed function for the
simulations, while others use a simplified version of the more general speed function of Fendell and
colleagues [6],[7].



The two speed functions used in the simulations below are:
(20) f(v,8) =fo(1+csV -A),

and the simplified speed function of Mallet et al [7], expressed in our notation as:

—

(V7 9) =
(Va e) =

(14c¢¢vVcod'8) 18] < 1/2,
(a+(1—a)sing) T/2<|8|<T

—hy

fo
(21) fo
Here,nanda are parameters, taken to be- 1.5 anda = 0.5 for the simulations shown in Figures 1 and
2. The remaining simulations, shown in Figures 3, 4 and 5, used the speed function given in Eq. (20).

We now discuss some simulations that were carried out to compare the Lagrangian and Eulerian
methodologies. The initial comparison was for the trivial case of a straight-line front in a wind blowing
perpendicular to the front with periodic boundary conditions in the cross-wind direction. The spread
function was for Australian grass, Eq.(20), with a wind speed of 3 m/s. For the Lagrangian formulation
with the MOL solution procedure, the propagation speed was found to agree with the value calculated
from Eg. (20) to within one tenth of one percent, whereas the Eulerian/level-set method was found to
agree with the value calculated by Eq. (18) to approximately 3.5 per bigat (, = 30) and 3 percent
(N = Ny = 40).

Figures 1 and 2 below show comparisons between the two methods for the simulation of fire front
propagation for a nontrivial case, an initially circular fire front blown by a uniform wind of 3 m/s in the y-
direction. The initial front is taken to have a radius of 10 m, centerad=ad, y = 50. The speed function
given in (21) withrp = 0.165m/s,cs = 3.24s/m,n=1.5,a = 0.5, is used. In Figure 1, the front is shown
at five equal time intervals 6s apart. The Eulerian formulation, using the level set solution method, is
shown on the left; at each time, the zero contour is obtained by interpolation from the Eulerian solution.
For comparison, the Lagrangian formulation using the method of lines solution of the same problem is
shown on the right. For this method, successive Lagrangian nodes have simply been joined by straight
lines; therefore, the fire front in the windward direction gradually loses its smooth appearance as time
increases. (A second or higher order interpolation of the front between Lagrangian nodes would provide
a smoother contour with better visual agreement.)

Each simulation requires the selection of several parameters to carry out the simulation. For example,
the Eulerian formulation requires the simulation domain to be discretized in both the x- and the y-
directions, and boundary conditions along each of the edges of this domain must be specified. For the
case shown in Figures 1 and 2, a domain 100 m on a ige (y = 100 m with 0<y < Ly, —Lyx/2 <
x < Ly/2) was considered, with the discretization being 30 nofigs=( N, = 30) in each direction.
Alternately, the Lagrangian formulation requires that the initial fire front be discretized periodically along
its circumference. For the case shown in Figures 1 and 2, 120 nodes were used along the circumference.

Variation of any of the parameters noted above can cause significant differences in the simulations,
making detailed comparisons between simulation results, as well as simulation efficiencies, difficult. All
simulations were carried out using Mathematica [8]. The simulations for a given resolution using the
level set method generally required more cpu time than did the MOL solutions with comparable resolu-
tion. However, the parameters for each type of simulation were not varied systematically to determine
cpu time dependencies. Also, we did not attempt to determine the expected cpu time differences between
the two methodologies.

In Figure 2, the fire fronts from each simulation are compared directly. In the first frame of Figure 2,
the initial fire fronts are shown together, while the second compares the fronts after 6 s, the third frame
after 12 s, etc. (Note that the fire fronts contours obtained from each simulation have not been smoothed.)
As a reference, during the 30 s of simulation time, the head velocity is expected to be 1.09 m/s, for a wind
speed of 3 m/s. After 30 s, the head of the fire should be=ab,y = 92.7 m. The level-set simulation
determines the head location to beyat 93.9 m while the Lagrangian, MOL simulation, determines
the head location to be gt= 92.0 m. Both simulations seem to do a reasonable job quantitatively of
determining the fire head location.

In the next two figures, capabilities touted by the advocates of the level-set methodology are illus-
trated. The merger of two fire fronts is illustrated in Figure 3, and in Figure 4, fronts are shown spreading
to form an island or pocket of unburned fuel, that is subsequently consumed. Figure 3 shows four frames
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from a level-set simulation of the merger of two fire fronts, one a straight-line front progressing in the
positive y-direction, and the other generated by a growing spot fire ahead of the straight-line front. Figure
4 shows four frames from a level-set simulation of the merger of three fire fronts, producing an island or
a pocket of unburned fuel, which is subsequently consumed.

The ability to qualitatively describe each of these situations arises naturally from the LSM and is
generally regarded as great advantage of the method. Although the behavior of the resulting fronts seems
physically realistic, there is no assurance that this appealing qualitative behavior is in fact quantitatively
correct. Furthermore, there is little prospect for quantitative evaluation of the behavior.

On the other hand, in the Lagrangian formulation, an algorithm that specifies either a front merger
or the development of a fuel pocket behind a front under a variety of conditions is a daunting concep-
tual and programming task. To our knowledge, no physical description of a fire-front merger exists, nor
do measurements of the phenomenon, for example. Furthermore, even if there were a valid theoreti-
cal description of the phenomena, programming the behavior of complex mergings of fronts would be
tedious.

Finally, in Figure 5, a line fire front is generated from the merger of three initial circular fires that
have been allowed to propagate under the influence of a 3 m/s ambient wind in the y-direction. Each
initially circular front grows preferentially in the y-direction (head direction), but also grows in the x- or
flank direction until the three separate fronts merge into a single, scalloped front. As noted before, the
difference between the head and flank ROS is dependent upon the speed function used in the simulation.

6 Discussion*

Equation (9) determines the advance with time of the funapieay,t), whose level sep= 0, represents
the fire front. Note that the only quantity that has physical meaning is the location of thegnyyg) =
0. This fact underlies both the attractiveness of the level set approach and the issues discussed below.

In order to solve this equation on a finite domain, boundary conditions must be specified. Moreover,
the solution obtainethustdepend at least to some degree on the boundary conditions chosen. However,
since the functiomp has no meaning away from the front, the boundary conditions chosen cannot be jus-
tified by appeal to physical principles related to fire dynamics. In sufficiently simple situations, solutions
obtained using this technique can be compared with those obtained by directly tracking the location of
the front (the "Lagrangian” technique) as discussed above. Agreement between the two approaches is
then offered as evidence of the correctness of the level set technique, as done in the previous section of
this report. However, there is no guarantee that boundary conditions that work for a single isolated fire
front are necessarily correct in more complex situations.

Another uncertainty arises when the solution obtained describes the merging and creation of "islands”
of unburned fuel, as shown in the examples above. The fact that solutions of this type can be readily
obtained using level set techniques is often cited as an indication of the superiority of the method. This
may be true, but it rests on the assumption that the merging process, where the direction normal to
the front is essentially undefined, is correctly described. Since front tracking models are by definition
undefined in such regions, this conclusion can only be justified if an analysis based on a more complete,
physically based model can be analyzed in some asymptotic limit to produce a similar result. This does
not seem to have been done for fire fronts. Such an analysis would doubtless be difficult to perform,
since it is far from clear what more detailed model should be employed as the starting point for any such
study.

At this point in time, a reasonable assessment would be that front tracking and level set approaches
result in two different models. For sufficiently simple scenarios, they are equivalent. However, the level
set approach clearly offers much greater generality than front tracking. In the absence of definitive an-
alytical or experimental data, this would clearly be the preferred approach, once the role of boundary
conditions has been properly addressed. It may well be that by choosing a sufficiently large computa-
tional domain, the issue of boundary conditions can be finessed. If so, then the level set model can stand
on its own as a simplified physics based approach for fire spread over larger domains.

* This discussion of the level set approach was prepared by Dr. Howard R. Baum.
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Figure 1. LEFT: The progression of a wind-blown fire front from an initially circular fire is shown.
The model is formulated as a two-dimensional Eulerian partial differential equation (PDE) and solved
with a level-set methodology. For initial conditions, the front is taken to be circular with a radius of 10
m, centered atx = 0,y = 50. The scenario shows what might be expected during the growth of a spot
fire when a steady wind is blowing in the positive y-direction.RIGHT: The same scenario as shown
on the left, except that these results were obtained using the Lagrangian formulation for the front
progression and solving the resulting ordinary differential equations (ODESs) by the method of lines
(MOL).
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Figure 2. Comparison of the solutions obtained by the two methods, initially and every six seconds.
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Figure 3. Four frames from a level-set simulation of the merger of two fire fronts, one a straight-line
front progressing normal to itself in the positive y-direction, and the other generated from a spot fire
ahead of the line fire. The order of the frames is upper left first, upper right second, lower left third
and lower right last.
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Figure 4. Four frames from a level-set simulation of the merger of three fire fronts, producing an
island or a pocket of unburned fuel, which is subsequently consumed.
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Figure 5. A wind-driven fire front shown at four times during the level-set simulation. The front is

initially generated by 3 circular fire fronts placed symmetrically with respect to x. The head of each
circular front propagates in the direction of the wind, while the flanks propagate laterally and merge
into a single front. For this simulation, the ambient wind is 3 m/s in the y-direction.
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