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Abstract

This paper outlines the development of a mathematical model for the transport of gases through the
char matrix of a burning solid. Two basic assumptions are made. First, the gases evolved by the degrada-
tion of the virgin material are transported by pressure differences through a network of narrow passage-
ways created in the char by the conversion of material from the solid to the gas phase. This process is
treated as flow through a porous medium, with the mass flux related to the pressure gradient by Darcy’s
law. Second, the gas temperature is the same as the local char temperature. This model is first used to study
the time-dependent thermal degradation of a semi-infinite charring solid heated above the charring temper-
ature. Then, the opposed flow flame spread treated by Atreya and Baum [Atreya, A., Baum, H.R., Proc.
Combust. Inst., 29 (2002) 227–236] is revisited. It was found that the solution to the condensed phase flame
spread problem is identical to the initial transient problem. Weak dependence of the solution on the accu-
mulation parameter ‘b’ validates the assumption made in [Atreya, A., Baum, H.R., Proc. Combust. Inst., 29
(2002) 227–236] and completes the flame spread solution. Fuel mass flux follows the heat flux lines and is
normal to the isobars. Calculations using representative values for wood show that the pressure generation
at the char–virgin material interface is considerable and equal to 13.27 kPa. Finally, in view of the fact that
the nonlinear pressure equation poses considerable numerical difficulties, this analytical solution may help
in determining the stability and accuracy of the numerical scheme used for more complicated problems.
� 2006 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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1. Introduction

An understanding of the burning of charring
materials is essential for developing models of fire
growth in buildings. The transient growth of the
char layer during fuel production complicates
both the heat and the mass transfer analysis.
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It introduces an insulating char layer of unknown
thickness between the heat transfer from the gas-
phase flames and the virgin material that gener-
ates fuel gases by solid-phase pyrolysis. Further,
the combustible gases produced at the char–virgin
material interface must be expelled by generation
of high pressures. Initially, when the interface is
at or near the surface of the solid being heated,
it is often assumed that the gases are instantly
expelled from the solid material into the adjacent
oxidizing atmosphere permitting combustion to
take place in the gas phase. However, if the
ute. Published by Elsevier Inc. All rights reserved.
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process goes on long enough, the interface will no
longer be adjacent to the heated surfaces and the
spatial distribution of gases over the surfaces of
the solid will depend on the internal pressure
generation and the char porosity. Since these fuel
gases are responsible for fire growth, it is neces-
sary to account for their transport through the
char matrix to any surface exposed to the oxidizer.
Figure 1 shows how the fuel gases generated at
one location and transported to another can affect
fire growth. Significant asymmetry is observed due
different permeability across and along the grain
direction. This is discussed in greater detail in
Refs. [6,7].

Several models of pyrolysis of charring materi-
als have been developed in the past motivated
either by fires or biomass pyrolysis. Di Blasi [2]
summarizes the state of the art of transport mod-
els for charring solid degradation. However, the
primary focus of many of these models was often
not pressure driven gas transport because the one-
dimensional assumption usually made obviates
the need. Some models [3–5] have considered vol-
atile products transport using Darcy’s law with
isotropic permeability despite being one-dimen-
sional. Fredlund [9] has considered a two-dimen-
sional model and even measured the internal
pressure generation. All these models were numer-
ically solved to obtain the progress of the char
front and gas generation. In this work a physics-
based model of fuel gas generation and transport
is developed, analytically solved, and applied to
the flame spread model of [1].

First, basic equations and boundary conditions
controlling the gas transport are derived and used
Fig. 1. Axis-symmetric flame spread on horizontal
surface of Douglas fir ignited at the center in quiescent
atmosphere (taken from Ref. [6]). The remaining char
pattern shows the effect of different permeability across
and along the grain direction. Clearly, transport of fuel
gases generated in one location to another can signifi-
cantly affect the flame spread.
to study the time-dependent thermal degradation
of a semi-infinite charring material heated above
the charring temperature. Then, the opposed-flow
flame spread treated by [1] is revisited. The ques-
tion how the evolved fuel gas is transported from
the interface where it is generated to the surface is
addressed.
2. Gas transport model

Basic assumptions made in the model are:
(i) The gases evolved by thermal degradation are
transported by pressure differences through the
porous char. This process is treated as flow
through a porous medium, with the mass flux
related to the pressure gradient by Darcy’s law.
(ii) The charring material is assumed to be initially
moisture-free and non-porous and the porosity
develops as a result of charring. This assumption
eliminates the condensation and re-evaporation
of pyrolysis gases and moisture that are forced
by high pressure into the virgin interior. (iii) The
temperature in the gas is the same as the local char
temperature and the convective heat transfer
between the gas and the char is ignored. Thus,
the model is reduced to an energy equation for
the virgin material and char, together with mass
conservation for the transport of gaseous degra-
dation products through the char. (iv) Thermal
decomposition occurs at a well-defined pyrolysis
temperature Tp. The corresponding equations
are supplemented by boundary conditions at the
char–virgin material interface, and at the char–ox-
idizer interface.

Let qv denote the density of the virgin material,
and let qc be the density of the char, where qc < qv.
qv and qc are assumed to be constants with abrupt
change occurring at a well-defined pyrolysis tem-
perature Tp. The lower char density is assumed
to be caused by the creation of small void spaces
through which the evolved gases flow. Shrinkage
of char is ignored. The void fraction ‘e’ is then giv-
en by the expression

e ¼ ðqv � qcÞ=qv: ð1Þ
To characterize the thermodynamic state of the
gas in terms of the usual density, temperature,
and pressure, q must denote the gas density per
unit volume of space occupied by the gas. The
velocity ~u must be defined such that ~m ¼ q~u is
the local mass flux of gas through a macroscopic
surface element in the char. Here, char is treated
as a continuum, with gas and solid matter coexis-
ting in the volume occupied by the char. Also,
since the generation of decomposition products
occur at a predefined temperature (Tp) that sepa-
rates char from the virgin material, there are no
gas-generation terms in the porous char matrix.
Thus the equation expressing conservation of
mass for the evolved gas takes the form:
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oðqeÞ
ot
þr:ðq~uÞ ¼ 0: ð2Þ

Darcy’s Law is used to relate the local mass
flux and pressure gradient in char. For gas perco-
lating through char Landau’s [10] approach is
used. Accordingly, for an elliptical pipe of cross-
section with semi-axes a and b, the mass flux vec-
tor is related to the pressure gradient through the
formula:

~m ¼ � ðabÞ2

4mða2 þ b2Þ
rp: ð3Þ

Here, m is the kinematic viscosity, related to densi-
ty and gas viscosity l(T) by m = l/q. The pressure
in the gas is denoted as p, while the temperature of
both gas and adjacent char is T. Since the model is
based on the actual thermodynamic properties in
the gas, the perfect gas law can be used to relate
density to pressure and temperature.

p ¼ qRT ; ð4Þ
where, R is the gas constant for the evolved gases.
Finally, using the fact that the cross-sectional area
A of the pipe is given by the expression A = pab,
the relation between the mass flux and pressure
gradient takes the form:

~m ¼ � ðabÞA
4pða2 þ b2Þ

prp
lðT ÞRT

� �
: ð5Þ

Equation (5) shows that the local mass flux is
composed of two parts; a shape dependent factor
proportional to the cross-sectional area of the
pipe, multiplied by a term which is proportional
to the gradient of pressure squared, and which
depends only on the properties of the gas. The
shape factor will have to be replaced by an empir-
ical factor, since there is no way of knowing the
actual shape of the passages created by the gasifi-
cation processes.

The final form of Eq. (5) comes from noting
that the mass flux averaged over an area that is
large compared with any individual pore passage
must account for the fact that only a fraction of
the area of order e2/3 contains voids. Thus, the
form of Darcy’s law that will actually be used is:

~m ¼ q~u ¼ �eð2=3ÞK
prp

lðT ÞRT

� �
: ð6Þ

The permeability K has dimensions of area. It is
an empirical parameter that characterizes the char
as a porous medium. The mass conservation equa-
tion, which controls the transport of gases
through the char, then takes the final form:

o

ot
p

RT
e

� �
¼ r � eð2=3ÞKp

lðT ÞRT
rp

� �
: ð7Þ

Note that Eq. (7) is parabolic. However, the
domain through which the evolved gases can per-
colate is not known in advance, but must be deter-
mined as part of the solution for the associated
problem for the evolution of the temperature field.

At surfaces exposed to the surrounding atmo-
sphere, the pressure is ambient, pa. The boundary
condition at the interface between the char and
the virgin material is as follows: Let ~V be the local
velocity of the interface and ~n be the unit normal
to the surface defined with positive~n pointing into
the virgin material. Then:

�q~u �~n ¼ eð2=3ÞK
prp �~n
lðT ÞRT

� �

¼ ðqv � qcÞ~V �~n: ð8Þ

Physically, Eq. (8) states that the rate at which
evolved gases are created is equal to the product
of the velocity of the char front normal to itself
multiplied by the density difference between the
char and the virgin material. Thus, all the mass
lost by the solid phase is taken up by the gas, with
the pressure adjusting accordingly. Finally, at an
impermeable boundary between the char and an
inert solid material, the gas cannot penetrate into
the inert solid. Thus, if~m denotes a unit normal to
the impermeable boundary:

rp �~m ¼ 0: ð9Þ
3. Transient thermal model

Consider an idealized scenario in which the
temperature at the surface of a semi-infinite solid
is instantaneously raised from an initial ambient
temperature T1 to a surface temperature Ts > Tp.
Since the pressure field is determined by the tem-
perature distribution in the char and the virgin
material, it is considered first. Let Tv (x, t) be the
temperature, kv be the thermal conductivity, and
Cpv be the heat capacity of the virgin material,
with an analogous notation in the char. Then:

qcCpc
oT c

ot
¼ kc

o2T c

ox2
0 6 x 6 X ðtÞ;

qvCpv
oT v

ot
¼ kv

o2T v

ox2
X ðtÞ 6 x 61: ð10Þ

Here, x = X(t) is the position of the interface be-
tween materials, with x measured from the heated
surface.

The boundary conditions are: At the surface
x = 0, Tc = Ts. Far from the surface, the virgin
material is at the ambient temperature. Thus;
Tv = T1 as x fi1. Finally, at the interface
x = X (t), three conditions must be satisfied.

T v ¼ T c ¼ T p ; kv
oT v

ox
¼ kc

oT c

ox
þ qvX 0ðtÞQ: ð11Þ

The first two conditions require that the tempera-
ture at the interface is continuous and equal to the
char formation temperature. The final condition



Fig. 2. Interface location parameter C as function of
dimensionless endothermic energy Q/(Cpv (Tp � T1)).
The remaining parameters are fixed at the values
kc/kv = 1/3, (Ts � Tp)/ (Tp � T1) = 3, (av/ac) = 3/4.
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states that the heat flux transmitted from the char
must supply an energy Q per unit mass of virgin
material to liberate the gas at the char front, with
the excess conducted into the interior of the solid.
Solutions satisfying the temperature boundary
conditions at the surface, interface, and in the
interior can be obtained by noting that the ab-
sence of any independent length or time scale im-
plies that all physical quantities depend only on a
similarity variable g, defined as:

g ¼ x=
ffiffiffiffiffiffiffi
av t
p

; av ¼ kv=ðqv CpvÞ: ð12Þ
This implies that the interface position corre-
sponds to a constant value of g. Denoting this
value as g = C, the interface position can be
expressed as:

X ðtÞ ¼ C
ffiffiffiffiffiffiffiffiffiffi
ðavtÞ

p
: ð13Þ

The solutions satisfying the first two of Eq. (11)
can be written in the form:

T v ¼ T pF ðgÞ

F ðgÞ ¼ T1
T p

þ 1� T1
T p

� �
erfcðg=2Þ
erfcðC=2Þ ; ð14Þ

T c ¼ T pGðgÞ

GðgÞ ¼ T S

T p

� T S

T p

� 1

� �
erfðg�=2Þ
erfðC�=2Þ ; ð15Þ

C� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðav=acÞ

p
C g� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðav=acÞ

p
g: ð16Þ

The parameter C that determines the location of
the interface is found by requiring that the last
of Eq. (11) be satisfied. The result is identical with
that obtained for the interface condition in the
flame spread problem considered in [1]. In slightly
different notation it can be expressed as follows:

Q
CpvðT p � T1Þ

¼ kc

kv

� ðT S � T pÞ
ðT p � T1Þ

� f1ðC�Þ � f2ðCÞ;

ð17Þ
where

f1ðC�Þ ¼
2ffiffiffi
p
p

C�
� expð�C�2=4Þ

erfðC�=2Þ ;

f 2ðCÞ ¼
2ffiffiffi
p
p

C
� expð�C2=4Þ

erfcðC=2Þ : ð18Þ

Figure 2 shows the variation of the interface
location parameter C with the dimensionless
endothermic energy parameter Q/Cpv((Tp � T1)).
The other parameters are fixed at the values indi-
cated in the figure caption, which are chosen to be
consistent with those used in [1]. For these values,
when the interface is no longer endothermic,
C = 1.15392. In principle, an exothermic interface
is possible, but the maximum possible energy
release corresponds to Q/Cpv ((Tp � T1)) = �1
no matter what the thermal properties of either
the char or the virgin material. As this value is
approached, the char layer depth approaches
infinity. Beyond this point, there are no solutions
to Eq. (17), and thus no solutions to the energy
equations of the postulated form.
4. Mass transfer in char

For the calculation of the mass transport
through the char, it will be assumed that the inter-
face is endothermic. The mass transport and hence
the pressure distribution is confined to a domain
bounded by the interface x ¼ X ðtÞ ¼ C�

ffiffiffiffiffiffiffi
ac t
p

and
the char surface x = 0. The coefficients in Eq. (7)
depend only on the variable g*, while the char
interface and surface correspond to the fixed val-
ues g* = C* and g* = 0, respectively. Thus, it
makes sense to assume that the pressure is a func-
tion of g* only. Denoting the pressure at the char
surface by ps, the pressure in the evolved gas is
written as:

pðx; tÞ ¼ psP ðg�Þ: ð19Þ
Moreover, since the evolved gas viscosity is a func-
tion of temperature only, a reasonable assumption
is that l/lp = (T/Tp)n. Using the solution for the
temperature field obtained above, Eq. (7) becomes:

b
g�

2

d

dg�
ðP ðg�Þ=Gðg�ÞÞ

þ d

dg�
P ðg�Þ=ðGðg�ÞÞnþ1 dP

dg�

� �
¼ 0; ð20Þ

b ¼ e1=3aclp=ðpsKÞ: ð21Þ

The boundary conditions at the interface and the
char surface respectively are:

P
dP
dg�
ðg� ¼ C�Þ ¼ C�

2
bðqvT pÞ=ðqsT sÞ � M ;

P ð0Þ ¼ 1: ð22Þ



Fig. 3. Evolved gas pressure distribution p/ps = P(0)(g*)
in char for different values of mass flux parameter M.
The solutions are valid for values of the transport
parameter b = 0. The remaining parameters are
Ts/Tp = 2, and C* = 0.5.
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Equations (20)–(22) reveal some important
physics. Clearly, the parameter b plays a major
role in the mass transport. Small values of b
correspond to nearly instantaneous transport
of the evolved gases from the interface to the
surface, with little accumulation in the interior
of the char. Thus, models that postulate instant
surface emission of gases inherently assume that
the material in question has small values of b.
Conversely, if the material has a value of b that
is not small, then the local accumulation in the
interior cannot be neglected, and the mass flux
at the surface is not the same as that evolved
in the interior. Moreover, the spatial distribu-
tion of the evolved gases on the surface is no
longer simply related to the spatial generation
pattern in the interior.

The magnitude of the pressure rise can be
inferred from Eq. (22). Note that even for small
values of b the pressure rise can be considerable.
The right-hand side of the first of Eq. (22) is
proportional to b (qv/qs). Here, qs is the evolved
gas density evaluated at the char surface. Even
if the first factor is small, the density ratio of
virgin solid to gas is quite large. The remaining
terms in the right hand side of this equation
are typically of order unity. This implies that
M is typically of order unity, even if b is small.
Thus, the pressure rise will typically not be small
compared with the ambient pressure in the gas at
the surface of the char. Indeed, if the internal
pressure is high enough, it can rupture the char
surface producing a crackling sound – a familiar
experience of a wood log in a fire place.

A natural starting point for the analysis of
Eqs. (20)–(22) is the observation that when
b = 0, an analytical solution can be found for
any value of M. Denoting the resulting pressure
distribution by P = P(0), the solution takes the
form:

P ð0Þðg�Þ ¼ 1þ 2M
Z g�

0

½GðxÞ�ð1þnÞ dx
� �1=2

: ð23Þ

The integral in Eq. (23) represents the effect of
the temperature dependence of the viscosity of
the evolved gases. If it is further assumed that
l � T so that n = 1, the integral can be evaluated
explicitly. Denoting the integral as I (g*), the
result is:

Iðg�Þ ¼ T s

T p

g� � 2
T s

T p

T s

T p

� 1

� �
g1ðg�Þ

erfðC�=2Þ

þ T s

T p

� 1

� �
=erfðC�=2Þ

� �2

g2ðg�Þ; ð24Þ

g1ðg�Þ ¼ g�erfðg�=2Þ

� 2ffiffiffi
p
p 1� exp �ðg�Þ2=4

� �� �
; ð25Þ
g2ðg�Þ ¼ g� erfðg�=2Þ½ �2

þ 4ffiffiffi
p
p erfðg�=2Þ exp �ðg�Þ2=4

� �

� 2

ffiffiffi
2

p

r
erfðg�=

ffiffiffi
2
p
Þ: ð26Þ

Figure 3 shows how the pressure distribution of
the evolved gases in the char changes as the mass
flux parameter increases, assuming that the accu-
mulation parameter b = 0. Note that since P(0)

represents a pressure normalized with respect to
the ambient pressure at the char surface, the pres-
sure rise is quite significant. Thus, a linearized
treatment of this equation would be very inaccu-
rate. This nonlinear pressure equation poses con-
siderable difficulties in numerical solution. The
above analytical solution is helpful in determining
stable and accurate numerical schemes.

The above solution, although derived for b = 0
and M fixed, has a much wider range of validity.
Indeed, if we write M ¼ b ~M and treat ~M as a large
parameter with b fixed, then it is easy to see that
the same solution holds with an error Oð1=

ffiffiffiffiffi
~M

p
Þ.

The accuracy of the analytical solution has been
confirmed by testing it against numerical results
computed for b = 1, M = 10, 100, and 1000. The
errors are actually much smaller for the cases
investigated than the error estimate. This is in fact
the most realistic case for this particular problem,
since ~M takes the form:

~M ¼ C�

2
ðqvT pÞ=ðqsT sÞ: ð27Þ

In general, C* is a number of order one (see
Fig. 2), as is the temperature ratio Tp/Ts. Howev-
er, the density ratio of virgin solid to gas at the
char surface will almost always be large. Finally,
as shown below, the solution is also valid for the
pressure distribution in the opposed flow flame
spread problem studied in [1].
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5. Opposed flow flame spread

Analysis of the flame spread problem requires
the solution of a coupled problem involving both
the gas and condensed phases. Most previous
research has focused on the gas phase. The ther-
mal degradation of the condensed-phase material
is typically treated using a surface pyrolysis model
coupled to a simple heat conduction analysis in
the interior of the solid. There has been almost
no work on charring materials like wood, where
the gaseous ‘‘fuel’’ is liberated at an interior sur-
face whose location must be found as part of the
solution.

Figure 4 shows the overall geometry of the
flame spread problem in a coordinate system mov-
ing with the flame. While this paper is concerned
only with the condensed phase gas transport mod-
el, it is important to explain certain features of the
overall problem. To begin, it is assumed that the
problem can be regarded steady in a frame of ref-
erence moving with the flame speed V. The objec-
tive of the analysis is to determine V as a function
of the material properties of the solid fuel, the gas-
eous oxidizer, and the ambient speed U1 of the
opposed flow.

Two simplifications are introduced that permit
the gas phase and condensed phase analyses to be
considered separately, with the results of each
analysis combined to produce the desired results.
First, it is assumed that there is no heat or mass
transfer between the gas and condensed phase
upstream of the flame front. Note that this does
Fig. 4. A composite flame spread figure similar to Fig. 5 of Ref
the gas phase. The property values are the same as those in [1].
isotherms and isobars follow lines of constant x*. Fuel gases a
values are: Q/Cpv (Tp � T1) = 1; av/ac = 0.75; (Tp

lp = 2.3 · 10�5 kg/ms; ac = 6.164 · 10�7. Also, char poros
permeability of char = 10�13 m2; b = 1.063 · 10�03; Ts = 850 K
not mean that there is no preheating of the gas
or solid. While the gas phase dynamics is not of
interest here, it should be noted that both the flow
and temperature distributions depart from their
ambient values ahead of the flame. The second
assumption is that the surface temperature of
the char is uniform downstream of the flame
front. This was experimentally found to be
approximately constant [8]. This assumption
yields an internally consistent coupled solution
to the heat transfer problem in both phases. Spec-
ification of a value for this temperature, together
with all the material properties and upstream flow
conditions, then uniquely determines the flame
speed.

Up to this point, all assumptions and simplifi-
cations are contained in the solutions described
in [1]. However, that analysis required a third
major assumption that relates the spatial distribu-
tion of the mass flux of gas liberated at the
char–virgin material interface to that at the sur-
face. The analysis presented below removes that
assumption, and replaces it with a physics-based
model for the evolved gas transport. It will be
demonstrated that the results obtained using this
model are consistent with the earlier analysis,
and thus complete the solution for the opposed
flow flame spread over charring materials present-
ed in [1].

The starting point for the analysis is the repre-
sentation of the steady state version of Eq. (7) in
the parabolic coordinate s*, x* system shown in
Fig. 4 (which is similar to Fig. 5 of Ref. [1]).
. [1] showing computed isobars in char and streamlines in
However, instead of isotherms, isobars are shown. Both
re driven along lines of constant s*, as shown. Property
� T1)/(Ts � T1) = 0.275; kc/kv = 1/3; c = 0.5018;

ity = 0.76; fuel gas molecular weight = 0.08 kg/mol;
; Tp = 451 K; T1 = 300 K.
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V
o

ox
p

RT
e

� �
¼ o

ox
eð2=3ÞKp
lðT ÞRT

op
ox

� �

þ o

oy
eð2=3ÞKp
lðT ÞRT

op
oy

� �
: ð28Þ

Equation (28) must be solved subject to the fol-
lowing boundary conditions at the gas–solid inter-
face y = 0.

pðx; 0Þ ¼ ps for x P 0
op
oy
ðx; 0Þ ¼ 0 for x < 0:

ð29Þ
The first of Eq. (29) states that at the surface of

the solid, downstream of the flame front, the
pressure must be the ambient pressure. The sec-
ond of these equations states that there is no
mass flux of gasified fuel through the surface
upstream of the flame front. If this were not
true, the flame would begin further upstream, vio-
lating the geometry on which the analysis is based.

Similarly, the temperature Tv in the virgin
material and Tc in the char are solutions to the
heat conduction equations in each material.

V
oT c

ox
¼ ac

o2T c

ox2
þ o2T c

oy2

� �
;

V
oT v

ox
¼ av

o
2T v

ox2
þ o

2T v

oy2

� �
: ð30Þ

At the char–gas interface, temperature satisfies
boundary conditions analogous to pressure.

T cðx; 0Þ ¼ T s for x P 0
oT
oy
ðx; 0Þ ¼ 0 for x < 0:

ð31Þ
Again, for x P 0, the temperature takes on the
constant value Ts, while for x < 0 there is no inter-
phase heat transfer. At the char–virgin material
interface, continuity of temperature requires that
Tc = Tv = Tp. As in the earlier problem, the loca-
tion of this interface must be determined as part of
the solution. Finally, far from the gas–solid inter-
face, the temperature in the virgin material retains
its ambient value; Tv = T1.

Solutions are obtained in parabolic coordi-
nates defined as (see Fig. 4):

s� þ ix� ¼
ffiffiffiffiffi
av

ac

r
ðsþ ixÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V
ac
ðxþ iyÞ

r
;

where V is the flame speed and ac ¼
kc

qc Cpc

: ð32Þ

The isotherms shown in Fig. 5 of Ref. [1] are
similar to isobars shown in Fig. 4. These are
lines of constant x* (or constant x). The trans-
formation is defined so that the branch cut is
taken to be the positive x axis. Thus, s* = 0
on the negative x axis, and s� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi
Vx=ac

p
on

the positive x axis in the char. The positive x
axis corresponds to x* = 0. Assuming all physi-
cal quantities to be functions of x* ensures that
the gradient of all physical quantities in the sol-
id is perpendicular to the surface for x < 0.
Since the temperature and pressure are constant
for x P 0, assigning these values at x* = 0 spec-
ifies the boundary conditions at the gas–solid
interface.

To transform the equations to parabolic coor-
dinates, note that the pressure and temperature
depend only on x*. Introducing the dimensionless
variables:

T = TpG(x*), l = lp(T/Tp)n, and p = psP (x*),
the conservation of mass for the evolved gases
becomes:

2bx�
d

dx�
ðPðx�Þ=Gðx�ÞÞ

þ d

dx�
P ðx�Þ=ðGðx�ÞÞnþ1 dP

dx�

� �
¼ 0

Where; b ¼ e1=3aclp=ðpsKÞ: ð33Þ

Here, b is the accumulation parameter identified
in Eq. (21). A similar analysis yields the analogous
equations for the char temperature function G(x*)
and virgin material temperature Tv = TpF(x).

2x�
dG
dx�
þ d

dx�
dG
dx�

� �
¼ 0

2x
dF
dx
þ d

dx
dF
dx

� �
¼ 0: ð34Þ

It is clear from the discussion of the temper-
ature boundary conditions that by identifying
x* = g*/2 and x = g/2, the solutions for the
temperature field given in Eqs. (14) and (15)
are also the solutions for the flame spread prob-
lem. Since we also require that P(0) = 1 to
enforce the surface pressure boundary condition,
if we can demonstrate that the interface condi-
tion for the flame spread problem is identical
to Eq. (22), then the equivalence of the two
problems is complete.

The mass flux _m of evolved gas at the interface
is given by the expression:

_m ¼ �ðqv � qcÞV~i �~n; ð35Þ
where,~i is a unit vector in the flow direction,~n is a
unit normal to the interface pointing into the vir-
gin material and V is the flame spread velocity.
Since the pressure and temperature are only func-
tions of x*, the interface is a surface defined by
x* = C*. Using this we obtain:

_m ¼ ðqv � qcÞ2acC
� jrx�j2

jrx�j : ð36Þ

The mass flux can also be written in the form:

_m ¼ e2=3K
prp �~n
lðT ÞRT

rp �~n ¼ dp
dx�
jrx�j ð37Þ
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Introducing the dimensionless pressure P and
using the equation of state for the evolved gas,
ps = qsRTs, the two expressions for _m can be com-
bined to yield the following condition at the
interface:

P
dP
dx�
¼ 2C�

qvT p

qsT s

b: ð38Þ

This result is identical with that obtained in Eq.
(22) if we again make the identification x* = g*/2
and note that the value of C* obtained here must
satisfy the same condition. Thus, the solution of
the condensed phase portion of the opposed flow
flame spread problem is identical to the solution
of the one-dimensional impulsively heated prob-
lem. The flame spread solution obtained in Ref.
[1] assumed that the mass flux of gaseous fuel
emerging at the interface moves along the curves
of constant s* without change until it reaches the
surface of the char layer where it is oxidized by
air to produce the flame. The present analysis
shows that it is equivalent to assuming that
b� 1. Thus, the analytical solution for P obtained
in Eq. (23) completes the solution in [1], and pro-
vides a self-consistent physics-based model of
opposed-flow flame spread over charring materials.

Figure 4 shows the isobars (lines of constant
dimensionless pressure P) during flame spread
over a charring material. It is similar to Ref. [1]
where isotherms were shown. It is computed with
the same property values (see Fig. 4 caption).
Computed streamlines in the gas phase from
Ref. [1] are also shown for completeness. Both iso-
therms and isobars follow lines of constant x* and
fuel gases are driven along lines of constant s*.
6. Summary and conclusions

The solution to the condensed phase flame
spread problem is identical to the initial transient
problem where the surface temperature of a semi-
infinite solid is instantaneously raised from an
initial ambient temperature T1 to Ts > Tp under
the transformation g* = 2x*. Weak dependence
of the solution on the accumulation parameter b
validates the assumption made in Ref. [1] and
completes the flame spread solution. The fuel
mass flux follows the heat flux lines and is normal
to the isobars. Calculations using representative
values for wood [1,5] show that the pressure gen-
eration at the char–virgin material interface is
considerable and equal to 13.27 kPa. While prob-
lems with more complicated geometry will have to
be numerically solved, the analytical solution pre-
sented here helps in determining the stability and
accuracy of potential numerical schemes.
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Comments
Jose Torero, The University of Edinburgh, UK.
What properties were used for comparing with the
experiments?

Reply. This apparently simple question is very impor-
tant because it inquires about the fundamental usefulness
of the model. The experimental data on measured flame
spread rates and char depths for wood correlated well
according to the parabolic char-material interface, (Vy/
av)2 = c2 + 2c(Vx/av), given by the model. The data from
four experiments on poplar collapsed onto one curve and
the parabola that passed through this data had a value of
c = 0.45. For the correlation only av for poplar was need-
ed (=0.1 mm2/s, obtained from the literature).

The value of the charring constant ‘c’ can also be
determined from wood and char properties, as shown
in Fig. 2, and the model can be used in a predictive
manner. Using the literature values for poplar and its
char,:
kc=kv ¼ 1:4; av=ac ¼ 0:248; ðT p � T1Þ=ðT s � T1Þ

¼ 0:618; Q=ðCpvðT p � T1ÞÞ ¼ 1
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we get c = 0.502. This is not too different from that
obtained by the correlation, given the large uncertainty
in the value of the heat of pyrolysis of wood and prop-
erties of char.

d

Michael Delichatsios, University of Ulster, UK. Great
effort, needing some comments:

(1). The surface temperature is constant along the
fuel bed following ignition. This is surpassing and its val-
ue at the leading edge of 650�C seems too high. (2).
Wood can form cracks so that pressure build up may
not occur for all species of wood.

Reply. (1). The measured char surface temperature
behind the flame foot was found to be approximately
constant for various experiments under different external
radiation conditions. The data showed considerable fluc-
tuations in the measurements. This is unavoidable
because there is no way of assuring that the ther-
mocouple will stay on the char surface after pyrolysis.
However, within the measurement accuracy, the char
temperature was roughly constant for a given experi-
ment but depending on the experimental condition, the
value of the constant char temperature changed from
550�C to 750�C with the average being 650�C. While it
may seem high, it is not unusual. Similar measurements
are available in the literature. The constant char temper-
ature used for numerical calculations and data correla-
tion was 850 K. This was also measured during the
experiment. Fortunately, the constant surface tempera-
ture boundary condition (see Fig. 4) is actually applied
some distance behind the flame foot as required by the
parabolic coordinates. This leaves some room for the
temperature to rise from the pyrolysis temperature to
the char surface temperature.

(2). Yes indeed, if the wood cracks there is no pressure
build up. Interestingly, a long time ago, Professor Em-
mons mentioned a method of making uncracked wood
charcoal. The secret was to pyrolyze wood in its own vol-
atile atmosphere without oxygen. Thus, it is possible that
the char underneath the flame does not crack. We will
have to look at the experiments more carefully next time.


	Homepage
	Table of Contents
	A model of transport of fuel gases in a charring solid and its application to opposed-flow flame spread
	Introduction
	Gas transport model
	Transient thermal model
	Mass transfer in char
	Opposed flow flame spread
	Summary and conclusions
	Acknowledgment
	References
	Comments


