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Rate constants are presented for diffusion in dilute nonideal solutions with or without the presence of a
spatially varying potential field. Expressions for the rate constants have been derived by earlier workers, and
essentially the same derivation is reviewed and expanded in this paper to justify the expressions used for the
rate constants. The diffusion rate constants are used in a random walker model to demonstrate how solution
nonidealities can be captured accurately using this approach. Examples are presented of ideal solute diffusion
as well as nonideal diffusion of nonelectrolytes and simple electrolytes in water. The use of the approach to
simulate advection is described, and a possible strategy for extending the approach to more concentrated
solutions is briefly discussed.

1. Introduction

The linear phenomenological rate law describing the material
diffusion of a substanceR is1,2

wherejR is the net material flux in a laboratory reference frame,
L is the Onsager coefficient for diffusion,µR is the chemical
potential of the diffusing component,FR is any force per mole
acting on the component, andµ̃R is the generalized chemical
potential:

in which ψR is a conservative potential field per mole ofR, the
spatial derivative of which is-FR. Only the “direct” effect of
diffusion is captured in eq 1 in the sense that off-diagonal
coefficients representing cross-diffusion effects, thermal diffu-
sion, Seebeck effects, etc. are neglected. When external forces
are absent, material diffusion is frequently represented by Fick’s
first law

wherecR is the concentration (mol/L), and by comparison to
eq 1, the diffusion coefficient is

Equations 1 and 2 provide expressions for thenet flux at any
point. Microscopically, mobile components at any point in an
isotropic medium can have trajectories in all directions, not only
the direction of the net flux. For example, in one-dimensional
(1-D) diffusion, mobile components can have trajectories either
in the same direction of the net flux (theforward direction) or
in the opposite direction of the net flux (thereVerse direction).
By phrasing it this way, we suggest a loose analogy to chemical
reactions. A chemical reaction proceeds in the forward direction,
at an instantaneous rate that is prescribed by a specific rate

constant,kf, and the quantity of available reactants, to generate
reaction products. As soon as products are present in the system,
a reverse reaction is possible by which the products are
transformed back to reactants, at a rate that is prescribed by a
different rate constant,kr, and the quantity of available products.
Chemical equilibrium corresponds to a state in which the
forward and reverse reactions occur at identical rates.

Transition state theory3 provides a conceptual framework for
describing separately the forward and reverse rates of chemical
reactions. Not surprisingly, the same idea also can be applied
to diffusion to determine the rate constants for the microscopic
forward and reverse processes that macroscopically appear as
a net flux down a gradient in potential.4,5

The difference in perspective between a phenomenological
description of diffusion and a microscopic description has given
rise to different approaches for simulating diffusion with
computer models. Finite difference and finite element models
take a phenomenological approach, by which a differential
equation like eq 1 or eq 2 is numerically integrated on a mesh
to determine the time-dependent concentration at each point.
In contrast, random walker methods use a microscopic approach
by which the random motion of individual particles is tracked.

This paper reviews how transition state theory can be used
to derive approximate expressions for the forward and reverse
rates of diffusion in nonideal solutions, relative to their absolute
rates in a corresponding ideal solution. The possibility of a
spatially varying potential field also is considered. The nonideal
rate constants are then incorporated into a stochastic model of
diffusion to simulate a number of different phenomena, including
the ideal and nonideal diffusion of neutral species and electro-
lytes. Where possible, the stochastic simulation results will be
compared to theoretical predictions to provide validation.

2. Diffusion Rate Constants

As already mentioned, most of the groundwork for deriving
diffusion rate constants has been laid by others (see, for example,
ref 4) for diffusion in nonideal solutions. The derivation is
reviewed here primarily to provide explicit justification of the

jR ) -L(∇µR - FR) ) -L∇µ̃R (1)
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jR ) -DR∇cR (2)

DR ) (∂µR
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)
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L
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form of the rate constants used in this paper, and also because
the approach is expanded to include the possibility of other
forces acting on the system. We will consider the diffusion of
a single componentR in a solution. For simplicity of notation,
the terms in this section will be understood to be associated
with that component alone.

The elementary step in diffusion is assumed to be a “jump”
between two positions, separated by a distanceλ in physical
space, each of which has a local minimum in free energy. The
jump itself is assumed to involve passage through a state of
higher free energy than either initial or final position. The
process is illustrated schematically in Figure 1, which uses a
scaled chemical potential to represent the energy states. In an
ideal solution, the chemical potentialµ of a component at any
location is assumed to beµ° + RT ln c, whereµ° is the standard
chemical potential of the component,c is its concentration,R
is the gas constant, andT is the absolute temperature. The scaled
chemical potential used in Figure 1 is defined asµ0 ≡ µ - RT
ln c, i.e., the nonconfigurational part of the chemical potential.
Therefore, in an ideal solution, the value ofµ0 is the same at
every local minimum. This ideal situation is shown as the solid
curve in the figure, for which both local minima are at the same
height. The local configuration of solute and solvent corre-
sponding to the maximum potential in the elementary step is
called theactiVated complex. Although it has an exceedingly
short lifetime, the activated complex is treated as an actual
chemical species possessing well-defined chemical potential and
other thermodynamic properties. Thus, in an ideal solution, the
activation barrier for a componentR, ∆µ0

/ is the same in the
forward and reverse directions.

The diffusion coefficient of the componentR in an ideal
solution is4

whereR is the gas constant,T is absolute temperature, andg is
a jump frequency (units of s-1) which usually is assumed to
equalkBT/h, with kB being Boltzmann’s constant andh being
Planck’s constant. In eq 3,k0 is a specific rate constant for
diffusion in the ideal solution, and has units of inverse time.

The chemical potential of activation may be divided into
entropic and enthalpic contributions, i.e.,∆µ0

/ ) ∆Hh 0
/ - T∆Sh0

/,
by which eq 3 may be rewritten as

where nowg′ ) ge∆Sh0//R, and∆Hh 0
/ is the partial molar enthalpy

of activation, which is essentially the same as the activation
energy derived from the Arrhenius equation.

When a solution is nonideal, or when a potential field is
present, the chemical potential of the component at any
equilibrium positionx is perturbed from its ideal value:

wherea is the chemical activity of the component,y is its molar
activity coefficient, andψ is the potential energy per mole of
the component. Thus, in the nonideal case the difference in the
chemical potential between adjacent sites is

This difference modifies the potential surface, shown as a dashed
curve in Figure 1. Because the ideal surface is symmetric, it is
assumed that the nonideal contribution to the potential difference
is divided equally on either side of the barrier. This implies
that the activation barrier in the forward direction is

whereδc(x) ) c(x+λ) - c(x). In the reverse direction,

In both of these expressions, the activity coefficient is assumed
to be a continuous function of the concentration. Given these
results, we may now write down expressions for the forward
and reverse rate constants relative to the ideal rate constantk0.
Following the form given in eq 3, the forward rate constant for
componentR jumping fromx to x + λ is written as

Substituting eq 7 gives

where the last form comes from substituting the rate constant
of componentR in an ideal solution, eq 4, and

The first term inθ expresses the departure from ideality due to
the concentration dependence of the activity coefficients in
nonideal solutions, and the second term indicates the effect of
potential fields, whether externally applied or arising internally.

In the reverse direction, the specific rate constant for
componentR jumping fromx + λ to x is

Figure 1. Schematic representation of the nonideal part of the chemical
potential for diffusion in an ideal or nonideal solution. The horizontal
dimension is the diffusion coordinate, and the vertical dimension is
the nonconfigurational component of the chemical potential.

D0 ) λ2k0 ) λ2ge-∆µ0
/
/RT (3)

k0 ) g′e-∆Hh 0
/
/RT (4)

µ̃(x) ) µ° + RT ln a(x) + ψ(x)

) µ° + RT ln c(x) + RT ln y(x) + ψ(x)

) µ0(x) + RT ln y(x) + ψ(x) (5)

∆µ̃(x) ) (RT ln y(x + λ) + ψ(x + λ)) - (RT ln y(x) + ψ(x))

) RTδ ln y(x) + δψ(x) (6)

∆µ̃f
/ ) ∆µ̃0

/ - RT
2

d ln y
dc

δc(x) -
δψ(x)

2
(7)

∆µ̃r
/ ) ∆µ̃0

/ + RT
2

d ln y
dc

δc(x) +
δψ(x)

2
(8)

kf ) ge-∆µ̃f
//RT (9)

kf ) ge-∆µ̃0
//RT exp(- 1

2

d ln yR

dcR
δc(x) -

δψ(x)
2RT )

) k0e
-θ (10)

θ ) 1
2

d ln yR

dcR
δc(x) +

δψ(x)
2RT

(11)
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Using the nonideal rate constants, the net material flux crossing
the activation barrier atx + λ/2 can be found and compared to
the phenomenological rate law in eq 1. The absolute number
of moles of componentR jumping across the activation barrier
from x to x + λ (i.e., the forward rate) will be denoted byṄf

and is assumed equal to the forward rate constant multiplied
by the number of moles atx,

or, in terms of the equivalent absolute fluxjf crossing the barrier
in the forward direction (moles per unit area per unit time),

Similarly, the absolute fluxjr crossing the barrier in the reverse
direction is

Therefore, the net fluxj crossing the barrier in the forward
direction is

Substituting eqs 10 and 12 gives

where againδc(x) ) c(x+λ) - c(x). If 1 . δ(ln y)(x) and 2RT
. δψ(x), thenθ , 1 and the exponential terms in eq 14 can
be expanded to first order inθ:

where the second form comes from the assumption thatθ , 1.
Substituting forθ gives

We can examine some of the properties of eq 16 to verify that
it agrees with expectations of diffusion phenomena. If on a
continuum scalec and ψ are continuous inx, then we may
approximate

Then, becauseλ2k0 ) D0 from eq 4, eq 16 can be written

where a coordinate transformationx + λ/2 f x has been made
for convenience.

If ψ is constant, then

This is identical to Fick’s first law, eq 2, for which

is the well-known expression for the diffusion coefficient in a
nonideal solution. Second, in the presence of an external
potentialψ, the generalized chemical potential2 is given by eq
5. Differentiating eq 5 with respect tox gives

The term inside parentheses is identical to the term inside
parentheses in eq 17. Therefore, that equation can be written as

Equation 20 has the form of the linear phenomenological rate
law given in eq 1.

In the next sections, we use the specific rate constants given
by eqs 10 and 12 in a random walker model of diffusion.
Examples are given of diffusion of a neutral component in ideal
and nonideal solutions and of diffusion of a simple electrolyte.

3. Numerical Model

The stochastic model of diffusion used here is based on a
random walker algorithm described by Karapiperis and Blank-
leider6 for ideal solutions. A regular three-dimensional (3-D)
cubic lattice is defined with site spacingλ, and each lattice site
can be occupied by a number of random walkers, or cells,
representing different mobile species. A parameterê is used to
map the number of cells at a lattice site to an equivalent molar
concentration. During a given computational cycle representing
a time stepτ, each cell in the system is allowed to take at most
one step from its current location to one of its six nearest-
neighbor sites chosen at random.

Karapiperis and Blankleider6 have shown that to converge
to the diffusion equation in the continuum limit, whereλ f 0
andτ f 0, the probabilityp(i,j,R) that a cell of solute species
sR is displaced from sitei to a nearest-neighbor sitej must be
given by

whereDi,j,R is the effective diffusion coefficient for transport
of solute from sitei to sitej. For the purposes of the simulations,
we now make the gross approximation thatthe lattice spacing
λ is equiValent to the jump distanceλ from the previous section.

j(x) ) -D0([1 + d ln y
d ln c]dc

dx|x
+

c(x)
RT

dψ
dx|

x
) (17)

j(x) ) -D0(1 + d ln y
d ln c)dc

dx
(18)

D ) D0(1 + d ln y
d ln c)

dµ̃
dx

) RT(d ln y
dc

+ d ln c
dc )dc

dx
+ dψ

dx

) RT
c (1 + d ln y

d ln c)dc
dx

+ dψ
dx

) RT
c ([1 + d ln y

d ln c]dc
dx

+ c
RT

dψ
dx) (19)

j ) -
cD0

RT
dµ̃
dx

(20)

p(i,j,R) )
Di,j,Rτ

λ2

kr ) k0e
θ (12)

Ṅf ) kf(x) N(x)

j f(x+λ/2) ) λkf(x) c(x)

jr(x+λ/2) ) λkr(x+λ) c(x+λ)

j(x+λ/2) ≡ j f(x+λ/2) - jr(x+λ/2)

) λkf(x) c(x) - λkr(x+λ) c(x+λ) (13)

j(x+λ/2) ) λk0e
-θc(x) - λkeθc(x+λ)

) λk0(e
-θ - eθ) c(x) - λkR,0e

θδc(x) (14)

j(x+λ/2) ) -2θλk0c(x) - (1 + θ)λk0δc(x)

) -2θλk0c(x) - λk0δc(x) (15)

j(x+λ/2) ) -λk0(c(x)
d ln y

dc
δc(x) +

c(x)
RT

δψ(x) + δc(x))
) λk0([1 + c(x)

d ln y
dc ]δc(x) +

c(x)
RT

δψ(x))
) λ2k0([1 + d ln y

d ln c]δc(x)
λ

+
c(x)
RT

δψ(x)
λ ) (16)

δc(x)
λ

) dc
dx|x+λ/2

δψ(x)
λ

) dψ
dx |x+λ/2
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Thus, in terms of specific rate constants, the probability is

Because each iteration of this diffusion algorithm corresponds
to a time incrementτ, the maximum time incrementτmax is fixed
by requiring that the sum of the probabilities for each cell does
not exceed 1. Thus, eq 21 can be used to estimate

where max(ki,j,R) is the maximum expected specific rate constant,
and n is the dimensionality of the problem (n ) 1 for 1-D
diffusion, etc.) so that 2n is the total number of nearest-neighbor
lattice sites.

4, Results

4.1. Ideal Solution.Random walker models are known to
closely approximate diffusion in ideal solutions, so the simula-
tion of ideal diffusion is treated only briefly here. Consider an
ideal neutral solute species A in a pure solvent. A small
orthorhombic diffusion cell is modeled, having dimensionsx
) 100µm andy ) z ) 10 µm. At time t ) 0, the cell is filled
with solvent, with the boundary conditions thatcA ) 15 mmol/L
at x ) 0 µm andcA ) 5 mmol/L atx ) 100 µm for all t > 0.
Because the solution is ideal, the activity of the solute is equal
to its concentration, and the diffusion coefficient isDA,0 by
definition. In this simulation,DA,0 ) 1000µm2/s, which is the
same order of magnitude asD0 for most ions in water. Because
the solution is assumed to be ideal,θ ) 0 in eqs 10 and 12

This system has a straightforward analytical solution, which
is obtained by solving the one-dimensional diffusion equation:

The solution to eq 24 is

Figure 2 shows the predicted concentration profile in the
simulated diffusion cell at different times when the mesh
resolutionλ ) 2 µm andê ) 2.5 × 10-5 mol/L. The symbols
show the model prediction at each point and time, and the solid
curves correspond to the analytical result, eq 25 withL ) 100
µm, cA,0 ) 0.015 mol/L, andcA,0 ) 0.005 mol/L. The curves
representing the analytical results all were obtained by truncating
the sum at 104 terms.

Evidently, the model provides an excellent approximation to
the standard diffusion equation at all times whenλ ) 2 µm. At
the scale of Figure 2 the agreement appears to be nearly perfect.
However, systematic deviations are evident in the region of the
concentration minimum if the scale is magnified. Figure 3 shows
a higher-resolution plot of the data att ) 0.5 s near the minimum

in concentration. The simulated concentration profiles are shown
for λ ) 1, 2, and 4µm. Forλ ) 4 µm, the simulation predicts
concentrations that are too high everywhere, compared to the
theoretical curve. The error is reduced significantly when the
mesh resolution is refined toλ ) 2 µm, although the predictions
are still too high. When the resolution is further refined to 1
µm, the errors are quite small, even at the magnified scale of
Figure 3. In addition, the predicted concentrations are no longer
systematically too high at this resoluiton but appear to be
scattered with a small amount of noise above and below the
theoretical curve. The stochastic model therefore displays
numerical convergence to the diffusion equation, at least down
to a mesh resolution of 1µm. At this level of mesh refinement,
the small random errors introduced by the stochastic nature of
the model are the main source of deviation from the theoretical
result, rather than systematic error due to the resolution of the
mesh.

This example was undertaken primarily because the diffusion
equation has an analytic solution against which the simulations
can be checked. In the remaining examples, an analytic solution
of the diffusion equation is not readily available, and finite
difference methods are used to numerically solve eq 24 for

Figure 2. Comparison of non-steady-state concentration profiles
predicted random walker model to analytical solutions of the 1-D
diffusion equation (solid curves).

Figure 3. Dependence of predicted concentration profile att ) 0.5 s
on the mesh resolutionλ. The solid curve is the analytical solution to
the diffusion equation at the same time. To distinguish the differences,
only the region near the concentration minimum is shown.

p(i,j,R) ) ki,j,Rτ (21)

τmax e
1

2n max(ki,j,R)
(22)

kA ≡ kA,0 ) DA,0/λ
2 (23)

∂cA

∂t
) ∂

∂x(DA

∂cA

∂x ) (24)

cA(x,t)0) ) 0 (24a)

cA(0,t) ) cA,0 (24b)

cA(L,t) ) cA,L (24c)

cA(x,t) ) ∑
n)0

∞ cA,L cosnπ - cA,0

n
sin(nπx

L )e-DAn2π2t/L2
(25)
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comparison to the simulation results. In any event, the limiting
case of diffusion in an ideal nonelectrolyte solution is useful
for verifying the accuracy and convergence behavior of the
stochastic model.

4.2. Diffusion in Nonideal Solutions.To model a solution
of species A under nonideal conditions, we must assume a
particular functional form for the dependence of the activity
coefficient on concentration. Following the approximations made
for nonelectrolytes,7 the following power series approximation
is used:

Three points are worth noting about this approximation. First,
in solution thermodynamics it is customary to calculate activity
coefficients on amolal basis instead of a concentration basis,
because molality is independent of temperature. Thus, it is more
common to express the molal activity coefficientγA as a
function of molality of A. Nevertheless, one can convert all
the terms and arrive at an approximation on a concentration
basis. Second, eq 26 does not tend to zero ascA f 0, contrary
to what might be expected. Instead, eq 26 can be thought of as
being valid only over a range of concentrations significantly
greater than 0. Finally, the dependence of lnyA on concentration
is assumed to be considerably stronger in eq 26 than what is
observed experimentally for solutions like sucrose in water. A
stronger dependence was assumed so that the consequences of
departure from ideality can be more easily distinguished by the
simulations.

Equation 26 was used to simulate a solution in a diffusion
cell identical to that used in Figure 2, except thatcA(0,t) ) 5
mol/L andcA(L,t) ) 1 mol/L, respectively. The rate constant
was calculated using eq 10. For all the simulations, the
approximation∆x ) λ was used. Therefore, for this example,

for a jump from sitei to site j. Substituting into eq 10 gives

Figure 4 shows the simulated concentration profiles at 0.1 s
(circles) and 1 s (squares). The solid curves are numerical
solutions to eq 24 with

When the diffusion coefficient depends on concentration,
analytical solutions to eq 24 are readily found only for infinite
or semi-inifite slabs.8 Therefore, the solid curves in Figure 4
were instead determined numerically using a simple finite

difference model which uses a forward time centered space
differencing scheme.9 Finally, to appreciate the influence of
nonideality, the predicted solutions to eq 24 assuming ideal
behavior (i.e.,DA ≡ DA,0) are shown as dashed lines.

Figure 4 indicates that the differences between the ideal and
nonideal solutions to the 1-D diffusion equation are fairly small,
despite the fact that a strong dependence of the activity
coefficients on concentration is assumed. The profile shapes
are qualitatively the same, and the only quantitative difference
is that the diffusion rate is slightly greater in the nonideal case,
due to the positive value of the derivative in eq 29. Nevertheless,
the stochastic simulation is sensitive enough to capture this small
departure from ideality, which further indicates that the rate
constant expressions are valid.

This example is intended to demonstrate the usefulness of
eq 10 in capturing departures from ideality that are due only to
the concentration dependence of the activity coefficients.
However, at concentrations as great as those used here, another
source of nonideality that is related to the increase in viscosity
of the solution becomes quite important. This viscosity effect
is not considered here but will be addressed in more detail in
the Discussion.

4.3. Electrolyte Diffusion. The diffusion of an electrolyte
that dissociates into ionic species presents at least two challenges
that do not occur with diffusion of nonelectrolytes. The first
challenge relates to the extent of dissociation. Strong electrolytes
like NaCl have large equilibrium constants and dissociate
completely in water up to fairly high concentrations, but weak
electrolytes like Ca(OH)2 do not. In addition, the ionic species
that are present in solution may react to form ion complexes,
and the relative amounts of these species are governed by
thermodynamics. Thus in NaCl solutions at moderate concentra-
tions, complete dissociation into equal numbers of Na+ cations
and Cl- anions with no complexation is a good approximation,
but Ca(OH)2 solutions contain appreciable amounts not only
of Ca2+ and OH- but also of CaOH+ and even of Ca(OH)2

0.
The second challenge to simulating electrolyte diffusion is

the constraint of preserving local charge neutrality. Anions
typically have greater self-diffusion coefficients at infinite
dilution than do cations. In a solution of NaCl, for example,
the chlorine anions are capable of diffusing faster than the
sodium cations. However, different rates of diffusion would set

ln yA ) 0.1+ 0.02cA + 0.004cA
2 (26)

θ ) λ
2

d ln yR

dx

≈ λ
2(ln yR(x+λ) - ln yR(x)

λ )
) 1

2
ln(yR(j)

yR(i)) (27)

ki,j,R ) kRxyR(i)

yR(j)
(28)

DA ) DA,0(1 +
d ln yA

d ln cA
)

) DA,0(1 + cA

d ln yA

dcA
)

) 1000+ 20cA + 8cA
2 (µm2/s) (29)

Figure 4. Diffusion in a single componenent nonelectrolyte solution
under nonideal conditions. The open circle and square symbols are the
simulation results at 0.1 and 1.0 s, respectively. The solid curves are
the numerical solutions to the 1-D diffusion equation at the same times.
The dashed curves are the analytical solutions to the 1-D diffusion
equation under the assumption of ideality.
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up a charge separation. Thus in electrolytes the various ions
are constrained to move at equal velocities despite any differ-
ences in their self-diffusion coefficients.1,10 Therefore, ions in
a diffusing electrolyte are subject to two forces. The first force
is the usual (negative) gradient in chemical potential, and the
second force is an electric field due to the motion of oppositely
charged ions. Using a microscopic description, the more mobile
ions will tend to diffuse at a greater rate than the less mobile
ones, but this tendency sets up a local gradient in electrostatic
potential in the solution. This second potential gradient will tend
to increase the velocity of the less mobile ions and simulta-
neously decrease the velocity of the more mobile ions until they
are diffusing at equal velocities.10

For electrolyte diffusion, therefore, the local specific rate
constant is calculated according to eqs 10 and 11 withψR ≡
-qRφ, whereqR is the electric charge (C/mol) andφ is the
electrostatic potential, in J/C.

As a test of these ideas, the random walker model was applied
to simulate diffusion in a solution of NaCl. The molar activity
coefficients for both Na+ and Cl- were estimated using a
modified Davies equation11

whereI is the ionic strength of the solution,

with the sum taken over all the different types of ions and with
zâ being the valence number of ion typeâ. In eq 30 A and B
are temperature-dependent parameters given by

whereF is Faraday’s constant,eo is the charge of an electron,
andεw is the dielectric permittivity of water. Also in eq 30, the
parameteraR is comparable to an ionic radius, being equal to 3
× 10-10 m for Na+ and 2× 10-10 m for Cl-. The modified
Davies equation is a reasonably accurate estimation of activity
coefficients of electrolyte species up to ionic strengths of about
0.2 mol/L.

Again supposing that∆x ) λ, eq 11 becomes

for a jump of a single cell of speciesR from site i to nearest-
neighbor sitej. Because Na+ and Cl- both are univalent,qNa+

) F and qCl- ) -F. In addition,DNa+,0 ) 1334 µm2/s and
DCl-,0 ) 2033µm2/s at 298 K.12 Therefore, eqs 4 and 10 can
be used to calculate the specific rate constants at 298 K:

The electrostatic potential at each lattice sitei is estimated
using a screened sum of charges over a neighborhood of the
M2λ lattice sites separated from the given site by a distance of
2λ or less:

where â is a dimensionless factor used to simulate the
Coulombic screening of charge by water, which is set at 6×
10-8 in this simulation,εw is the dielectric permittivity of water,
andrij is the distance between lattice sitei and j in units of λ.
The conversion factorê again is set to 2× 10-5 mol/L.

Figure 5 shows predicted concentration profiles for diffusion
of NaCl in a 1-D diffusion cell like that used for the previous
examples, except that the concentration of NaCl at the left
boundary is fixed at 150 mmol/L and at the right boundary is
fixed at 50 mmol/L. These concentrations approach the upper
limit of applicability of the modified Davies equation, so this
example should provide a fairly stringent test of the diffusion
model. Concentration profiles at 0.2 and 1.0 s are shown in the
figure, with the open symbols corresponding to Cl- and the
closed symbols corresponding to Na+ concentrations. The upper
and lower dashed curves surrounding each profile are the
hypothetical concentration profiles of Cl- and Na+, respectively,
if each behaved as an ideal neutral component.

It is evident from Figure 5 that the diffusion rate of Cl- is
decreased significantly, and that of Na+ is increased modestly,
due to the influence of the local electrostatic potential field that
arises from transient charge separation. In fact, the simulated
concentration profiles of Cl- and Na+ coincide quite closely at
both of the time snapshots shown in Figure 5. In most regions
the open symbol completely obscures the underlying filled
symbol, and it is only near the minima in the profiles that
appreciable differences are noticeable. Again, coincidence of
the concentration profiles of both ions is expected if local charge
neutrality is to be preserved.

The effective diffusion coefficient of NaCl in water is
dependent on solute concentration and temperature. At 298 K,
values have been measured experimentally with high accuracy
over a range of concentrations.1 Over the range of concentrations
relevant to this example, a quadratic fit to these data is

Numerical solution of eq 24 using a finite difference approachs
with eq 37 substituted forDsthus provides “experimental”
concentration profiles to which the stochastic model predictions
can be compared.

Figure 6 shows such a comparison for time snapshots of
predicted concentration at 0.2 s, 0.5, 1.0, and 2.0 s. Once again,
the open and closed symbols correspond to predicted concentra-
tions of Cl- and Na+ respectively. The solid curves correspond
to the numerical solution of eq 24 using eq 37 forDNaCl.

The figure indicates that the stochastic model provides good
quantitative agreement with the profiles expected from experi-
mental measurements ofDNaCl. In fact, the agreement at all times
is at least as good as for nonideal but neutral solute diffusion
shown in Figure 4.

ln yR ) -
AzR

2xI

1 + aRBxI
+

(0.2- 4.17× 10-5I)AzR
2I

x1000
(30)

I )
1

2
∑

â

zâ
2câ (31)

A )
x2F 2eo

8π(εwRT)3/2
(32)

B ) x2F 2

εwRT
(33)

θ ) 1
2
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2RT

kNa+ ) 1334
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e-F (φ(j)-φ(i))/2RT (34)

ki,j,Cl- ) 2033

λ2 xyCl-(i)
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eF (φ(j)-φ(i))/2RT (35)

φ(i) )
â

4πεw
∑

j

M2λ êλ3

r(i,j)
∑

k

Nkqk (36)

DNaCl ≈ 1556.4- 1.17842cNaCl + 0.00381cNaCl
2 (µm2/s)

(37)

Rate Constants for Nonideal Diffusion J. Phys. Chem. A, Vol. 111, No. 11, 20072089



This rather simple stochastic model appears to capture some
basic electrolyte diffusion phenomena quite well. However, a
somewhat subtle problem with the model exists as the system
approaches steady state. Specifically, the stochastic model used
here predicts a linear concentration profile for both Na+ and
Cl-. When the model obtains this steady state, the electrostatic
potential is decreased to zero everywhere, and therefore the
fluxes of Na+ and Cl- can differ while still maintaining charge
neutrality at each node. That is, the stochastic model predicts
that the effective diffusion coefficients of Na+ and Cl- return
to their infinite-dilution values as a steady state is approached.
In reality, a system like that simulated here will exhibit a
nonlinear concentration profile at steady state, along with a well-
defined liquid junction potential that depends only on the
difference in end point concentrations. This potential exactly
counteracts the tendencies of the different ions to diffuse at
different rates and therefore not only preserves charge neutrality
but also keeps the velocities of the different ions equal.

The stochastic model used here is unable to capture the
phenomenon of a liquid junction potential, but that seems to be
a limitation of the type of model used rather than a limitation

of the expressions for the rate constants. Continuum approaches
to electrolyte diffusion, which numerically solve the Nernst-
Planck and Poisson equations, also fail to capture this effect
unless an a priori balance of charge flux is used to enforce
charge neutrality.13

5. Discussion

The transition state approach used by Eyring and others4 to
derive rate constants for diffusion has been criticized as being
oversimplified. The principal objection to the approach is that
it seems to assume a quasi-crystalline structure of the liquid so
that the idea of discrete jumps between equilibrium sites
becomes meaningful. Furthermore, the accuracy with which the
theory predictsabsolutediffusion rates in water is known to be
poor, a fact that was acknowledged even by Eyring and co-
workers.4 Nevertheless, the basic ideas of transition state
theorysdistinguishing specific rate constants for forward and
reverse processes, the existence of an activation barrier, etc.s
are extremely helpful from a qualitative viewpoint. Provided
that one is not trying to predict absolute values of the rate
constants, the approach is useful for approximatingrelatiVe
influences of temperature and nonideality on diffusion rates,
the absolutevalues of which are assumed known under ideal
conditions.

The agreement between the transition state approach and the
linear phenomenological rate laws, which was demonstrated in
eqs 18 and 19, occurs only whenθ in eq 11 is much smaller
than 1. This low value allows the expansion of the exponential
factor to first order, upon which the linear rate law is recovered.
In the overwhelming majority of practical situations,θ will
indeed be much smaller than 1, but it is still interesting to
consider the nature of the disagreement between the two
approaches whenθ is not small. The linear law embodied in
eq 1 has been experimentally validated over a wide range of
conditions but, nevertheless, is recognized as a “special case”
that may need to be extended to account for nonlinearities under
certain circumstances.14 Focusing attention on the potential field
term in eq 11, if one considers∇ψ to be a body force operating
per unit mass, then for diffusionλ∇ψ can only be comparable
to RT if ∇ψ is about 1013 times greater than the acceleration
due to gravity on the Earth’s surface. This would seem to qualify
as a situation that is extremely far from equilibrium, even on a
microscopic scale, and we may begin to be suspicious of the
applicability of the linear rate law. On the other hand, the
transition state approach involves several assumptions that would
make its validity at least as dubious under such conditions. For
example, the chemical potential of the activated complex is
assumed to be the same under ideal and nonideal conditions
(see Figure 1). But there is no reason to expect that this
assumption holds under extremely large driving forces and, if
this assumption is invalid, it is difficult to assess the relative
changes in the forward and reverse rate constants under nonideal
conditions. Therefore, because the assumptions of both ap-
proaches become questionable under such extreme conditions,
at this point it may be advisable to simply confine attention to
the broad range of conditions under which they agree with each
other.

Accepting the restriction to moderate driving forces, and
knowing that nonidealities affect the rates of diffusion at any
temperature, we may also ask whether the activation energy is
affected too. Departures from ideality, due to either the
concentration dependence of the activity coefficients or the effect
of potential fields, are embodied in eqs 10 and 11. The former
effect contributes a term to the chemical potential, eq 5, that is

Figure 5. Diffusion of NaCl. The open symbols indicate the
concentration profiles of Cl- and the closed symbols indicate the
concentration profiles of Na+. The upper and lower dashed curves
surrounding each profile correspond to the ideal concentration profiles
of Cl- and Na+, respectively, based only on their self-diffusion
coefficients at infinite dilution.

Figure 6. Comparison of NaCl concentration profiles predicted by
the stochastic model (symbols) to those predicted using experimentally
observed effective diffusion coefficients for NaCl in ref 1 (solid curves).
The open symbols indicate the concentration profiles of Cl- and the
closed symbols indicate the concentration profiles of Na+.
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linear in temperature, and that linearity inT is cancelled when
the activation barrier is divided byRT in the argument of the
exponential term in the rate constant. Therefore, nonideality due
only to the concentration dependence of the activity coefficients
does not contribute significantly to the temperature dependence
of the rate constant. [There is in fact a modest temperature effect
because the activity coefficients themselves change with tem-
perature.]

In contrast to this chemical interaction effect, the influence
of a potential field contributes an additive term to the chemical
potential that is independent of temperature. Therefore, a 1/T
dependence carries through with the potential in eqs 10-12.
Assuming no chemical interactions, i.e.,yR ≡ 1, then substituting
eq 4 into eq 10 and rewriting gives

Thus, a spatially varying potential field could conceivably
modify the activation energy for diffusion. However, as
discussed earlier, any such effect would be observable only
under such large potential gradients that the overall approach
becomes questionable. Therefore, in any practical situation,
potential gradients also should have a negligible influence on
the activation energy.

An important influence on diffusion rates, which has not been
considered directly in this treatment, is the viscosity of the liquid.
Diffusion and viscous flow in liquids are closely related
phenomena. Chandra and Bagchi15 have shown for electrolytes
how the classical descriptions of these phenomena can be unified
by a microscopic theory based on mode coupling. Both diffusion
and viscous flow are rate processes, and the activated complex
in both cases corresponds to a saddle point in potential energy
that arises as molecules slide past one another. Thus, the
activation energies of both processes are the same, as shown
earlier by Li and Chang.16

The Stokes-Einstein law provides a relation between the
diffusion coefficient of solute in a dilute solution and the
viscosityη of the solvent:

Over a modest range of temperatures, the 1/T factor in this
equation is much weaker than the exponential temperature
dependence ofD andη, so both processes have approximately
the same temperature dependence. As a result, in ideal or dilute
solutions, the effect of viscosity on diffusion indicated in eq 39
is accommodated in the temperature dependence ofD0 given
in eq 4. In addition, the viscosity of dilute solutions is
approximated by the Einstein relation,17

whereR is a system-dependent constant andφ is the volume
fraction of solute andη0 is the viscosity of the pure solvent.
This means that the viscosity of a very dilute solution, for which
φ , 0.4, is not appreciably different from that of the solvent.
Therefore, the rate constants provided in eqs 10 and 12 should
be a good approximation when simulating diffusion either in
ideal or in dilute nonideal systems.

The situation is more complicated at higher concentrations15

where the viscosity of the solution differs appreciably from that
of the solvent at the same temperature. In concentrated systems,

the diffusion coefficients, and therefore the specific rate
constants, will still vary inversely with the solution viscosity.1,10

Thus, the forward and reverse rate constants for diffusion have
a composition dependence that has not been considered explic-
itly in this paper. However, if the viscosity of a solution at a
particular average composition were known relative to the pure
solvent, then one could estimate the pertinent diffusion coef-
ficient relative to its value in an ideal solution according to eq
39. With this estimate in hand, the diffusion coefficient could
then be related to the specific rate constants using eqs 4, 10,
and 12.

In the example of diffusion of NaCl given in the previous
section, a modified Davies equation was used to approximate
the activity coefficients. With this approximation, the activity
coefficients decrease more severely with concentration than they
do in real solutions, as shown in Figure 7. The discrepancy at
higher concentrations means that the approximation will exag-
gerate the magnitude of d(lny)/d(ln c), thereby underestimating
the effective diffusion coefficient of each ion. Therefore, in that
particular example, the error involved in the approximation of
activity coefficients fortuitously helps to compensate for the
error in neglecting the increasing viscosity at higher concentra-
tions. At the low concentrations used in this example, neither
of these offsetting errors is extremely large, but one should be
aware of these issues when modeling at higher concentrations:
expending the effort to account for solution viscosity might
produce seemingly poorer predictions if the Davies equation is
used for the activity coefficients.

With regard to high-concentration effects, there is no doubt
that continuum approaches exist that can provide more accurate
results over a wider range of concentrations, both for nonelec-
trolytes and especially for electrolyte diffusion.18,19 However,
an advantage of the approach used here is that it is well-suited
for incorporation into stochastic numerical models, as shown
by the examples in the previous section. For certain types of
problems, simulation by a stochastic method may be preferable
to continuum simulations because stochastic methods can be
relatively easy to implement and they often avoid numerical
stability issues that can arise in some continuum approaches.
Furthermore, in reaction-diffusion problems, a stochastic ap-
proach could enable the investigation of spatial correlations
among reacting species, which can result when the rates of
diffusion and reaction are comparable. Continuum approaches
to these problems are based on mean-field approximations for

Figure 7. Molar activity coefficients for NaCl approximated by the
modified Davies equation (solid curve) compared to the experimentally
measured values (open circles) as a function of concentration. Experi-
mental data taken from refs 1 and 10.

kR,f ) g′ exp[-(∆R,0
Hh/ + λ

2

dψR

dx )
RT

] (38)

D ∝ 1
Tη

(39)

η ) η0(1 + Rφ)
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concentration and implicitly assume that such correlations are
smoothed out over the length scale of interest.6

In closing, it may be noted that the rate constant approach
described here can be expanded naturally to include advection
phenomena. As a simple example, in the limiting regime of ideal
diffusion,kR,f ) kR,r. A uniform velocityVR of a particular mobile
species in thex direction, in a reference frame that moves with
the solvent, can be simulated by biasing the rate constants in
that direction such thatkR,f - kR,r ) VR/λ. Referring to eqs 10-
12, it is easy to show that

In other words, this velocity of speciesR will be simulated by
the random walker algorithm if one assigns a potential energy
to each lattice site (x, y, z) given by

to within an additive constant. This idea could be further
expanded to model segregation of species with different
molecular masses under the influence of a constant body force.

6. Summary

Specific rate constants for diffusion in nonideal solutions,
with or without the presence of a potential field, have been
derived using ideas from transition state theory. The approach
is effectively the same as that used by the original proponents
of transition state theory over 60 years ago, and the results are
in agreement with that earlier work. When these rate constants
are incorporated into a random walker model, the influences of
solution nonideality can be simulated accurately both for

nonelectrolytes and for simple electrolytes at dilute concentra-
tions. The accuracy of the model to higher concentrations,
greater than 0.1 mol/L, is dependent on the ability to estimate
viscosity as a function of composition.
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