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Abstract
A stochastic three-dimensional microstructure model is introduced for
simulating spatial and temporal variations in aqueous mineral systems.
Dissolution, nucleation, precipitation and solute transport are governed by local
probabilistic rules applied on a regular computational lattice. The model is
shown to accurately simulate ion diffusion in a dilute electrolyte. The reaction
algorithms faithfully reproduce kinetics expected from standard rate equations,
and reversible reactions are shown to converge to the correct equilibrium state
determined by detailed balance of forward and reverse reaction rates, or the law
of mass action. Accounting for the exponential temperature dependence of the
reaction rate constants is shown to provide accurate predictions of the influences
of temperature on both the kinetics and equilibrium of reactions. A simulation
of the hydration of a generic metal oxide in water demonstrates the important
relationships between microstructure development and the mechanisms of
nucleation, growth and solute diffusion.

1. Introduction

This paper describes a computer model for predicting the rate and extent of chemical and
structural changes in three-dimensional (3D) aqueous mineral systems, which are relevant to a
number of natural and commercial processes. When minerals come into contact with water, a
number of chemical and physical changes can occur that are capable of changing the properties
of the system. In general terms, each mineral approaches equilibrium with the adjacent liquid
by dissolution and precipitation reactions at its surface, and solute species generated at the
surface may then be transported through the solution by diffusion or advection. At any location
where the solution becomes supersaturated with respect to formation of a solid, that solid can
potentially nucleate and grow until local equilibrium is achieved. These chemically driven
processes can all affect the composition of the solution, as well as both the amount and the
spatial distribution of solids.
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Dissolution, transport and precipitation of materials play a fundamental role in areas of
materials processing such as synthesis of colloidal particles, sol–gel thin film deposition and
hydration of cementitious materials and gypsum slurries. A wide range of other commercial
and natural processes are also governed by these same rate phenomena, including corrosion
of metals, diagenesis of porous sedimentary rocks, weathering of rocks and the formation of
mineral deposits in water pipes and tanks.

Thermodynamic computer models such as PHREEQC [1] are available for predicting
equilibrium states of complex geochemical systems, and therefore can serve as a guide for
the long-time changes in phase composition in such systems. But the instantaneous rate of a
chemical reaction is generally described by a nonlinear partial differential equation and, when
multiple reactions can occur, the kinetic equations are inextricably coupled to each other.
Furthermore, dissolution and precipitation reactions occur at surfaces that change their shape
and position as the reactions proceed. That is, microstructure development in these systems
is basically a 3D moving boundary problem. Therefore, linking the rates of coupled reactions
and transport to the corresponding changes in realistic microstructures requires a 3D numerical
model that can track not only the solution composition and solid phase volume fractions but
also the spatial distribution of the phases as a function of time. As stated earlier, this paper
presents a computer model which has been developed for just these tasks.

In developing the model, the main objectives have been (1) to base it on accepted principles
of reaction kinetics, thermodynamics and solute transport; (2) to provide a direct link between
the coupled reactions and the development of 3D microstructure and (3) to make the model
sufficiently general that it can be applied as a research tool to study a range of aqueous mineral
systems, including cement paste, gypsum/water systems, porous rocks and mineral deposits
in supersaturated water environments.

The purpose of this paper is to introduce the main features of the model and to illustrate
its utility through a series of examples. The model is described in section 2. Many of the basic
principles and underlying assumptions of the model are based on earlier work by Karapiperis
and Blankleider [2] for ideal diffusion and homogeneous reactions, and that work is reviewed
briefly. But this model also extends that earlier work in significant ways by including the
kinetics of nucleation of solids in supersaturated solutions, the ability to model heterogeneous
reactions and the effects of temperature on both kinetics and equilibrium states.

Section 3 provides examples for verifying the model. The examples are divided into three
sets: (1) diffusion of solute species, (2) homogeneous reactions between solute species in a
solvent and (3) heterogeneous dissolution/precipitation reactions at mineral–water interfaces.

2. Model description

2.1. Assumptions and principles

The numerical methods used by the model are based closely on a cellular automaton (CA)
model described first in a paper by Karapiperis and Blankleider [2] and in a later paper by
Karapiperis [3]. Hereafter, this model is referred to as the KB model. In these papers, the
authors not only provide clear details of the algorithms used, but they also demonstrate, both
mathematically and with numerous examples, the convergence of their numerical approach to
the standard rate equations for diffusion and chemical reactions. Because those papers provided
such clear detail and evidence for the validity of the numerical approach, the description here
is brief.

As with any CA algorithm, a stochastic approach is used to model transport and reactions.
The material system is discretized on a regular cubic lattice with lattice spacing λ. At each
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lattice site, a number of automata, or independent agents, may be located. This paper refers
to these agents as cells. Each cell represents a particular material (solid, liquid, solute)
with specific chemical composition and physical properties. The number of cells of a given
type present at a lattice site, called the occupation number at that site, determines the local
concentration (for solutes) or volume fraction (for solids) of the material that the cell represents.

A simulation proceeds according to local rules for diffusion and reactions that are applied
synchronously over all lattice sites at regular time intervals τ . The time interval is supposed
to encompass a two-step sequence: a transport step (with no reactions) and a reaction step
(with no transport). Each rule i is executed at each lattice site by assigning a probability,
p(i) ∈ [0, 1] that it occurs. A random number q ∈ [0, 1] is selected from a standard uniform
distribution and compared with the probability. The event i is executed at the site if and only
if q � p(i). Therefore, the assignment of probabilities for the various possible events provide
the link between the model implementation and the actual chemical and physical properties of
the system being modeled.

In the following description, lattice sites are denoted by their vector position x relative to
an arbitrarily chosen origin. Chemical species generally are indexed by a lower case Greek
letter (α, β, etc). Chemical reactions, and sometimes lattice sites, are indexed by a lower case
Latin letter (i, j , etc).

To model transport by diffusion of solute species, each cell is allowed to execute a random
walk, taking at most one step from its current location to any one of its six nearest-neighbor
sites in each time interval τ . To model diffusion in the continuum limit, where λ → 0 and
τ → 0, the probability p(x, x + δx, α) that a cell of solute species α is displaced from a lattice
site at vector position x to a nearest-neighbor site located at x + δx is given by

p(x, x + δx, α) = τDα(x, x + δx)

λ2
, (1)

where Dα(x, x + δx) is the effective diffusion coefficient governing the local rate of diffusion
of the solute from vector position x to x + δx. It can be noted here that transport by advection
can be modeled by a similar approach [2], although this paper will not consider advection.

Tabulated values are available for the diffusion coefficient at infinite dilution, D◦
α , of many

solute species in water at 298 K. The actual values Dα can differ from D◦
α and depend on factors

such as temperature, the concentrations of each solute species [4] and the tortuosity [5] of the
diffusion path between sites.

Equation (1) is general and captures the basic scaling of diffusion phenomena. The details
of the physics and chemistry of a given diffusion process are contained in the calculation of
the local diffusion coefficients. As long as care is taken to calculate a meaningful local value
for Dα , the equation may be applied to unbiased diffusion of neutral solutes, to diffusion of
ions and to diffusion in either dilute or more concentrated solutions. An example will be given
in a later section to illustrate how (1) can be applied to nonideal electrolytes.

In the reaction step, each chemical reaction is represented as∑
α

ν(r)
α sα

k→
∑

α

ν(p)
α sα, (2)

where the sum is taken over all the available chemical species, and ν(r)
α and ν

(p)
α are the molar

stoichiometric coefficients for species sα as a reactant and product, respectively. Reactions
that can proceed at appreciable rates in both the forward and reverse directions,∑

α

ν(r)
α sα

k+�
k−

∑
α

ν(p)
α sα (3)

are modeled as two one-way reactions of the form given in the previous equation.
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Designating Nα(x, t) as the number of cells, or occupation number, of species sα at location
x and time t , these occupation numbers are updated according to a sum over all R of the possible
reactions:

Nα(x, t + τ) = Nα(x, t) +
R∑

j=1

(
ν

(p)

α,j − ν
(r)
α,j

)
ηx,j , (4)

where ηx,j = 1 if the reaction j occurs at vector position x, and ηx,j = 0 if not. The probability
p(x, j) that ηx,j = 1 depends on the reaction rate constant kj and on the occupation numbers at
x. For homogeneous reactions, that is, reactions that occur in the bulk of a phase, the derivation
of p(x, j) is given in [2]; the result in modified form is

p(x, j) = kj ξ

(∑
α ν

(r)
α,j

)
−1

τ
∏
α

max


0,

ν
(r)
α,j∏

m=1

ℵα (x, t, m)


 , (5)

where ξ is a constant parameter of the model that relates the local occupation number of species
sα , Nα , to the corresponding molar concentration of sα . ℵα is a function of the occupation
number for species α given by

ℵα (x, t, m) =




(Nα(x, t) − m + 1) if sα is solute,

0 if sα is condensed phase and Nα < ν
(r)
α,j ,

1 if sα is condensed phase and Nα � ν
(r)
α,j ,

(6)

where m is the index used in equation (5).
In the continuum limit, the reaction rule described by (4) and (5) simulates reaction kinetics

governed by the standard rate equation [2]. Consider the generic homogeneous reaction given
by (2). Equations (4) and (5) can be shown to converge [2], as λ → 0 and τ → 0, to the
standard equation for the rate of production of species β given by

∂cβ

∂t
=

(
ν

(p)

β − ν
(r)
β

)
k

∏
α

C
ν(r)
α

α , (7)

where the product is taken over all the species that are defined for the system. This rate
equation holds when each reactant is dilute enough that its activity is well approximated by its
concentration. Although not considered in the KB model, the concentrations in (7) must be
replaced by activities if the reactants are more concentrated [6], so that the rate equation for
species β becomes

∂cβ

∂t
=

(
ν

(p)

β − ν
(r)
β

)
k

∏
α

a
ν(r)
α

α ,

=
(
ν

(p)

β − ν
(r)
β

)
k

∏
α

(yαcα)ν
(r)
α , (8)

where yα is the molar activity coefficient for species sα defined by

yα ≡ aα

cα

.

The activity coefficients can be associated with the rate constant, so that a form of (7) is
recovered

∂cβ

∂t
=

(
ν

(p)

β − ν
(r)
β

) (
k

∏
α

y
ν(r)
α

α

) ∏
α

c
ν(r)
α

α ,

≡
(
ν

(p)

β − ν
(r)
β

)
k

∏
α

c
ν(r)
α

α . (9)
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Here, and throughout the rest of the paper, the symbol k is used to represent the rate constant,
k, multiplied by the product of the molar activity coefficients of the reactants raised to their
respective molar stoichiometric coefficient.

Heterogeneous reactions, that is, reactions that occur at an interface between two
condensed phases, require a different expression for the reaction probability. Unlike
homogeneous reactions, the absolute rate of a heterogeneous reaction is proportional to the
area S of the reacting surface. This important class of reactions was not considered explicitly
in the KB model. Instead, such reactions were essentially modeled as homogeneous reactions
by coarse-graining the system to the point that the reactions could be considered to occur
within a uniformly saturated rock with prescribed and constant porosity, such that the solid–
liquid surface area remained fixed and proportional to the volume of the system [3]. While
this approach is helpful at large length scales, it cannot be used to model the detailed growth
of precipitates or the changing surface/volume ratio and morphology of the porosity at the
microstructural level.

To model the kinetics of heterogeneous reactions, one may extend the ideas of the KB
model for homogeneous reactions. Without loss of generality, assume that species sβ is one
of the condensed phases involved in a heterogeneous reaction. Then the generic rate law for
the production of sβ in a volume V is

∂cβ

∂t
= S

V

(
ν

(p)

β − ν
(r)
β

)
k

∏
α

a
ν(r)
α

α ,

where cβ , which has units of concentration, is the number of moles of condensed phase sβ per
unit volume, S and V are the reacting surface area and the volume associated with the lattice
site, respectively and k is the rate constant. Within a cubic volume element of dimension λ

intersecting the reacting surface, S and V scale as λ2 and λ3, respectively, and so the rate
equation for production of sβ can be rewritten as

∂cβ

∂t
= 1

λ

(
ν

(p)

β − ν
(r)
β

)
k

∏
α

c
ν(r)
α

α .

Therefore, the rate of a heterogeneous reaction takes the same form as that of a homogeneous
reaction, (9), with the exception of the spatial scaling factor 1/λ. This scaling factor therefore
can be incorporated in (5) to determine the probability of the j th heterogeneous reaction
occurring at the lattice site at vector position x:

p(x, j) = kj ξ

(∑
α ν

(r)
α,j

)
−1 τ

λ

∏
α

max


0,

ν
(r)
α,j∏

m=1

ℵα (x, t, m)


 . (10)

In the rate equation (9), the exponent corresponding to the concentration of a given reactant is
equal to the corresponding stoichiometric coefficient in the chemical reaction. This equality
is guaranteed only if the reaction is elementary, meaning that only one elementary step is
involved. For more complex, multi-step reactions, the exponents may differ significantly
from the corresponding stoichiometric coefficients, and the values of the exponents usually
can be determined only by experimental observation [6]. This should not be construed as
an inherent limitation of the formulation given in (4)–(10). If the values of the exponents in
the rate equation are known to differ from the stoichiometric coefficients, (5) or (10) can be
modified such that the maximum value of the index m is equal to that exponent instead of
ν

(r)
α,j . However, for the purposes of this paper, the equality between the exponents and their

corresponding stoichiometric coefficients is assumed to be a good approximation.
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With reaction models for both homogeneous and heterogeneous reactions in hand,
the remaining issue is the nucleation of a new solid phase when the solution becomes
supersaturated with respect to it. In the KB model, the formation and growth of solid phases
are allowed anywhere that solid already exists or where the solution is saturated with respect to
it [3]. However, such a model cannot discriminate between homogeneous and heterogeneous
nucleation phenomena, and also cannot account for the significant degrees of supersaturation
that often are observed before a thermodynamically favored solid phase actually nucleates and
grows in solution.

The calculation of the rate of nucleation per unit volume differs fundamentally from that
for the rates of other types of reactions, and the model must use a different procedure to
calculate nucleation rates. Following a review by Kaschiev and van Rosmalen [7], consider
the reaction given by∑

α

ν(r)
α sα,(aq) → M(s) (11)

in which a number of aqueous species react to form a single solid product M . If solid M is
not already available to act as a template for further growth at a proposed reaction site, then
the formation of a stable, or supercritical, nucleus is required if the reaction is to occur. The
number of supercritical nuclei formed per unit volume per unit time is [7]

I = AKe−W ∗/kBT , (12)

where A is a prefactor that represents the frequency of attempts to form a supercritical nucleus,
W ∗ is the work required to form a single supercritical nucleus, kB is the Boltzmann constant,
T is the absolute temperature and K is the saturation index defined by

K ≡
∏
α

(
aα

aα,eq

)ν(r)
α

= Keq

∏
α

a
ν(r)
α

α (13)

with aα and aα,eq being the actual and equilibrium activity, respectively, of sα . keq is the
equilibrium constant for the reaction in (11). Neither A nor W ∗ are constants but depend on
the molecular volume, surface free energy, temperature and K as described in [7].

The nucleation rate I can be transformed to the rate of change in molar density nM, in
moles per unit volume, of nucleated material M as follows:

dnM

dt
= IV ∗



, (14)

where V ∗ is the volume of a supercritical nucleus. Substituting (13) and (14) into (12) yields

dnM

dt
= A′e−W ∗/kBT

∏
α

c
ν(r)
α

α . (15)

The leading coefficient A′ is given by

A′ = AV ∗



Keq

∏
α

y
ν(r)
α

α , (16)

where again yα is the molar activity coefficient for species sα .
In terms of the model formulation, (15) is recast as a finite difference equation, with

concentrations rewritten as cell occupation numbers at lattice site located at x, to produce

�NM(x, t + τ) = ηx, (17)
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where NM is the cell occupation number of solid M , and ηx = 1 if nucleation occurs but is zero
otherwise. Equations (14)–(16) can be used to determine the probability p(x) that ηx = 1:

p(x) = knucξ
(
∑

α ν(r)
α )−1τ

∏
α

max


0,

ν(r)
α∏

m=1

(Nα(x, t) − m + 1)


 . (18)

Equation (18) has been intentionally made to resemble the corresponding (5) for other reactions
by collecting several terms into an effective nucleation rate constant, knuc:

knuc ≡ k0 e−W ∗/kBT ,

= k0 exp

[ −W ∗

T 3 (ln K)2

]
, (19)

where W ∗ = (T ln K)2W ∗/kB can be assumed constant, to a good approximation, for a given
nucleation process [7]. By comparing (18) and (19) to the general equation for homogeneous
reaction probabilities, (5), it is evident that the same general reaction algorithm can be used
for nucleation phenomena as for other types of reactions.

2.2. Implementation

As stated already, the model proceeds by repeating a cycle that consists of two steps which
are assumed to be separable: a transport step followed by a reaction step. Each two-step cycle
corresponds to a time increment of τ . The maximum time increment τmax is fixed by requiring
during each cycle that the probability of every possible event does not exceed unity. Thus for
the transport step, (1) can be used to estimate

τt,max � λ2

2d max(D)
(20)

with d being the dimensionality of the computational lattice and max(D) being the maximum
expected local diffusion coefficient for any species at any position. The diffusion coefficient
for any species should be constant only in ideal solutions in the absence of variable potential
fields. In more realistic situations, the value of the diffusion coefficient, even for a particular
species, can vary substantially from point to point within the system. In such situations, one
approach is to make a conservative estimate of the maximum possible value of the diffusion
coefficient over all species to determine a suitable value for τt,max. Alternatively, adaptive time
increments can be implemented by making a sweep through the lattice to calculate the actual
maximum value of the diffusion coefficient prior to calculating τt,max.

The same principle applies for the reaction step: one can estimate a maximum time
increment τr,max by appealing to (5), (10) and (18) and requiring that the probability of any
event cannot exceed one. Then, for the entire two-step cycle, the maximum time increment is
given by

τmax = min
(
τt,max, τr,max

)
.

As long as the time increment of any given cycle does not exceed τmax, then the simulation is
guaranteed to be numerically stable, regardless of the possibly large differences in rate constants
among the various processes that may take place. In fact, the maximum time increment can
even be increased somewhat, with acceptably small error, in the following way. Suppose
that one allows τr,max to be n times greater than the value estimated from the expressions for
reaction/nucleation probabilities. Then one can expect that the calculated probability of some
reaction j at some lattice site located at x will exceed one. When this occurs, the given reaction
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is executed m times, where m is the greatest integer less than p(x, j). A random number
q ∈ [0, 1] is selected from a standard uniform distribution, and one additional occurrence
of the reaction is executed at the lattice site if and only if q � p(x, j) − m. The error in
the predicted reaction kinetics caused by this approximation increases as the multiplication
factor n increases. However, when ξ < 1 it has been found that choosing n � 1/ξ produces
negligible errors in the kinetics.

In some scenarios, it may be desirable to simulate a system in which the liquid phase is
being mixed in some way. Although slow or incomplete mixing is difficult to simulate, the
limiting case of instantaneous, complete mixing is more straightforward. In the latter case, one
can simply distribute each solute species homogeneously throughout the liquid phase during
each transport step without regard to displacement. When this algorithm is adopted, the value
of τt,max is essentially infinite, so only the reaction step limits the maximum time step in any
given cycle.

A detailed description of the organization of data and algorithms are beyond the scope of
this paper, but a few words may be helpful to describe the general design of the model. Written
in C++ and using an object-oriented approach, the overall design is composed of a hierarchy of
classes. The basic building block of all materials is considered to be the ‘ion’ class. A generic
material is represented as a ‘material’ base class that stores data about the material, such as
its composition, molar volume, density, heat capacity and enthalpy of formation. This class
also includes basic functions to change its properties in response to changes in environmental
conditions, to calculate its local activity coefficient and other functions. All materials in the
model are actually specialized classes derived from the generic class, which enables each class
of material (solute, solid, liquid, etc) to have its own specialized functions that are appropriate
to only that kind of material. For example, the activity of a solute can be calculated with a
function that multiplies its local concentration by an appropriate activity coefficient, but the
activity of a pure liquid or solid is generally taken to be one. All materials are stored in a
material database class.

Different kinds of reactions (dissolution, precipitation or homogeneous reactions) are
represented as classes that store a list of the reactants, products, stoichiometric coefficients,
enthalpy of reaction, activation energy and reference reaction rate constant at 298 K. Again,
each different reaction class has specialized functions that are characteristic of its behavior.
As an example, only precipitation reactions include functions to check for the necessity
of nucleation and therefore decide whether (10) or (18) should be used for calculating the
probability.

Structurally, the basic building block of the computational system is the lattice site,
represented as a class. This class stores data about the cell occupation numbers of each
material, the internal porosity, temperature and the heat generated in any cycle. It also includes
functions for calculating the local concentration of solute species, the volume fraction of solids
and liquids, the transport factor for diffusion to a neighbor and for determining which reactions
are possible from the list of materials it contains. Finally, the entire computational lattice is
represented as a class that stores a list of all its sites as well as parameters such as the site
spacing λ, the elapsed time and current time increment and the total heat released or absorbed
by the system.

3. Results

In this section, eight examples are given to demonstrate various applications of the model and
to provide validation of the algorithms.
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3.1. Nonideal diffusion of NaCl in water

Detailed analysis of the diffusion model is the subject of a separate paper [8], in which the
model is applied to both ideal solutions and to dilute nonideal solutions. In that paper, transition
state theory is used to derive the form of the diffusion rate constants that should be used in
these applications. The stability of the model and its numerical convergence to the generalized
diffusion equation also are demonstrated in that paper. Therefore, this paper will briefly
examine only nonsteady-state diffusion in a simple dilute electrolyte.

Ignoring off-diagonal effects such as thermal diffusion, the diffusion of an ion α in
an electrolyte is driven by gradients in its electrochemical potential, µ̃α , and the linear
phenomenological rate law for the material flux jα is [9]

jα = −Lα∇µ̃α, (21)

where Lα is the Onsager coefficient for diffusion of α, which is related to the more familiar
diffusion coefficient Dα by

Dα =
(

∂µ̃α

∂cα

)
Lα.

In [8], the author has shown a derivation of the following expression for the rate constant
of diffusion from a site x to an adjacent site x + δx, kD,α(x, x + δx), of a species sα in a nonideal
solution when a potential field may bias the diffusion trajectory:

kD,α(x, x + δx) = D◦
α

λ2
exp

(
−cα(x + δx) − cα(x)

2

d ln yα

dcα

− ψα(x + δx) − ψα(x)

2RT

)
, (22)

where D◦
α is the diffusion coefficient at infinite dilution, values of which are tabulated for many

ions [10], yα is the molar activity coefficient and ψα is the potential per mole of component
sα , given by

ψα ≡ −qαψ (23)

with qα being the electric charge (C mol−1) of species sα and ψ being the electrostatic potential,
in J C−1.

The molar activity coefficients for both Na+ and Cl− were estimated using a modified
Davies equation, which has been shown to be reasonably accurate up to ionic strengths
of about 0.1 mol L−1 [11]. The diffusion coefficients at infinite dilution at 298 K are
D◦

Na+ = 1334 µm2 s−1 and D◦
Cl− = 2033 µm2 s−1, respectively [10]. Therefore, (22) can

be used to calculate the specific rate constants at 298 K:

kx,x+δx,Na+ = 1334

λ2

√
yNa+(x)

yNa+(x + δx)
exp

[−F (φ(x + δx) − φ(x))

2RT

]
, (24)

kx,x+δx,Cl− = 2033

λ2

√
yCl−(x)

yCl−(x + δx)
exp

[−F (φ(x + δx) − φ(x))

2RT

]
, (25)

where F is Faraday’s constant.
The electrostatic potential at each lattice site is estimated using a screened sum of charges

over a neighborhood of the M2λ lattice sites separated from the given site by a distance of 2λ

or less:

φ(x) = κ

4πεw

M2λ∑
j

ξλ3

r(x, j)

∑
k

Nkqk, (26)
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Figure 1. Diffusion of NaCl. The open symbols indicate the concentration profiles of Cl− and
the closed symbols indicate the concentration profiles of Na+. The upper and lower dashed curves
surrounding each profile correspond to the ideal concentration profiles of Cl− and Na+, respectively,
based on their self-diffusion coefficients at infinite dilution.

where κ is a dimensionless factor used to simulate the Coulombic screening of charge by water,
set at 6 × 10−8 in this simulation, εw is the dielectric permittivity of water, and r(x, j) is the
distance between lattice site at x and its j th neighbor, in units of λ. The conversion factor ξ

again is set to 2 × 10−5 mol L−1.
To test this approach, a small orthorhombic diffusion cell was modeled, having dimensions

X = 100 µm and Y = Z = 10 µm and a lattice spacing λ = 2 µm. At time t = 0, the cell
is filled with pure water, with the following boundary conditions: cNa = cCl = 150 mmol L−1

at x = 0 µm, and cNa = cCl = 50 mmol L−1 at x = 100 µm for all t > 0. Figure 1
shows predicted concentration profiles at times of 0.2 s and 1.0 s. Open symbols correspond
to Cl− and the closed symbols correspond to Na+ concentrations. The upper and lower dashed
curves surrounding each profile are the hypothetical concentration profiles of Cl− and Na+,
respectively, if each behaved as an ideal neutral component.

Figure 1 shows that the diffusion rate of Cl− is decreased significantly, and that of Na+

is increased modestly, from the infinite-dilution limit. This is due to the influence of the
local electrostatic potential field that arises from transient charge separation. In most regions
of the plot, the open symbol completely obscures the underlying filled symbol, and it is
only near the minima in the profiles that differences are noticeable. Microscopically, the field
produced should be exactly that required to cause both ions to diffuse with the same velocity [4],
which maintains local charge neutrality. The figure suggests that the rough estimation of the
electrostatic potential in (26) is sufficient to approximately enforce charge neutrality across
the diffusion cell.

Another way of testing the diffusion simulation is to compare the nonsteady-state
concentration profiles to those predicted by the 1D diffusion equation:

∂cNa

∂t
= ∂

∂x

(
DNaCl

cNa

∂x

)
, (27)
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Figure 2. Comparison of NaCl concentration profiles predicted by the stochastic model (symbols)
with those predicted using experimentally observed effective diffusion coefficients for NaCl in [4],
(solid curves). The open symbols indicate the concentration profiles of Cl− and the closed symbols
indicate the concentration profiles of Na+.

where the effective diffusion coefficient of NaCl in water, DNaCl, is dependent on solute
concentration and temperature. Values for DNaCl have been measured experimentally with
high accuracy over a range of concentrations [4]. For the concentration range relevant to this
example, a reasonable quadratic fit to these measurements is

DNaCl ≈ 1556.4 − 1.178 42 cNaCl + 0.003 81 c2
NaCl (µm2 s−1). (28)

Numerical solution of (27) using a finite difference approach [12] thus provides ‘experimental’
concentration profiles with which the stochastic model predictions can be compared.

Figure 2 shows such a comparison of concentration profiles at 0.2 s, 0.5 s, 1.0 s and 2.0 s.
Once again, the open and closed symbols correspond to predicted concentrations of Cl− and
Na+, respectively. The solid curves correspond to the numerical solution of (27) using (28)
for DNaCl.

Based on figures 1 and 2, the model appears to capture some basic electrolyte diffusion
phenomena quite well. A more in-depth discussion of its strengths and limitations regarding
other electrolyte phenomena can be found in [8].

3.2. Homogeneous reactions

The validity of the reaction algorithms are now verified by comparing the model predictions
of the rates of irreversible reactions against the standard rate law. The reactions considered in
this section are homogeneous in the sense that they occur uniformly in space. Heterogeneous
reactions that occur at the interface between condensed phases are considered in the following
section.

For simplicity, it is assumed that (1) the reactions are elementary, in the sense discussed
in section 2.1, (2) the activity of any species in solution is equal to its molar concentration,
i.e. k ≡ k and (3) the activity of any pure condensed phase is equal to one. The impact of
solution nonideality on reaction kinetics is taken up in the following section.
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Figure 3. Time dependence of reactant concentration for the irreversible homogeneous
unimolecular reaction A −→ B with rate constant k = 5 × 10−5 s−1. Open symbols are the
simulation results and the solid lines are fit to the simulation data by linear regression. For clarity,
only 1/100 or 1/200 of the simulation points are shown for the upper and lower lines, respectively.

For each of the next four examples, the ‘reactor’ is simulated as a cube with an edge
length of 30 µm. The concentration parameter ξ is 0.025 mol m−3. Unless stated otherwise,
the lattice spacing λ = 3 µm. The solution is assumed to be well mixed, which means that after
each computational cycle, every component in solution is distributed uniformly throughout the
liquid.

Example 1. Homogeneous unimolecular reaction

The simplest possible reaction is a homogeneous one by which an individual molecule
transforms into another:

A
k→ M.

The standard rate law for this reaction, subject to the stated assumptions in this section, is

dcA

dt
= −kcA.

Solving this differential equation yields

ln cA(t)

ln cA(0)
= − k

ln cA(0)
t + 1. (29)

Therefore, a plot of the left side of this equation versus t should be a straight line with slope
equal to −k/ ln cA(0). Figure 3 shows such a plot generated by the model when the rate constant
is 5 × 10−5 s−1 and the initial concentration is 15 mol L−1 or 1.5 mol L−1. The symbols show
the simulation results, and the solid lines are the best-fit lines determined by linear regression.
As shown in the figure, the simulation predicts a linear relation at both concentrations. The
apparent rate constant determined from the simulation, ks, differs from the ‘true’ rate constant
by 0.0002% or 0.5% when the initial concentration is 15 mol L−1 or 1.5 mol L−1, respectively.
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Figure 4. Time dependence of reactant concentration for the irreversible homogeneous trimolecular
reaction A + 2B −→ M with rate constant k = 0.75 s−1. Open symbols are the simulation results
and the solid line is a fit to the simulation data by linear regression. The best-fit slope to the
simulation results is 0.7541 s−1, which differs from the target rate constant by 0.5%. For clarity,
only 1/50 of the simulation points are shown.

Although the error is small in each case, the relatively poorer accuracy at the lower initial
concentration is due to the lower average occupation numbers at each lattice site. Recall that
the relationship in the model between concentration c and occupation number N is c = ξN .
Because ξ = 0.025 mol m−3 for both simulations, the average initial occupation number at a
lattice site is 6 × 105 when the initial concentration is 15 mol L−1, and is 6 × 104 when the
initial concentration is 1.5 mol L−1. The same accuracy could be achieved in both simulations
by adjusting ξ to obtain equal values of the average initial occupation number.

Example 2. Homogeneous trimolecular reaction

As a step up in complexity, consider the trimolecular homogeneous reaction,

A + 2B
k→ M.

The standard rate law is
dcA

dt
= −kcAc2

B.

Solving for cA yields(
cA(0)

cA(t)

)2

= 8c2
A(0)kt + 1. (30)

In this case, a plot of the left side of this equation versus t should be a straight line with slope
equal to 8c2

A(0)k. Figure 4 shows such a plot generated by the model when the rate constant
is 5 × 10−5 s−1. Again, the symbols show the simulation results, and the solid lines are fits to
the data using linear regression. As in the previous example, the simulation correctly predicts
a linear relation. The apparent rate constant determined from the simulation, ks, differs from
the ‘true’ rate constant by 0.5%.
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3.3. Heterogeneous reactions

Heterogeneous reactions occur between phases that are separated by an interface. In this
model, if one lattice site contains a condensed phase and a nearest-neighbor site does not, then
a surface implicitly exists between those sites, and a heterogeneous reaction may be possible
at both of them. However, this situation presents a potential problem. Reactions in the model
are executed at each lattice site using whatever collection of reactants is available at that site.
If a surface is discontinuous—meaning that one site is completely occupied by one condensed
phase and the adjacent site is completely occupied by the other—then any reaction between
them will not happen because the reactants in the two sites are effectively separated. To
detect and remedy this problem with discontinuous surfaces, at least two different approaches
are possible. First, each site could poll its nearest neighbors and borrow whatever reactants
may be available to make a reaction happen. This approach has the advantage that it can be
applied uniformly at all sites for all heterogeneous reactions. However, the act of borrowing
species from nearest neighbors makes it difficult to calculate the innermost product in (5)
or (10) in a consistent way without doing violence to the rate equation they are supposed to
approximate.

A second approach to handling discontinuous surfaces is to smooth out the discontinuity
before attempting a reaction there. Smoothing can be accomplished by exchanging a fraction
ε of the contents of each lattice site comprising the discontinuous surface. The fraction ε

will hereafter be called the ‘smoothing parameter’. Once smoothing occurs, then any surface
reaction can proceed at both of the sites that undergo the exchange of material. This approach
has the advantages of being simple to execute and of only being required in relatively rare
instances where a discontinuity occurs. And although it is a numerical way to circumvent
discontinuities, the idea of smoothing may have some plausibility from a physical perspective as
well. In Gibbs’ original theory of the thermodynamics of surfaces, he considered a surface to be
a continuous transition in properties from one phase to another, with a two-dimensional dividing
surface being defined as a mathematical convenience [13]. The Cahn–Hilliard theory of
inhomogeneous fluids [14], as well as the phase-field models that are based on that theory [15],
explicitly model a surface as a gradient of an order parameter from one condensed phase to
another. In the Cahn–Hilliard theory, this gradient contributes to the free energy of the system,
that is, excess interface free energies are included [14, 15]. However, in the present model,
the smoothing at discontinuous interfaces is a numerical convenience and does not have an
interpretation analogous to a gradient of an order parameter. Because of this, the smoothing
used here is assumed to have no effect on the thermodynamics of the system.

In the following example, the smoothing idea will be used to remove discontinuous
surfaces, and the impact on kinetics of the smoothing parameter ε will be evaluated.

Example 3. Dissolution at a plane surface

The unimolecular dissolution reaction,

B(s)
k→ B(aq)

has an associated standard rate law given by

V

S

dcB(s)

dt
= −kcB(s) , (31)

where now V is the system volume, S is the total area of the solid–liquid interface and cB is
the number of moles of solid phase B per unit volume. If the reacting interface is large and
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Figure 5. Time dependence of reactant concentration for the irreversible dissolution reaction
B(s) −→ B(aq) with rate constant 5 × 10−6 mol m−2 s−1. Open symbols are the simulation results
and the solid line is a fit to the simulation data by linear regression. The best-fit slope to the
simulation results implies an apparent rate constant of 4.998 × 10−6 mol m−2 s−1, a −0.04%
difference from the true value. For clarity, only 1/500 of the simulation points are shown.

planar, then S remains constant with time, and the analytic solution to the rate law is

cB(t)

cB(0)
= − k

cB(0)
St + 1, (32)

where it also has been assumed that the activity of a pure solid is equal to one.
In this example, the system is again modeled as a cube with an edge length of 30 µm. The

lattice resolution λ = 3 µm and the concentration parameter ξ = 0.025 mol m−3. Initially,
a plane sheet of the solid B(s), 15 µm thick, is inserted into the system, with its surface
normal oriented parallel to one of the lattice axes. The remainder of the system is filled
with initially pure water. Periodic boundary conditions are used in each direction, so the
computational domain itself can be thought of as a unit cell of a system composed of an
infinite number of uniformly spaced, parallel thin plates. With this setup, the volume of the
unit cell is 2.7 × 10−8 cm3 and the initial volume of solid in the unit cell is 1.35 × 10−8 cm3

or, equivalently, 4.1 × 10−10 mol if one assumes that the molar volume is that of Ca(OH)2,
3.31 × 10−5 m3 mol−1. The total surface area per unit cell is S = 1800 µm2, which remains
constant throughout the simulation.

Figure 5 shows a plot of the left side of (32) versus time. The rate constant is chosen
to be 5 µmol m−2 s−1, which is approximately the value for dissolution of Ca(OH)2 at 298 K.
Again, the symbols are the simulation results, and the solid line is a linear regression fit to the
simulation. Evidently, the simulation correctly captures the linear relation predicted by (32).
Data regression yields a slope of −8.997 × 10−15 mol s−1, implying an apparent rate constant
of 4.998 µmol m−1 s−1. This value differs from the target rate constant by −0.04%.

In figure 5, the smoothing parameter ε was chosen to be 10−5. This means that, prior to
executing the reaction, any given ‘solid’ lattice site on one side of the surface donates 10−5 of
its solid volume to the ‘water’ site adjacent to it, and simultaneously accepts 10−5 of the water
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Figure 6. Influence of the value of the smoothing parameter, ε, on the kinetics of the irreversible
dissolution reaction in figure 5. For clarity, only 1/1500 of the simulation points are shown on each
curve.

volume from that site. To investigate how the smoothing parameter might influence the kinetics
of the reaction, the same simulation was executed three more times using ε = 0.001, ε = 0.01
and ε = 0.02. Figure 6 shows the resulting plots for all three simulations. For each value of
ε, the figure indicates two linear regions with an abrupt transition between them, instead of a
single line. The slope of lines at later times all are equal to the slope in figure 5, but the slope
at early times is twice that value in each case. The reason for the change in slope is that the
smoothing process, by donating a small amount of solid to adjacent water sites, doubles the
number of sites that are participating in the dissolution reaction at early times. That is, the
effective surface area is doubled by the smoothing process at early times. However, when the
donated solid has dissolved completely, the sites that initially accepted that solid no longer
participate in dissolution and the effective surface area is halved. Thus, it is not the apparent
rate constant, but the effective surface area that is impacted by smoothing.

Figure 6 also shows that this surface area artifact can be made arbitrarily short-lived by
choosing a small enough value of the smoothing parameter ε. In fact, the time at which the
change in slope occurs is linearly proportional to ε. In figure 5, where ε = 10−5, the increased
surface area at early times is present for such a brief period that it cannot be discerned in
the plot.

Example 4. Dissolution of a sphere

When a spherical particle of a solid material B dissolves, both its volume VB and its area SB

decrease continuously as material dissolves:

dVB = 
BdnB,

dSB =
(

32π
2
B

3nB

)
dnB,
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Figure 7. Time dependence of reactant concentration for the irreversible dissolution of a 21 µm
diameter sphere by the reaction B(s) −→ B(aq) with rate constant 5 µmol m−2 s−1. Open symbols
are the simulation results and the solid line is a fit to the simulation data by linear regression. The
best-fit slope to the simulation results implies an apparent rate constant of 5.709 µmol m−2 s−1, a
14.2% difference from the true value. For clarity, only 1/1000 of the simulation points are shown.

where 
B and nB are the molecular volume and number of molecules of the solid, respectively.
With these relationships, the rate law in (31) integrates to(

cB(t)

cB(0)

)1/3

= −
(

4π
2
B

3cB(0)

)1/3

kt + 1. (33)

A plot of the left side of this equation against time, therefore, should be a straight line
with negative slope proportional to the rate constant. Figure 7 shows such a plot for
a simulation using a solid sphere with an initial diameter of 21 µm and molar volume

m = 3.31 × 10−5 m3 mol−1, which is the value for Ca(OH)2 at 298 K. The initial sphere
was approximated as a digitized collection of cubic volume elements, in which a given volume
element with centroid at (x, y, z) belongs to the sphere if

λ
√

(x − xc)2 + (y − yc)2 + (z − zc)2 � 10.5,

where (xc, yc, zc) is the center of the sphere. The other parameters of the simulation are the
same as in the previous example.

Figure 7 shows that the data are indeed nearly linear. The solid line, which was determined
by linear regression, has a coefficient of determinationR2 = 0.9988. The effective rate constant
calculated from the slope of the line is 5.709 µmol m−2 s−1, which is 14.2% greater than the
value used for the reaction. The discrepancy can be attributed primarily to two artifacts of
the microstructure representation, which partially offset each other. First, a digitized sphere
always has a greater surface-to-volume ratio SB/VB than that of a continuum sphere of the
same diameter, the difference being due to the terraced surface of the digitized sphere [16].
In this example, a continuum sphere with a diameter of 21 µm has SB/VB = 0.2857 µm−1,
while its digitized counterpart has SB/VB = 0.5551 µm−1 after the smoothing procedure has
been performed, as described at the beginning of this section. This is a difference of 94%,
so the instantaneous dissolution rate at t = 0 is 94% greater than expected for a real sphere.
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However, as the small quantity of material originally transferred during the smoothing process
dissolves, the value of SB/VB in the microstructure decreases gradually towards a value of
approximately 0.1738 µm−1, which is 39% less than the value for the analogous continuum
sphere. The net effect over the course of the simulation is an overestimation of the rate
by about 14.2%. Much of this error could be eliminated by starting off with a more accurate
representation of the spherical particle. By allowing sites at the surface to be partially occupied
with solid, one could generate an initial sphere that is much smoother than the binary digitized
sphere used in this example. Nevertheless, this example at least illustrates that the linear
integrated rate law for a sphere in (33) can be captured by the simulation.

3.4. Reversible reactions

Consider the following generic dissociation reaction:

A
k+

�
k−

νBB + νCC.

The standard rate equations for the forward and reverse reactions are

dcA

dt
= −k+aA (forward), (34)

dcA

dt
= k−a

νB
B a

νC
C (reverse). (35)

At equilibrium, the net rate of change of cA is zero by definition. Setting the sum of the forward
and reverse rates to zero gives

k+

k−
= a

νB
B a

νC
C

aA
≡ Keq. (36)

Therefore, to simulate any elementary reaction that can approach equilibrium, one needs only to
account for both the forward and the reverse reactions. The absolute rates of these reactions will
continually change as equilibrium is approached, until a dynamic equilibrium is established,
such that k+/k− = Keq.

Example 5. Reversible dissociation of calcium hydroxide in water

For this example, we assume a one-step reaction for the dissolution/growth of calcium
hydroxide in water:

Ca(OH)2
k+�
k−

Ca2+ + 2OH−. (37)

The system size and geometry used for this example is the same as in example 3. The
equilibrium constant for dissolution of Ca(OH)2 is 6.59 × 10−6 [1]. Based on measurements
of the rate of growth of Ca(OH)2 in highly supersaturated solutions [17], the rate constant for
precipitation at 298 K is estimated as k− = 0.1 mol m−2 s−1. The ratio of the rate constants
should be equal to the equilibrium constant, which implies that k+ = 0.66 µmol m−2 s−1. In
this example, one of two initial conditions for the ion concentrations was used. The first initial
condition was

cOH = cCa = 0,

which simulates dissolution into initially pure water. The other initial condition was

cCa = 0.5cOH = 23.6 mmol L−1.
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Figure 8. Time dependence of calcium concentration for the reversible reaction between Ca(OH)2
and water. The circles are the results for dissociation of Ca(OH)2 into initially pure water, and the
squares are the results for growth of Ca(OH)2 from an initially supersaturated solution. For clarity,
only 1/3 of the simulation points are shown, although the solid curve follows the other points, not
shown.

This value is twice that predicted by solving the equilibrium constant for concentration, so it
represents a supersaturated solution that should promote growth of Ca(OH)2 as the solution
approaches equilibrium. Once again, molar concentration is used to approximate activity,
primarily because this makes it easy to predict equilibrium concentrations in terms of the
equilibrium constant.

Figure 8 shows the results of both simulations. The concentration of Ca2+ is plotted versus
time. Evidently, in both simulations the concentration of Ca2+ approaches a stationary value
of 11.81 mmol L−1. Based on Keq, the equilibrium concentration of Ca2+ is 11.81 mmol L−1,
so the stationary state adopted in the simulation is quite accurate relative to the equilibrium
state predicted by Keq.

From a kinetic standpoint, the initial rate of dissolution, given by the initial slope of the
lower curve in figure 8, is less than the initial rate of growth indicated by the initial slope of
the upper curve. This difference in initial rates is expected because the rate constant for the
dissolution reaction, k+, is less than the rate constant for growth, k−. In addition, the net rates
of both dissolution and growth decrease substantially as equilibrium is approached because,
although the rate constants are fixed, the thermodynamic driving force for reaction decreases
exponentially as equilibrium is approached from either direction.

The concentration in figure 8 converges to the value implied by Keq if it is assumed
that the molar concentration of each solute species is equal to its activity. However, the
experimentally observed concentration of Ca2+ in a saturated solution of Ca(OH)2 at 298 K is
22 mmol L−1, almost twice as high as that predicted in figure 8. The agreement with experiment
can be improved significantly by estimating the activities of the solute species instead of using
their concentrations. When the molar activity coefficients of Ca2+ and OH− are estimated
using the modified Davies equation [11], then the simulations predict an equilibrium Ca2+

concentration of 19.1 mmol L−1. Although this value still underestimates the experimentally
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measured value by 13%, it is a considerable improvement over the result when the activity
coefficients are neglected. Further improvements probably could be made by using even more
refined estimates of the activity coefficients, and also by taking account of ion complexation
reactions in solution.

3.5. Temperature effects

The effect of temperature on absolute reaction rates and equilibrium states can be modeled by
incorporating the temperature dependence of the rate constants. Consider again the generic
reversible reaction in (3). Let the reactants on the left side have a collective Gibbs free energy
of G(r), and let the products of the reaction on the right side have a collective Gibbs free
energy of G(p). The free energies are all relative to some common reference state. According
to transition state theory [18], both the forward and the reverse reactions involve passage
through a state of higher free energy, G∗, called the activated complex, so that the temperature
dependence of the forward rate constant is [18]:

k+(T ) = kBT

h
exp

[
− (

G∗ − G(r)
)

kBT

]
,

= kBT

h
e(s

∗−s(r))/kB exp

[
− (

H ∗ − H(r)
)

kBT

]
,

= kBT

h
e�S∗

+/kB exp

[−�H ∗
+

kBT

]
. (38)

In equation (38), h is Planck’s constant, and �S∗
+ and �H ∗

+ are the entropy of activation and the
enthalpy of activation, respectively, for the forward reaction at temperature T . An analogous
expression holds for the rate constant in the reverse direction:

k−(T ) = kBT

h
e�S∗

−/kB exp

[−�H ∗
−

kBT

]
. (39)

In practice, one generally assesses the values of the rate constants at some reference temperature
T0. If the entropy of activation is assumed to be independent of temperature, then the rate
constants at temperature T can be written in terms of their values at T0:

k+(T ) = k+(T0) exp

[−�H ∗
+

kB

(
1

T
− 1

T0

)]
, (40)

k−(T ) = k−(T0) exp

[−�H ∗
−

kB

(
1

T
− 1

T0

)]
,

= k−(T0) exp

[
− (

�H ∗
+ + �Hrx

)
kB

(
1

T
− 1

T0

)]
, (41)

where �Hrx is the enthalpy of the net reaction. For small temperature excursions away from
T0, say 10 K–20 K, one can assume without grave error that the enthalpy values do not change
from their values at T0.

As one would expect, the expressions for the relative rate constants in (40) and (41)
indicate that both the forward and the reverse rates of reactions should increase with increasing
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temperature. In addition, because the ratio kf /kr is the equilibrium constant for the overall
reaction, one may write

Keq(T ) ≡ k+(T )

k−(T )
= k+(T0)

k−(T0)
exp

[
H(p) − H(r)

kB

(
1

T0
− 1

T

)]
,

= Keq(T0) exp

[
�Hrx

kB

(
1

T0
− 1

T

)]
. (42)

The latter result is the well-known van’t Hoff equation. Thus, the temperature dependence
of equilibrium states can be captured dynamically through the temperature dependence of the
balance between the forward and the reverse processes.

Example 6. Dissolution of calcium hydroxide

Ca(OH)2 is one of the relatively few minerals for which dissolution is exothermic [1], with
�Hrx = −17.88 kJ mol−1 at 298 K for the forward reaction in equation (37). This means that
the solubility decreases with increasing temperature. As in example 3, the equilibrium constant
at 298 K is taken to be 6.59 × 10−6, and the rate constant for growth at 298 K is assumed to
be k− = 0.1 mol m−2 s−1. According to equation (42), the solubility product at 308 K should
be 5.22 × 10−6. Furthermore, a study of the rate of growth of Ca(OH)2 from supersaturated
solutions, between 288 K and 313 K, has reported an activation enthalpy of 75.36 kJ mol−1 for
growth [17]. This reported value is used for �H ∗

−, and since �Hrx = −17.88 kJ mol−1, the
activation barrier for dissolution �H ∗

+ = 57.48 kJ mol−1.
Figure 9 shows plots at 298 K and 308 K of the predicted concentration of Ca2+ as a function

of time as Ca(OH)2 dissolves in initially pure water. As in the previous example, activities were
assumed equal to concentrations for simplicity in calculating the equilibrium concentrations
from the equilibrium constant. As the figure indicates, the initial rate of dissolution increases
with increasing temperature as it should for a thermally activated process. In addition, each
curve converges to the equilibrium concentrations of 11.81 mmol L−1 and 10.93 mmol L−1

(shown by the horizonal dashed lines) at 298 K and 308 K, respectively, which are the values
predicted by the van’t Hoff equation. Thus, the model reproduces the temperature dependence
of the equilibrium state required by the van’t Hoff equation. This happens even though the
equilibrium state is achieved in the model by a dynamic balance of forward and reverse
reactions, each of which have thermally activated rate constants.

Example 7. Nucleation and microstructure: metal oxide hydration

The examples up to this point have focused on kinetics and equilibrium on a global scale,
without much attention paid to microstructure development. The examples involved simple
solutions or solution/solid interfaces—to validate kinetic and thermodynamic predictions—
so the neglect of microstructure was excusable. For more complex systems, however, in
which multiple minerals are present and several dissolution and precipitation processes may
be occurring simultaneously, one can expect significant interactions between microstructure
development and chemical kinetics.

This final example illustrates nucleation phenomena as well as interactions between
microstructure and kinetics. Consider a generic hydration reaction, in which a divalent metal
oxide, MO, is transformed into a sparingly soluble metal hydroxide by a through-solution
mechanism. If the dissolution of the oxide is assumed irreversible, then the coupled reactions
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Figure 9. Simulated dissolution of Ca(OH)2 in initially pure water at 298 K (circles) and 308 K
(squares). For clarity, only 1/20 of the simulation points are shown, although the solid curve follows
the points in between.

may be written as follows:

MO + H2O
k1,+→ M2+ + 2OH−,

M2+ + 2OH− k2,+�
k2,−

M(OH)2.

The concentration of ions in solution increases by the first reaction until the system is saturated
with respect to M(OH)2. At even higher concentrations, there is a thermodynamic driving
force for precipitation of M(OH)2 but, assuming that none is present initially, nucleation is
necessary before growth can occur. Homogeneous nucleation in the bulk solution is possible
but, in many cases, heterogeneous nucleation on an existing solid surface has a lower value of
W ∗. Therefore, heterogeneous nucleation often commences at lower driving forces than those
required for homogeneous nucleation.

As seen below, the details of where and when nucleation occurs can be decisive in the
development of the microstructure. In addition, a net increase in total solid volume typically
occurs during hydration, because the solid hydroxide has a greater molar volume than the
corresponding metal oxide. In some cases, like the conversion of CaO to Ca(OH)2, the volume
change can be significant.

For this simulation, the initial system is a collection of spheres of MO, each 20 µm
in diameter, suspended in pure water. The initial volume fraction of MO is 0.051. The
computational system is a cube with 50 lattice sites in each dimension. The site spacing
λ = 4 µm. The temperature is maintained at 298 K, and the rate constants are k1,+ =
0.01 mol m−2 s−1, k2,+ = 0.1 mol m−2 s−1 and k2,− = 0.66 µmol m−2 s−1. The molar volumes
of MO and M(OH)2 are 16.9 cm3 mol−1 and 33.1 cm3 mol−1, respectively. These values for
the rate constants and molar volumes were chosen to be consistent with CaO/Ca(OH)2 [17].

To illustrate the effects of nucleation on microstructure development, two different
simulations were performed. In the first simulation, nucleation of M(OH)2 occurs on a single
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small seed in the solution, with a rate constant of 2.0 × 1011 s−1 and w∗ = 2.0 × 109 K3 in
(19). The seed is assumed to be inert, beyond its ability to catalyze nucleation. The nucleation
barriers for homogeneous nucleation and for nucleation on the surfaces of the MO particles
are assumed to be sufficiently large that nucleation can occur only on the seed particle during
the entire simulation. In the second simulation, the seed is absent and nucleation occurs on the
surfaces of the dissolving MO particles, with the same values of the nucleation rate constant
and nucleation barrier as before.

Figure 10 shows for both simulations the initial microstructure and the predicted
microstructure at 30 s, 60 s and 600 s. The seeded microstructures are shown on the left,
and the unseeded microstructures undergoing surface nucleation are shown on the right. In the
figures, the MO particles are shown in dark gray and the M(OH)2 phase is rendered in light
gray. The water between particles is not rendered. The figure demonstrates that the location
and number of nucleation sites has a marked effect on the microstructure development. In both
cases, the microstructure evolves rapidly at early times as the solution becomes supersaturated
with respect to M(OH)2. For the seeded microstructure, dissolution of MO particles, which is
assumed to be irreversible, occurs rapidly and goes to completion by about 60 s. In contrast,
the MO particles in the unseeded microstructure become almost completely encapsulated by
precipitating M(OH)2 by about 60 s. In the latter case, the M(OH)2 provides an impermeable
barrier that inhibits further dissolution of MO at longer times.

The changes in the microstructures can be quantified by plotting the volume fractions of
MO and M(OH)2 as a function of time, as shown in figure 11. The seeded microstructure
exhibits an increase in M(OH)2 that follows a smooth sigmoidal curve that is characteristic of
phase transformations by classical nucleation and growth [19, 20]. Although not apparent
on the plot, the first nucleation event in the seeded microstructure occurs by 2 s when
cM = 151 mmol L−1. The rate of growth of M(OH)2 then increases rapidly between 2 s
and 120 s due both to the increasing surface area of M(OH)2 and the increasing solution
concentration. After 120 s, the rate of growth of M(OH)2 decreases as the solution is depleted
of M2+ and OH−, until equilibrium between the solution and M(OH)2 is achieved by about
900 s. The dashed line in the lower plot indicates the equilibrium concentration of M2+ for the
parameters used in the simulation.

The situation is quite different for the unseeded microstructure, which hydrates
by nucleation at the MO surfaces. The first nucleation event occurs at 0.1 s when
cM = 9.2 mmol L−1. This concentration is less than the equilibrium concentration of
11.81 mmol L−1, but cM is reported as an average for the whole solution, which is what would
be measured experimentally. The local concentration near the surfaces of MO particles at
0.1 s, where nucleation of M(OH)2 happens, is much higher, about 125 mmol L−1, at the same
time. The average concentration of M2+ continues to rise for the first 23 s to a maximum value
of 102 mmol L−1. This maximum concentration is considerably lower, and the subsequent
decrease in concentration much more rapid in the unseeded microstructure than in the seeded
one. There are two reasons for this, the first being that the volume fraction of M(OH)2 is
greater in the unseeded microstructure during the first minute (see upper plot in figure 11), due
to the larger number of nucleation sites. The greater volume fraction corresponds to greater
surface area for continued growth. The second reason for the lower maximum concentration in
the unseeded microstructure is that the MO surfaces become partially covered by a protective
layer of M(OH)2, giving them less exposed surface area for continued dissolution.

At intermediate times in the unseeded microstructure, between 60 s and 600 s, figure 11
indicates that the changes in volume fraction of both solid phases are approximately linear in
time (filled symbols in the upper plot), while the average composition of the solution remains
approximately constant (filled symbols in the lower plot). Such behavior indicates that the
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Figure 10. Predicted microstructure development as MO particles dissolve in water and M(OH)2
nucleates either on a single inert seed (left) or on the surfaces of the dissolving particles (right).
The temperature is kept constant at 298 K. Other than the difference in nucleation sites, all model
parameters are identical in both simulations.

nutrients for continued growth of M(OH)2 are being drawn, not from the bulk solution, but from
freshly dissociated material immediately adjacent to the solid MO surfaces. Thus, although
growth occurs by a ‘through-solution’ mechanism, it is almost indistinguishable from a direct
topochemical conversion of MO to M(OH)2. Only after 600 s does the bulk solution become
further depleted, as the MO surfaces become almost completely covered.

4. Discussion

The model presented here uses algorithms for simulating both diffusion in non-electrolytes, (1),
and the law of mass action for homogeneous reactions, (4) and (5) that are basically the same as
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Figure 11. Volume fractions φ of MO and M(OH)2 (upper plot) and concentration of M2+ (lower
plot) as a function of time for the seeded and unseeded simulations shown in figure 10. For clarity,
only 1/200 of the points are shown, although the solid curves follow the points in between.

those given earlier by Karapiperis and Blankleider [2]. But this model also incorporates several
important modifications that enable the modeling of more realistic chemistry and physics in
aqueous systems. Among these are (1) the ability to simulate diffusion in nonideal electrolyte
solutions, (2) the modeling of heterogeneous reactions with correct scaling behavior (3) the
estimation of activity coefficients for dissolved species, (4) explicit modeling of the kinetics
of nucleation and (5) the temperature dependence of the relevant rate processes.

The modified Davies equation [11] was used here to estimate the activity coefficients of
ionic solute species. Although valid only at fairly dilute concentrations, between 0.01 mol L−1

and 0.1 mol L−1, this equation yields remarkably better predictions of equilibrium states than
those produced by equating activity with molar concentration (see example 5). The modified
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Davies equation also has the advantage that the activity coefficient of a particular ion is
dependent only on temperature, ionic strength and properties of the ion itself. At higher
concentrations, better approximations of activity coefficients of electrolytes can be obtained
using the ion-interaction approach of Pitzer [21], although its implementation is considerably
more computationally expensive. But if the goal of a modeling investigation is to obtain
accurate predictions of equilibrium solution composition, including ion complexation effects,
then thermodynamic modeling packages that implement approaches like that of Pitzer are
preferable to the model described here. The primary strength of the present model is its ability
to simulate spatial and temporal variations in microstructure at a local scale that are due to
transport and any number of coupled homogeneous and heterogeneous reactions.

By including rate constants for nucleation of solids, the present model can simulate the
unstable supersaturated states and finite induction times in solutions prior to precipitation
of a solid phase [7]. These phenomena are extremely important in modeling the early-time
kinetics of a wide variety of phase transformations, including evaporation-assisted precipitation
of salts [22], production of slaked lime [23] and the hydration of gypsum, portland cement, and
other cementitious materials [23–25]. In fact, this work was motivated largely by its intended
application to model microstructural changes in these kinds of systems.

By accounting for the dependence of kinetics and equilibrium states on temperature, this
model is able to simulate not only isothermal systems at different temperatures, as illustrated
in example 6, but also adiabatic or semi-adiabatic systems in which heat generated (absorbed)
by exothermic (endothermic) reactions causes temperature changes within the system. These
temperature changes can be calculated from the volume fractions and heat capacities of the
phases in the system, and so will be a function of the reaction history and the instantaneous
state of the microstructure.

Because the model is based on principles of transition state theory, a complete description
of the kinetics of any elementary reaction over a modest range of temperatures requires the
input of values of k+ and k− at some reference temperature (or only one rate constant when Keq

is known), together with the activation enthalpy for either the forward or reverse direction and
the enthalpy of reaction. For a very large number of reactions, the equilibrium constant and
enthalpy of reaction have been catalogued [1]. When a reaction is elementary, the rate constant
for, say, the forward reaction can be experimentally obtained by measuring the instantaneous
rate of formation of a product of the reaction when there are no products of that reaction in the
system that can participate in the reverse reaction. In addition, the enthalpy of activation in
the forward direction can be measured by performing the same experiment at several different
temperatures and then plotting the logarithm of the instantaneous rate as a function of 1/T .
Again, provided the reaction is elementary over this temperature range, such a plot should
be linear with slope −�H ∗

+ /kB. Therefore, the acquisition of the necessary parameters for
elementary reactions is straightforward, at least in principle.

Regrettably, very few of the important reactions in materials science or environmental
geochemistry are actually elementary. The distinguishing feature of a nonelementary rate
process is that the concentration exponents on the right-hand side of the rate equation are not
equal to the corresponding molar stoichiometric coefficients of the reactants. However, even
when it appears to be nonelementary, a reaction must still be composed of a sequence of reaction
steps, each of which is itself elementary. Therefore, within the context of this model, one of two
approaches can be taken to acquire the necessary input data for nonelementary reactions. The
first approach is to undertake the determination of the sequence of elementary reactions that
are involved. In many cases, only one of these elementary reactions will be rate-controlling.
When one reaction in the sequence is rate-controlling, then all the reactions that precede it must
be near equilibrium. In such cases, the forward rate constant and activation enthalpy can be



A three-dimensional microstructural model 737

measured for the rate-controlling reaction by the kinds of experiments described already.
The difficulty, which often renders this approach impractical, is that the entire sequence of
elementary reactions must be identified to use this approach.

When a determination of the sequence of elementary steps in a nonelementary reaction
is impractical, an acceptable compromise may be to apply the standard rate equation as if
the overall reaction were elementary, i.e. equating the exponents in the rate equation to the
molar stoichiometric coefficients. The nonelementary aspects of the reaction could then be
approximated by forcing the rate ‘constant’ to be some function of the concentrations of other
species that are experimentally determined to influence the apparent rate of the overall reaction.
Such an approach could be useful for modeling the effect of a catalyst or a poisoning agent on
the rate of a highly irreversible reaction. The main objection to this second approach is that,
for reversible reactions that can approach equilibrium, the simulation will generally predict
a dynamic equilibrium state that differs from that required by the equilibrium constant (see
equation (36)).

Finally, some comments are warranted about the morphology of the precipitates shown
in example 7. In the seeded microstructure especially, the shape of the growing particle
is reminiscent of the dendritic structures that are often observed during solidification of
metals. However, dendrite formation during solidification is caused by a Mullins–Sekerka
instability [26], which is related to the coupling between the local shape of the solid–liquid
interface and the dissipation of the heat of solidification. In contrast, heat dissipation is not
incorporated in example 7. Instead, the dendritic shape of the particle is an artifact both
of the geometry of the computational lattice and of the smoothing algorithm, discussed in
section 3.3, which shares material only between nearest neighbors. Both of these influences
cause greater growth rates in the directions of the six nearest neighbors than in other directions.
However, once the dendritic branching begins, it is exacerbated by its own geometry because
the branch tips have greater specific surface area at which growth can occur. More isotropic
growth behavior could be achieved by modifying the smoothing process so that 2nd-nearest
and 3rd-nearest neighbors are included.

Many minerals exhibit well-defined, anisometric shapes that are due to their growth rate
being a function of‘ crystallographic orientation. For example, portlandite (Ca(OH)2) often
grows in aqueous solutions as large, thin hexagonal plates, whereas gypsum (CaSO4.2H2O)
grows as long needles. The model presented here does not account for anisotropic growth, but
it could do so in a limited way by assigning a crystal orientation vector to newly formed nuclei
and making the local growth rate constant in (10) depend upon the angle between this vector
and the growth direction.

5. Conclusions

At the outset of this paper, three objectives were given for the development of a 3D
microstructure model for aqueous mineral systems. First, it should be based on principles
of reaction kinetics and thermodynamics. The stochastic model presented here uses transition
state theory, the law of mass action, the classical theory of nucleation and the microscopic
principles of diffusion. The examples given in the previous sections demonstrate that the
model is stable, that it converges to the correct diffusion rate laws and that it accurately
predicts a broad range of kinetic and equilibrium phenomena. Second, the model should
capture the relationships between reactions, transport and microstructure development. As
example 7 demonstrates, the model is able to simulate the interdependence of nucleation and
growth mechanisms, solute transport and microstructure development. Finally, the model
should be as general as possible. This paper has shown a broad range of reaction and
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diffusion phenomena that can be simulated within a unified framework. Future work will
expand its capabilities to include approximations of anisotropic crystal growth and reactions
involving nonstoichiometric materials, but it already represents a research tool that can be
tailored to particular materials systems to investigate relationships between their processing,
microstructure and properties.
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