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FALSE CHARACTERISTIC FUNCTIONS AND OTHER
PATHOLOGIES IN VARIATIONAL BLIND DECONVOLUTION.

A METHOD OF RECOVERY∗

ALFRED S. CARASSO†

Abstract. Given a blurred image g(x, y), variational blind deconvolution seeks to reconstruct
both the unknown blur k(x, y) and the unknown sharp image f(x, y), by minimizing an appropriate
cost functional. This paper restricts its attention to a rich and significant class of infinitely divisible
isotropic blurs that includes Gaussians, Lorentzians, and other heavy-tailed densities, together with
their convolutions. A recently developed highly efficient nonlinear variational approach is found
to produce inadmissible reconstructions, consisting of partially deblurred images f†(x, y), associated
with physically impossible blurs k†(x, y). Three basic flaws in this variational procedure are identified
and shown to be the cause of this phenomenon. A method is then developed that can recover useful
information from k†(x, y), by constructing a physically valid rectified blur h#(x, y), based on the low
frequency part of k†(x, y). A crucial step involves interpreting h#(x, y) as the pth convolution root
of the true blur k(x, y), for some postulated real number p ≥ 2. Deconvolution is performed in slow
motion, by solving an associated parabolic pseudo-differential equation backwards in time, with the
blurred image g(x, y) as data at t = 1. Behavior of the evolution as t ↓ 0 can be monitored and used
to readjust the value of p. Previously developed APEX/SECB methodologies make such ill-posed
continuation feasible. This recovery method is found highly effective in several instructive examples
involving synthetically blurred images.
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1. Introduction. In the simplest case, image deblurring requires solving the
equation k(x, y) ⊗ f(x, y) = g(x, y) + n(x, y), where k(x, y) is a shift-invariant point
spread function (psf), g(x, y) is the given blurred image, f(x, y) is the desired true
sharp image, n(x, y), assumed small, represents system noise, and ⊗ denotes convolu-
tion. In many areas of application, k(x, y) is only poorly known. Blind deconvolution
seeks to obtain f(x, y) from g(x, y) without knowing k(x, y). Rather, by formulating
an appropriate variational principle in which a priori constraints are placed on each
of the two unknowns f(x, y) and k(x, y), one seeks to obtain the pair {f, k} as the
unique minimizer of a cost functional. Three distinct examples of such procedures
are discussed in [13], [21], and [29]. To the extent that such methods are successful,
they appear to obviate the need for prior knowledge of k(x, y). In reality, regularized
variational blind deconvolution is a difficult mathematical problem that is not fully
understood. The present paper draws attention to the unanticipated pitfalls that
accompany these procedures and often invalidate the reconstructed solutions.

The methods in [13] and [29] are iterative in nature and time consuming for
large images. In addition, significant limitations in these methodologies have been
uncovered [3], [14], [19]. In [21], a direct noniterative method, centered on the concept
of minimum norm solutions (MNS), is described and analyzed. This highly nonlinear
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1098 ALFRED S. CARASSO

method is based on FFT algorithms and produces almost instantaneous deblurring of
large size imagery. An instructive analysis is provided in [21], and the MNS method is
shown to compare favorably with [13] and [29] for the case of zero phase kernels and low
noise levels. One striking theoretical result in [21] deals with the nonlinear solution
operator L that produces the MNS solution pair {f(x, y), k(x, y)} when applied to
the blurred image g(x, y). It is shown in [21] that L is locally Hölder-continuous with
exponent 1/2. This is interpreted to mean that the blind deconvolution problem is less
ill-posed than the nonblind problem. We show that that interpretation is illusory. In
fact, the favorable Hölder exponent results from the anomaly in [21] that only partial
deblurring is theoretically possible, full deblurring being precluded by the variational
formulation. The blind problem remains seriously ill-posed.

More troubling is the fact that the MNS appproach generally produces inadmissi-
ble reconstructions f(x, y), based on physically impossible detected blurs k(x, y). Such
reconstructions are of questionable value in astronomy, medical imaging, electron mi-
croscopy, and other scientific applications.

In this paper, Fourier space behavior is used to identify and document three ba-
sic flaws in the MNS procedure. We focus our attention on a rich class of isotropic
zero phase kernels of prime significance in applications. This is the infinitely divis-
ible class L defined below. That class includes Gaussians, Lorentzians, and other
heavy-tailed blurs, together with their convolutions. Classical theorems of Bochner,
Schoenberg, and Pólya are used to show that MNS-detected optical transfer functions
(otf) are generally spurious, and are not characteristic functions [16], [23], [24]. Such
detected otfs must therefore correspond to nonphysical probablity density functions
(psfs) with negative values. Next, the origin of the anomalous limited deblurring
property of the MNS procedure is isolated, and its connection with Hölder continuity
is clarified. Lastly, we show that the MNS variational principle induces an erroneous
relationship at high frequencies between the detected optical transfer function and
the Fourier space reconstructed image. Each of these two objects becomes delusive
at high frequencies. Unexpected spurious relationships between detected blurs and
reconstructed images also occur in [13] and [29].

In the latter part of the paper, we show how to extract useful information from
defective MNS reconstructions in the important special case of class L blurs. This
intervention requires analytical considerations extraneous to the variational frame-
work in [21], and it involves several steps. First, the high frequency portion of the
nonphysical MNS-detected blur is discarded and a class L blur is associated with the
low frequency part using least squares fitting. Next, this rectified blur is interpreted
as the pth convolution root of the true blur for some postulated real number p ≥ 2.
Infinite divisibility of this candidate true blur allows deconvolution to be performed
in slow motion, by marching backwards in time in an associated parabolic equation,
with the blurred image as data at t = 1. Behavior of the image evolution as t ↓ 0 can
be monitored and used to readjust the value of p. Previously developed APEX/SECB
methodologies [6], [8], [9], [10] provide the necessary computational tools to make such
an approach feasible. In particular, the exceptional backwards stability provided by
the SECB constraint [6], [7], [22] plays an essential role in this ill-posed continuation
problem.

The recovery experiments associated with Figures 5 through 8 are a highlight of
this paper. Five carefully selected synthetically blurred images are used to demon-
strate the application of APEX/SECB methodology in improving MNS reconstruc-
tions. That intervention is decisive in all five cases. It replaces partially deblurred
MNS images of uncertain scientific validity with fully deblurred images based on
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physically meaningful point spread functions. The remarkable sequence in Figure 6
involving Uranus and its moons is particularly instructive.

2. Optical transfer functions are characteristic functions. We deal with
deconvolution procedures which are formulated and implemented in the Fourier trans-
form domain. The following observations will be important in the subsequent discus-
sion. For h(x, y) ∈ L1(R2), define its Fourier transform ĥ(ξ, η) by

ĥ(ξ, η) ≡
∫

R2
h(x, y)e−2πi(ξx+ηy)dxdy.(1)

For complex-valued q(ξ, η), define

sign q(ξ, η) = exp(i arg(q(ξ, η))).(2)

For real-valued q(x, y), define

sign+ q(x, y) = 1, q(x, y) ≥ 0, sign+ q(x, y) = −1, q(x, y) < 0.(3)

A 2D probability density function k(x, y) is a nonnegative function in L1(R2) with∫
R2 k(x, y)dxdy = 1. Such an object has a Fourier transform k̂(ξ, η) with distinctive

properties not shared by the Fourier transform of an arbitrary h(x, y) ∈ L1(R2).
In particular, k̂(ξ, η) must be a positive definite function in the sense of Bochner,
which implies additional properties. For this reason, Fourier transforms of probability
densities form a distinguished class with a well-developed theory [4], [15], [16], [23],
[24]. Such functions are called characteristic functions.

In an optical system, a shift-invariant point spread function k(x, y) is also a
nonnegative function which integrates to unity, and hence such a psf is a probability
density function. The Fourier transform of the shift-invariant psf k(x, y) is the optical
transfer function k̂(ξ, η). True otfs are necessarily 2D characteristic functions and
must obey Bochner’s theorem and its consequences. A candidate otf that is not a
characteristic function must correspond to a nonphysical psf with negative values.
All of the methods discussed in this paper eventually result in symmetric psfs where
k(x, y) = k(−x,−y). In that case, k̂(ξ, η) is real-valued and symmetric. The otf for
Gaussian blur is positive, and sign+ k̂ = 1. The otf for uniform defocus blur oscillates
about zero, and is given by the “sombrero function,” [17, p. 72]

k̂(ξ, η) = 2J1(Rρ)/(Rρ), ρ =
√

ξ2 + η2,(4)

where J1 is the Bessel function of the first kind of order 1, and R > 0 is the radius of
the “circle of confusion.” Here, sign+ k̂ takes the value +1 or −1.

3. H1 blind deconvolution and artificial Fourier space relation. The idea
of formulating the blind problem as a joint regularization problem for both the image
and the psf originates in [29]. That approach seeks the pair (fH , kH) that minimizes
the functional

FH(f, k) = ‖ f ⊗ k − g ‖2
2 +σ1

∫
R2

|∇f |2 dxdy + σ2

∫
R2

|∇k|2 dxdy(5)

over all f, k ∈ H1(R2). The regularization parameter σ1 is the image signal to noise
parameter, while σ2 controls the blur point spread. The two variables functional FH
is not jointly convex, and there are infinitely many solutions, most of which are not
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physically useful. However, if one variable is held fixed, the functional is convex in the
other variable. This leads to an alternating minimization (AM) algorithm, whereby
a useful local minimum may be found by choosing a good initial guess, although
different initial choices will produce different solutions. In [29], the blurred image is
used as initial guess, f0 = g, and the AM algorithm takes the form

kn = arg min k∈H1 FH
(
fn−1, k

)
,

fn = arg min f∈H1 FH(f, kn), n = 1, 2, . . . .
(6)

The analysis in [14] reveals the surprising result that the above iteration converges to
the limit pair (fH , kH), where

sign f̂H(ξ, η) = sign ĝ(ξ, η), sign+ k̂H(ξ, η) = 1,

|k̂H(ξ, η)| =
√

(σ1/σ2) |f̂H(ξ, η)|, (ξ, η) 	= (0, 0).
(7)

Therefore, the detected otf k̂H(ξ, η) is symmetric and has zero phase, whether or
not this is the case for the true otf. In particular, uniform defocus blurs cannot
be detected. The mysterious false proportionality relation between |k̂H(ξ, η)| and
|f̂H(ξ, η)| in (7) is quite unlikely in practice, and difficult to explain from a priori
analytical considerations. Further observations regarding (6) may be found in [19,
Chapter 3]. Only limited success has been recorded with this method.

4. Total variation blind deconvolution. In [13], the authors propose the use
of the total variation (TV ) norm, instead of the H1 norm, to arrive at a more effective
cost functional. The pair (fV , kV ) is sought that minimizes the functional

FV(f, k) =‖ f ⊗ k − g ‖2
2 + γ1

∫
R2

|∇f | dxdy + γ2

∫
R2

|∇k| dxdy,(8)

over all f, k ∈ BV (R2). As in the previous section, the functional FV(f, k) is convex
in one variable while the other is held fixed, but it is not jointly convex. Only a local
minimum is possible, whose usefulness will depend on the initial guess. As before,
starting with f0 = g, we are led to the AM algorithm,

kn = arg min k∈BV FV
(
fn−1, k

)
,

fn = arg min f∈BV FV(f, kn), n = 1, 2, . . . .
(9)

While numerical experiments in [13] and [14] indicate some improvement over the
results in [29], a complete convergence analysis of TV blind deconvolution is not
available. Moreover, further carefully documented experiments reported in [3] reveal
significant limitations in this methodology. In [3, Figure 1], an image synthetically
blurred with an isotropic Gaussian psf is shown to be very poorly reconstructed using
this technique. One major reason is that the TV -detected psf kV (x, y) is highly
nonisotropic. Indeed, the shape of kV (x, y) appears to mimic the characteristics of
the image. This is vividly confirmed in an independent second experiment described in
[3, Figure 2], which shows conclusively that TV psfs are significantly and improperly
influenced by the distribution of edges in the image. These experiments raise the
question as to whether an unsuspected spurious relation exists between kV (x, y) and
fV (x, y), similar to that found in (7) for H1 blind deconvolution. Inaccurate TV
image and psf reconstructions are also noted in [21, Figures 4 and 5]. Additional
remarks concerning blind deconvolution methods may be found in [12].
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5. Noniterative minimum norm blind deconvolution (MNS). A signifi-
cant new approach is developed in [21]. Given the blurred image g ∈ L2(R2), and
initial guesses f, k ∈ L2(R2), the pair (f †, k†) is called an (f, k) minimum norm
solution (MNS) of f ⊗ k = g if and only if

f † ⊗ k† = g,

‖ f † − f ‖2
2 + ‖ k† − k ‖2

2= min
{‖ f − f ‖2

2 + ‖ k − k ‖2
2 | f ⊗ k = g

}
,

(10)

the minimum being taken over all f, g ∈ L2(R2). We have the following fundamental
result.

Theorem 1 ([21]). Let Y be the space of functions with Fourier transforms in
L1(R2), and let g ∈ Y ∩ L2(R2). Let k(x, y) be a symmetric 2D probability density
function, and let

f̂ = ĝ sign+ k̂.(11)

Then, there exists a unique (f, k) minimum norm solution (f †, k†). That solution has
the following properties:

sign f̂ † = sign f̂ , sign+ k̂† = sign+ k̂,(12)

f̂ †(ξ, η) = r†(ξ, η) sign f̂(ξ, η),(13)

k̂†(ξ, η) =
{|ĝ(ξ, η)|/r†(ξ, η)

}
sign+ k̂(ξ, η), r†(ξ, η) 	= 0,

k̂†(ξ, η) = k̂(ξ, η), r†(ξ, η) = 0,
(14)

where r†(ξ, η) is the unique nonnegative root of the polynomial

p(r) = r3(r − c) + c(rb − c), b(ξ, η) = |k̂(ξ, η)|, c(ξ, η) = |ĝ(ξ, η)|.(15)

Remarks. An explicit formula for the root r†(ξ, η) is given in [21]. Using this,
together with FFT algorithms, the computation of MNS solutions is almost instanta-
neous, even for 1024 × 1024 pixels imagery.

The detected psf k†(x, y) depends on the initial guess k(x, y), and k†(x, y) is
symmetric, whether or not the true psf is symmetric. However, k̂†(ξ, η) in (14) need
not be a characteristic function. Although

∫
R2 k†(x, y)dxdy = 1, k†(x, y) may develop

negative values. Likewise, although
∫

R2 f †(x, y)dxdy =
∫

R2 f(x, y)dxdy, f †(x, y) may
develop negative values.

If the true psf is a uniform defocus blur with a radius R0 > 0, and k(x, y) is
selected to be a Gaussian or some other type of zero phase kernel, k†(x, y) will not
be a defocus psf in view of (4) and (12). For the same reason, if k(x, y) is selected
to be a defocus blur with a radius R1 	= R0, k†(x, y) will not be a defocus psf with
radius R0. Clearly, in general, the MNS algorithm cannot recover the true psf, given
a plausible initial guess k(x, y). Indeed, for this reason, defocus blur experiments in
[21] were unsuccessful.

6. Radial characteristic functions. In fact, the MNS approach fails more
generally as will be shown below. A useful starting point for understanding the
limitations of the MNS approach involves consideration of the simplest and most
common types of blurs, namely, isotropic shift-invariant kernels. A review of the
basic properties of isotropic characteristic functions is instructive.
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Let x = (x1, . . . , xn) be a point in Rn, and let ρ = (x2
1 + · · · + x2

n)1/2. A real-
valued function Φ(x) on Rn is called radial, or isotropic, if Φ(x) = φ(ρ). The Fourier
transform of a radial function is again radial. While the optical transfer functions asso-
ciated with isotropic shift-invariant blurring kernels are radial characteristic functions
on R2, the mathematical theory of characteristic functions is more transparent on Rn,
with n arbitrary.

Fundamental early work on characteristic functions by Bochner [4], Schoenberg
[26], and Pólya [24] has spawned a large literature. See [2], [16], [18], [23], [27], and
the references therein. The recent monograph [15] includes a useful survey of modern
results, together with an extensive bibliography.

Definition 1. A function φ : [0,∞) → R, which lies in C[0,∞) ∩ C∞(0,∞),
and which satisfies

(−1)lφ(l)(ρ) ≥ 0, ρ > 0, l = 0, 1, 2, . . . ,(16)

is called completely monotone on [0,∞).
Theorem 2 ([26]). A function Φ(x) = φ(ρ2) is a radial characteristic function

on Rn for every n > 0, if and only if φ(ρ) is positive and completely monotone on
[0,∞), with φ(0) = 1.

Examples of such characteristic functions include the family of inverse multi-
quadrics, {1 + γρ2}−λ, γ, λ > 0, as well as Gaussians, exp{−αρ2}, Lorentzians,
exp{−αρ}, and, more generally, the family of Lévy stable laws, exp{−αρ2β}, with
α > 0 and 0 < β ≤ 1. These functions have support extending over all of Rn.

The notion of multiply monotone function [15, p. 49] generalizes the Pólya crite-
rion [24], and leads to examples of characteristic functions with compact support.

Definition 2. A function φ : [0,∞) → R, which lies in Ck−2(0,∞), (k ≥
2), and is such that (−1)lφ(l)(ρ) is nonnegative, nonincreasing, and convex for l =
0, 1, 2, . . . , k − 2, is called k-times monotone on (0,∞)

Theorem 3 ([15]). Let s be a positive integer, let k = [s/2]+2, and let φ(ρ) be k-
times monotone on (0,∞), with φ(0) = 1. Then Φ(x) = φ(ρ) is a radial characteristic
function on Rs.

The truncated power function φ(ρ) = {(1−αρ)+}k, where α > 0 and k = [s/2]+2,
satisfies the conditions of Theorem 3. Here, f(t)+ = H(t)f(t), where H(t) is the
Heaviside unit step function. The truncated power function has compact support,
and is a radial characteristic function on Rn for n ≤ s. However, functions satisfying
the conditions of Theorem 3 need not have compact support.

Examples of radial characteristic functions not covered by either of the above
theorems include oscillatory functions such as J0(αρ) on R2, and J1(αρ)/(αρ) on Rs,
for s ≤ 4. Such functions are characteristic functions on Rn only for a restricted range
of n and have global support.

Multiplication of any two radial characteristic functions produces a third such
object. Hence, radial characteristic functions form a very diverse collection.

7. Infinitely divisible subclass L. The variational blind deconvolution algo-
rithms, [29], [13] and [21], generally aim at reconstructing arbitrary psfs from limited
prior information. This seems unlikely, given the variability that already exists in the
isotropic case. A more feasible program might be based on a useful, but restricted
class of blurs. The family of isotropic Lévy stable laws, with characteristic function
exp{−αρ2β}, where α > 0 and 0 < β ≤ 1, includes the ubiquitous Gaussians and
Lorentzians, as well as the heavy-tailed densities that characterize a wide variety of
electro-optical devices [20], [25], [28]. Complementary behavior is found in the family
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of inverse multiquadrics {1 + γρ2}−λ, γ, λ > 0. The product of finitely many indi-
vidual members from each of these two families, with appropriately chosen parameter
values, may provide useful approximations to the lumped optical transfer functions
describing multicomponent imaging systems. With λi, αi, γi ≥ 0, ρ = (ξ2 + η2)1/2,
0 < βi ≤ 1, and arbitrary N , consider

k̂L(ξ, η) ≡ φ(ρ) = exp
(−ΣN

i=1

{
αiρ

2βi + λi log(1 + γiρ
2)

})
.(17)

We may define the class L to be the class of all objects k̂L(ξ, η) of the form (17). This
very rich class of isotropic otfs excludes oscillatory otfs, as well as otfs with compact
support. In particular, motion and defocus blurs are not included in L. Each φ(ρ) ∈ L
is monotone decreasing, has support on all of R2, and is everywhere positive. The
class L is a subclass of the class of infinitely divisible characteristic functions [16], [23].
Thus, if k̂(ξ, η) ∈ L, and n is a positive integer, {k̂(ξ, η)}1/n is also a characteristic
function. This could not happen if k̂(ξ, η) were oscillatory or had compact support.

The class L is much richer than the class G ⊂ L, consisting of all objects of
the form (17) with λi = 0, i = 1, N . Blind deconvolution based on the class G
has been successfully applied to sharpen blurred imagery from MRI and PET brain
scans, from scanning electron microscopes, and from the Hubble space telecope and
other earth-bound instruments [9], [10], [11]. In [3], a much smaller class of blurs,
isotropic Gaussians, forms the basis for a novel blind approach based on minimizing
the Mumford–Shah functional.

8. Spurious characteristic functions and nonphysical MNS psfs. As noted
in [21] the MNS procedure described in Theorem 1 is not useful for motion or defocus
blurs. Accordingly, this paper focuses exclusively on zero phase kernels, and specif-
ically on class L otfs. Fourier domain behavior is the key to unlocking the several
pertinent facts which are documented below. Using synthetically blurred images with
no added noise, we study the MNS procedure under idealized conditions, and under-
score the fact that pathological behavior occurs even in the absence of data noise.
Images with multiplicative noise are considered in section 14.

Our first example involves a 1024 × 1024 pixel USS Kittyhawk image. This was
synthetically blurred by Fourier multiplication with a class L otf to form ĝ(ξ, η). For
k̂(ξ, η), we selected the isotropic Lévy stable characteristic function given by

k̂(ξ, η) = exp
{
−α

(
ξ2 + η2

)β
}

, α = 0.20, β = 0.27.(18)

With f̂(ξ, η) = ĝ(ξ, η), the algorithm in Theorem 1 produces the detected otf k̂†(ξ, η).
The 1D slice k̂†(ξ, 0) is shown as the solid curve in Figure 1(A), while the dashed curve
represents the initial guess k̂(ξ, 0). The detected otf k̂†(ξ, 0) displays nonmonotone
behavior at variance with Theorems 2 and 3, and is not a characteristic function.
The associated psf k†(x, 0), shown in Figure 1(B), is highly oscillatory and exhibits
sustained negativity, extending over the entire image domain, −512 ≤ x, y ≤ 512.
Indeed, while

∫
R2 k†(x, y)dxdy = 1, the negative part of k†(x, y) integrates to −395,

while the positive part integrates to +396. Such a psf cannot represent a physical
blur, and the physical validity of the deblurred image f †(x, y) is open to question.

Similar nonmonotone otf behavior is found in the vast majority of cases. Some
choices for k̂(ξ, η) produce psfs k†(x, y) with more muted negative excursions, but
such negativity is almost always present. The integrated negative part of k†(x, y) is
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A

B

Fig. 1. Failure in MNS approach. (A) 1024 × 1024 USS Kittyhawk image was synthetically
blurred with monotone decreasing class L otf. However, MNS detected otf (solid line) displays
nonmonotone behavior at variance with Theorems 2 and 3, and is not a characteristic function. (B)
Defective MNS otf leads to physically impossible highly oscillatory psf k†(x, y), exhibiting sustained
negative values. While

∫
R2 k† = 1, the negative part of k† integrates to −395.
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A B C

Fig. 2. MNS deconvolution experiment in Figure 1. (A) Blurred image g(x, y). (B) Partially
deblurred MNS reconstruction f†(x, y), obtained using invalid detected psf k†(x, y). (C) Original
sharp image f(x, y). Full deblurring of image A into sharp image C is mathematically impossible
in MNS approach.

A B C

Fig. 3. Limitations of partial deblurring in MNS become apparent when zooming on selected
parts of USS Kittyhawk image. (A) Planes on deck barely identifiable in blurred image. (B) Only
modest improvement is provided by MNS deblurring. (C) Same scene in original sharp image f(x, y).

commonly found to have an absolute value exceeding a third of the integrated positive
part. In the above MNS experiment, Figure 2(A) is the blurred image g(x, y), and
Figure 2(B) is the reconstruction f †(x, y). Figure 2(C) is the original sharp image
f(x, y). While f †(x, y) appears to be a plausible partial deblurring of g(x, y), the
limitations of MNS deconvolution become apparent on zooming over selected parts
of the USS Kittyhawk image, as shown in Figure 3. Full deblurring that can retrieve
Figures 2(C) and 3(C) is unattainable with MNS, no matter how k̂(ξ, η) is chosen.
This is discussed next.

9. Enforced limited MNS deblurring and Hölder continuity. The MNS
procedure described in Theorem 1 precludes recovery of the original sharp image
f(x, y), given the blurred image g(x, y). Only a partially deblurred image is possible.
One of several important consequences of Theorem 1 is the following inequality.

|ĝ(ξ, η)| ≤ |f̂ †(ξ, η)| ≤ |ĝ(ξ, η)| + |ĝ(ξ, η)|1/2.(19)

This follows from the polynomial expression p(r) in (15). Since 0 ≤ b = |k̂| ≤ 1, we
have p(c) ≤ 0 ≤ p(c +

√
c), where c = |ĝ(ξ, η)|. The inequality (19) imposes pointwise
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a priori bounds on the Fourier transform of the reconstructed image f †, independently
of whatever choice was made for k. The upper bound in (19) is unrealistic whenever
the true blurring otf k̂(ξ, η) decays exponentially. Indeed, consider a Lorentzian
otf k̂(ξ, η) = exp{−2α

√
ξ2 + η2}. In that case, k ⊗ f = g, together with (19), gives

|f̂ †(ξ, η)| ≤ |f̂(ξ, η)|e−2α
√

ξ2+η2
+ |f̂(ξ, η)|1/2e−α

√
ξ2+η2

.(20)

The inequality (20) expresses the relation that exists between the MNS reconstruction
|f̂ †(ξ, η)| and the true image |f̂(ξ, η)|. The exponential decay on the right-hand side
in (20) indicates that the amplitudes of moderate and high-frequency components in
the MNS reconstruction f̂ †(ξ, η) must remain severely attenuated. These components
carry valuable information regarding texture and other small scale structures, but
cannot be restored to their true values in f̂(ξ, η), no matter how sagacious the choice
for k. This is vividly illustrated in Figure 4. The sharp 512× 512 USAF chart image
f(x, y) on the right is blurred by Fourier multiplication with exp{−0.075

√
ξ2 + η2},

to create the image g(x, y) on the left. The plots below the images show four distinct
traces. Trace A is a plot of log |f̂(ξ, 0)| vs ξ. Trace B is a plot of 0.075|ξ| vs ξ. Trace
C is a plot of log |ĝ(ξ, 0)| vs ξ. Traces A and C express the very substantial Fourier
space differences between images f and g. Full deblurring of g must bring trace C
in close agreement with trace A over a wide frequency range |ξ| ≤ ξmax. That is
impossible. Trace D is a plot of log

{|ĝ(ξ, 0)| + |ĝ(ξ, 0)|1/2
}

vs ξ, and represents the
upper limit of any possible MNS deblurring.

Estimating L1 norms by L2 norms on a finite 2D image domain, the pointwise
Fourier space inequality (19) implies

‖ f̂ † ‖2
2 ≤ 2

{‖ ĝ ‖1 + ‖ ĝ ‖2
2

} ≤ C
{‖ ĝ ‖2 + ‖ ĝ ‖2

2

}
.(21)

Using Parseval’s formula, this gives

‖ f † ‖2 ≤ C
{‖ g ‖2 + ‖ g ‖2

2

}1/2
.(22)

If the MNS deconvolution process were linear, the above inequality would remain valid
for the difference of two reconstructions, f †

1 , f †
2 , corresponding to slightly different

inputs, g1, g2. Assuming this to be the case, if ‖ g1 − g2 ‖2≤ ε for small ε > 0, (22)
implies

‖ f †
1 − f †

2 ‖2 ≤ C
√

ε.(23)

It follows that f † depends Hölder-continuously on g with exponent 1/2. In reality,
MNS deconvolution is highly nonlinear. In [21], substantial effort is necessary to
establish the inequality (22) for the difference of any two solutions, and obtain the
result in (23).

The fact that MNS blind deconvolution has a Hölder exponent of 1/2 does not
imply that the blind deconvolution problem is less ill-posed than the nonblind problem.
The next section discusses an ill-posed continuation problem for the heat equation
for which Hölder continuity holds. Positive Hölder exponents are possible only if
continuation is terminated prior to reaching the boundary of the continuation region.
That ill-posed heat flow problem is mathematically equivalent to deblurring Gaussian
blurred imagery. A more general ill-posed parabolic problem is associated with class
L blurs. In both cases, positive exponents imply partial deblurring. Clearly, the
positive Hölder exponent in MNS blind deconvolution simply reflects the fact that
only limited deblurring is possible using (13)–(15) in Theorem 1.
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Blurred  Image Exact Image

Fig. 4. Limited MNS deblurring enforced by Theorem 1. Blurred 512 × 512 USAF chart
image g(x, y) (left) was obtained by Fourier space multiplication of sharp image f(x, y) (right), with

Lorentzian otf exp{−0.075
√

ξ2 + η2}. Trace A is a plot of log |f̂(ξ, 0)| vs ξ. Trace B is a plot of
0.075|ξ| vs ξ. Trace C is a plot of log |ĝ(ξ, 0)| vs ξ. Full deblurring of g(x, y) must bring trace C in
close agreement with trace A. However, trace D, which is a plot of log

{|ĝ(ξ, 0)| + |ĝ(ξ, 0)|1/2
}

vs ξ,
represents the upper limit of any possible MNS deblurring. See (19), (20).

10. Ill-posed continuation, Hölder continuity, and class L blurs. The
classical well-posed problems in linear evolution equations exhibit continuous depen-
dence on the initial data, typically expressed by

‖ w(., t) ‖≤ C ‖ w(., 0) ‖, 0 < t ≤ T,(24)
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where w(., t) denotes the difference of any two solutions at time t, and C is a constant
that may depend on T . The above inequality implies Lipschitz continuous dependence
on the data in the Banach space norm ‖ ‖. Two solutions that differ by ε in norm
initially will differ by no more than Cε on the interval [0, T ].

Stabilized ill-posed continuation problems are generally characterized by Hölder
continuity with respect to the data [1], [7]. A typical example is backwards in time
continuation in the heat equation from data at time t = 1 [1, pp. 17–20]. Here, the
corresponding result is

‖ w(., t) ‖2 ≤ 2 ‖ w(., 0) ‖1−t
2 ‖ w(., 1) ‖t

2, 0 ≤ t ≤ 1,(25)

for the L2 difference of any two solutions at time t. We may stabilize the backwards
problem by prescribing an a priori L2 bound M for the desired solution at time t = 0.
If two such solutions differ in norm by ε at time t = 1, they differ by no more than
2M1−tεt on the interval [0, T ]. The Hölder exponent tends to zero as t ↓ 0.

Image deblurring with Gaussian psfs is mathematically equivalent to continuation
backwards in time in a heat conduction equation where the conduction coefficient is
proportional to the Gaussian spread. More generally, we may consider class L otfs
k̂L(ξ, η) as in (17). Here, with σi = αi/(4π2)βi , δi = γi/4π2, i = 1, N , the associated
linear evolution equation is

ut = −Au ≡ −{
ΣN

i=1 σi(−Δ)βi + λi{log(I − δiΔ)}} u, t > 0.(26)

This is a well-posed forward parabolic equation in that the linear pseudo-differential
operator −A in (26) is the infinitesimal generator of a holomorphic semigroup on
L2(R2) [5]. When k̂L(ξ, η) is known explicitly, solving the image deconvolution prob-
lem kL(x, y) ⊗ f(x, y) = g(x, y) is mathematically equivalent to solving the evolution
equation (26) backwards in time, using the blurred image g(x, y) as data at time t = 1.
The fully deblurred sharp image f(x, y) corresponds to u(x, y, 0), while u(x, y, t), the
solution at some intermediate time t, 0 < t < 1, corresponds to the partially deblurred
image ft(x, y). The Hölder continuity result in (26) is identical to that for the heat
equation in (25). Thus, if f(x, y) satisfies the prescribed L2 bound M , and if ε > 0
is an L2 bound for the noise in the blurred image g(x, y), then any two partially
deblurred images f1

t (x, y), f2
t (x, y) satisfy

‖ f1
t − f2

t ‖2 ≤ 2M1−tεt, 0 ≤ t ≤ 1.(27)

For class L blurs, the partially deblurred image ft(x, y) depends Hölder-continuously
on the blurred data g(x, y) with exponent t > 0. Such partial deblurring is clearly
less ill-conditioned than full deblurring, where the exponent is zero.

11. Erroneous MNS Fourier behavior at high frequencies. In the case
of H1 blind deconvolution discussed in section 3, the governing variational principle
creates a false relationship between |k̂H(ξ, η)| and |f̂H(ξ, η)|, as shown in (7). In
section 4, dealing with total variation blind deconvolution, experimental evidence
strongly suggests a deleterious spurious coupling between kV (x, y) and fV (x, y). The
MNS variational principle likewise induces a false relationship at high frequencies
between |k̂†(ξ, η)| and |f̂ †(ξ, η)|.

We restrict attention to class L otfs as in (17). With ρ = (ξ2 + η2)1/2, such otfs
have the form exp(−ω(ρ)), where ω ↑ ∞ as ρ ↑ ∞. It follows that |ĝ(ξ, η)| � 1 for
large ρ. Returning to the inequality (19), namely,

|ĝ(ξ, η)| ≤ |f̂ †(ξ, η)| ≤ |ĝ(ξ, η)| + |ĝ(ξ, η)|1/2,(28)
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we first note that |f̂ †(ξ, η)| = 0 if and only if |ĝ(ξ, η)| = 0. If |f̂ †(ξ, η)| 	= 0,

|ĝ(ξ, η)|
|f̂ †(ξ, η)| = |k̂†(ξ, η)| ≥ |ĝ(ξ, η)|1/2

1 + |ĝ(ξ, η)|1/2
.(29)

In (29), the lower bound for |k̂†(ξ, η)| remains valid even if |f̂ †(ξ, η)| = 0. Consider
values of ρ such that |ĝ(ξ, η)|1/2 � 1. Then, |ĝ(ξ, η)| � |ĝ(ξ, η)|1/2, and hence, from
(28), (29),

|k̂†(ξ, η)| ≥ |ĝ(ξ, η)|1/2 + o (1) ≥ |f̂ †(ξ, η)|, ρ ↑ ∞.(30)

The inequalities (30) remain valid independently of the choice for k̂(ξ, η). However,
the choice of k̂(ξ, η) also plays a role in that we always have [21],

|k̂†(ξ, η)| ≥ |k̂(ξ, η)|.(31)

Combining (30) and (31), we find

|k̂†(ξ, η)| ≥ max
{
|k̂(ξ, η)|, |ĝ(ξ, η)|1/2 + o (1)

}
≥ |f̂ †(ξ, η)|, ρ ↑ ∞.(32)

Such high frequency behavior is the complete opposite of what is found in practice. In-
deed, for most natural images f(x, y) with realistic class L blurs kL(x, y), the relation
kL ⊗ f = g implies

|k̂L(ξ, η)| � |ĝ(ξ, η)|1/2 � |f̂(ξ, η)|, ρ ↑ ∞.(33)

This is exemplified in Figure 4, where, at high frequencies, trace B (otf) lies well below
trace D (|ĝ(ξ, η)|1/2), which lies well below trace A (|f̂(ξ, η)|). Clearly, high frequency
behavior in the MNS pair {f̂ †(ξ, η), k̂†(ξ, η)} is deceptive and untrustworthy.

12. Recovery using APEX/SECB techniques. The MNS otf k̂†(ξ, η) does
not appear to play an explicit role in the solution process. Rather, as is clear from
Theorem 1, given ĝ(ξ, η) and k̂(ξ, η), the MNS procedure obtains f̂ †(ξ, η) directly
by solving the polynomial equation (15). The determination of k̂†(ξ, η) follows from
the already constructed f̂ †(ξ, η) by considering k̂†(ξ, η)f̂ †(ξ, η) = ĝ(ξ, η). When the
MNS procedure results in a questionable partially deblurred image associated with a
physically impossible point spread function, there is no recourse available. We arrive
at a mathematical dead end.

A way out of this impasse is possible in the case of class L blurs, and it involves an
approach to deconvolution that is distinctly different from the variational formulation
in [21]. A key element is the infinite divisibility of class L otfs. For such otfs, the
deblurring problem can be reformulated into the equivalent mathematical problem
of solving the parabolic equation (26) backwards in time, using the blurred image
as data at t = 1. Extensions of previously developed APEX/SECB methodologies,
[6], [8], [9], [10], provide the necessary computational tools to make such ill-posed
continuation feasible. In particular, the improved backwards stability provided by
the SECB constraint [6], [7], [22] plays an essential role. In a blind deconvolution
context, an evolutionary approach provides significant new capabilities, as will be
seen below.
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Given that the image was blurred by a class L otf, we now view the nonphysical
MNS detected otf k̂†(ξ, η) as a potentially salvageable failed attempt to detect the true
otf k̂L(ξ, η). The next several steps are informed by the preceding analysis.

First, we must discard the unreliable high-frequency portion of k̂†(ξ, η), as indi-
cated by (32). On the finite interval ρ ≤ ρ#, we best fit k̂†(ξ, η) with the expression
on the right-hand side of (17), using nonlinear least squares. More precisely, the least
squares fitting is applied to the natural logarithm of k̂†(ξ, η). Here, ρ# is an adjustable
constant, subject to subsequent fine-tuning. The fitted parameter values α#

i , β#
i , λ#

i ,

and γ#
i , i = 1, and N# are used to define a new class L otf ĥ#(ξ, η), which is then

assumed valid for all ρ > 0. The use of ĥ#(ξ, η) in a nonblind deconvolution algorithm
results in a physically valid deblurred image f#(x, y) that can replace the faulty MNS
image f †(x, y). This first step is already a significant improvement of [21].

We can go a good deal further if we properly interpret f#(x, y) as a partially
deblurred image associated with (26). In that context, for some real number p > 1,
we consider f#(x, y) to be the solution of (26) at some fixed time t# = 1 − 1/p, well
away from t = 0. Comparing the Hölder continuity result for f †(x, y) in (23), with
the Hölder continuity property (27) that is characteristic of the self-adjoint parabolic
equation (26), we conclude that t# = 1 − 1/p ≥ 1/2. Thus, p ≥ 2. Accordingly, we
now hypothesize ĥ#(ξ, η) to be the pth root of the true otf k̂L(ξ, η),

k̂L(ξ, η) ≡ {ĥ#(ξ, η)}p, p ≥ 2.(34)

From (17) and (34), k̂L(ξ, η) has the parameters αi = pα#
i , βi = β#

i , λi = pλ#
i ,

and γi = γ#
i , i = 1, N#. As was the case with ρ#, the real number p is subject to

subsequent fine-tuning. Also, as shown in Example 4 below, extending the definition
of ĥ#(ξ, η) to all ρ > 0 need not produce a useful pth root candidate.

Given k̂L(ξ, η) and ĝ(ξ, η), the “slow evolution from the continuation bound-
ary” method (SECB), is a well-regularized, fast, direct FFT method for solving the
parabolic equation (26) backwards in time, [6], [7]. The SECB method approximates
the solution u(x, y, t) of (26), with uS(x, y, t), defined as follows in Fourier space

ûS(ξ, η, t) =
k̂t

L(ξ, η)k̂∗
L(ξ, η)ĝ(ξ, η)

|k̂L(ξ, η)|2 + K−2|1 − k̂s
L(ξ, η)|2 , 0 ≤ t < 1.(35)

Here, k̂∗
L denotes the complex conjugate of k̂L. The positive constants K and s,

with s � 1, are regularization parameters [8]. Typical values used in section 13 are
K = 1000, s = 0.001, reflecting synthetically blurred imagery with slight noise. In
the noisy images in section 14, K is reduced to 10. Note that k̂t

L(ξ, η) ≡ {k̂L(ξ, η)}t

is well-defined for any t > 0, and is a characteristic function. An inverse FFT in (35)
returns uS(x, y, t). All negative values in uS(x, y, t) are reset to the value 0.

The approximation (35) incorporates a stabilizing “slow evolution” constraint that
is significantly more effective at suppressing the growth of noise as t ↓ 0 than is the case
with the prescribed L2 bound M constraint used in (27). This is clearly demonstrated
in [6, Figures 4 and 5], and in [7], for a much wider class of problems. Further new
observations regarding SECB are reported in [22]. In contrast to the Hölder estimate
(27) which degenerates at t = 0, the SECB constraint maintains continuity at t = 0.
In the case of (35), if ε > 0 is an L2 bound for the uncertainty in the input data



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PATHOLOGIES IN VARIATIONAL BLIND DECONVOLUTION 1111

g(x, y) at t = 1, the difference of any two solutions uS
1 (x, y, t), uS

2 (x, y, t), satisfies
∥∥uS

1 (., t) − uS
2 (., t)

∥∥
2
≤ 2

√
2 Γ1−tε, 0 ≤ t ≤ 1,(36)

where Γ � M/ε is a computable constant.
With tentative initial values for ρ# and p in (34), we proceed to evaluate the

resulting deconvolution, readjusting parameter values as required. In this exploratory
APEX phase, great benefit derives from the ability to perform the deconvolution in
slow motion. As t ↓ 0 the partial restorations uS(x, y, t) become sharper and noisier;
ringing and other artifacts may appear, possibly indicating that continuation has
proceeded too far. Displaying the evolution of uS(x, y, t) as t decreases from 1 to 0
allows for monitoring the deblurring process and selecting an optimal image, which
may occur at some t > 0. Terminating continuation at t > 0 is equivalent to resetting
p to the value p = (1−t)p, and then selecting the image at t = 0 as optimal. Diagnostic
statistical information about uS(x, y, t) can also be calculated for selected values of t
as t ↓ 0. Of particular interest are the discrete L1 norm, ‖ uS(., t) ‖1, and the discrete
“total variation” norm ‖ uS(., t) ‖TV . If k̂L(ξ, η) in (34), (35) were the actual true
otf, the deconvolution process would be well-behaved, image flux would be conserved,
and ‖ uS(., t) ‖1 would remain constant as t ↓ 0. At the same time, ‖ uS(., t) ‖TV

would increase monotonically, reflecting the gradual sharpening of edges and other
localized singularities as t ↓ 0. In practice, the true otf is seldom found, and the image
L1 norm may show a modest increase as t ↓ 0. As emphasized in [10, Figure 1], given
an image blurred with a class L otf, there are in general infinitely many distinct otfs
k̂L(ξ, η) that can competently deblur that image. We may enforce conservation of L1

norm in uS(x, y, t), for any desired t, by rescaling ‖ uS(., t) ‖1 to the value ‖ g ‖1.

13. Some examples. All examples in this paper involve 8-bit images, blurred
synthetically by Fourier space multiplication with class L otfs. No noise is added
in the examples in this section. Images with multiplicative noise are considered in
section 14. In applying the MNS algorithm to these images, the choice for k̂(ξ, η) is
the same as in (18), with various values of α, β.

1. Uranus and its moons. The MNS algorithm was applied to a 512 × 512
blurred Uranus image. Spurious results were obtained, similar to those in the USS
Kittyhawk experiment in Figure 1. Only that portion of the false MNS otf k̂†(ξ, η)
on ρ ≤ ρ# = 50 was retained. This is shown as the solid curve in Figure 5, together
with the blurred image. The remaining portion, on 50 < ρ ≤ 512, was deemed
unreliable and discarded. A nonlinear least squares fit on ρ ≤ ρ#, with the expression
on the right of (17) with N = 1, produced the candidate ĥ#(ρ) with parameters
α# = 0.00233511, β# = 0.609951, λ# = 0.798301, and γ# = 0.0234441. This is
shown as the dashed curve in Figure 5, and this definition of ĥ#(ρ) was assumed valid
for all ρ > 0. Note that the nonlinear least squares fitting is applied to the logarithm
of k̂†(ξ, η) as indicated in Figure 5.

The physically valid otf ĥ#(ξ, η) provides a rectification of the false MNS otf
k̂†(ξ, η). If we use ĥ#(ξ, η) in lieu of k̂L(ξ, η) in (35) with t = 0, we obtain f#(x, y),
a physically valid replacement for the MNS image f †(x, y).

It is more fruitful to identify the partially deblurred image f#(x, y) with uS(x, y, t)
in (35), evaluated at t# = 1 − 1/p > 0. Choosing p = 2.5, K = 3000, s = 0.0005,

and letting k̂L(ξ, η) ≡ {ĥ#(ξ, η)}p in (35), we explore the evolution of uS(x, y, t) as
t decreases from 1 to 0, while monitoring diagnostic statistical information. Conser-
vation of L1 norm is enforced at each t value by rescaling ‖ uS(., t) ‖1 to the value
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Fig. 5. Blurred Uranus image experiment. Least squares fit of false MNS otf k̂†(ξ, 0) (solid

curve) with class L otf ĥ#(ξ, 0) (dashed curve) on the interval |ξ| ≤ ρ# = 50.0. This leads to 2D

otf ĥ#(ρ) = exp
(−αρ2β − λ log(1 + γρ2)

)
, with α = 0.00233511, β = 0.609951, λ = 0.798301, γ =

0.0234441, valid for all ρ = (ξ2 + η2)1/2. MNS partial deblurring property suggests ĥ#(ρ) is some

fractional power of true Uranus image otf k̂L(ρ). Here, we hypothesize k̂L(ρ) = {ĥ#(ρ)}2.5.

‖ g ‖1, and all displayed images in Figure 6 have the same L1 norm. However, prior
to such rescaling, there is a 23% increase in ‖ uS(., t) ‖1, from 9.3 at t = 1 to 11.4 at
t = 0.05. This is accompanied by a thirtyfold increase in ‖ uS(., t) ‖TV . Such large
increases typically signal the development of noise and ringing artifacts.

Indeed, such artifacts are quite pronounced near t = 0.05 in the original full-size
images, but are much less visible in reduced size on the printed page. Nevertheless,
this example leads to the remarkable sequence exhibited in Figure 6, where, beginning
with four barely visible moons at t = 1, we end up with 11 moons at t = 0.05! The
rectified MNS deblurred image corresponds to t = 0.6. We may elect to terminate
continuation at t = 0.15, where noise and ringing artifacts are less evident. There is
a more moderate 8% increase in ‖ uS(., t) ‖1 from t = 1 to t = 0.15. Ten moons are
still clearly visible at t = 0.15.

2. Marilyn Monroe image. The MNS algorithm was applied to a 1024 × 1024
blurred Marilyn Monroe image. The detected MNS otf k̂†(ξ, η) again exhibited false
nonmonotone behavior. The corresponding psf k†(x, y) was highly oscillatory and
nonphysical, with a negative part that integrated to −2785, while the positive part
integrated to +2786. The MNS deblurred image f †(x, y), is a plausible partially
deblurred image, although it is devoid of meaning. Initial attempts to fit k̂†(ξ, η) on
ρ ≤ ρ# = 50, with the expression on the right of (17) with N = 1, were unsuccessful.
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  t=1.0     (Blurred)

  SECB CONTINUATION IN URANUS MOONS IMAGE.

t=0.6 (MNS) t=0.25

t=0.15 t=0.1 t=0.05

Fig. 6. SECB deblurring of blurred Uranus image by solving parabolic equation in Eq. (26)

backwards in time, using Eq. (35) with k̂L(ξ, η) identified in Figure 5, and regularization parameters
K = 3000, s = 0.0005. Original blurred image is data at time t = 1.0, while MNS partially deblurred
image corresponds to solution at time t = 0.6. Here, APEX/SECB intervention enables ill-posed
continuation all the way to t = 0. Despite the presence of noise and ringing artifacts as t tends to
zero, 11 moons become visible at small values of t, compared to 5 moons at t = 0.6. Uranus has 27
known moons.

Success was achieved after dropping the logarithmic term in (17). This produced the
candidate ĥ#(ρ) with parameters α# = 0.05664, β# = 0.439202, and λ# = 0, and
this was assumed valid for all ρ ≥ 0. We chose p = 3, and let k̂L(ξ, η) ≡ {ĥ#(ξ, η)}3

in (35).
A recognizable facial image exhibits subtle characteristics that are not apparent

in images of inanimate objects, such as buildings, warships, or galaxies. As such, a
familiar face image is a good vehicle for illustrating the shortcomings of blind deconvo-
lution, even when the algorithm is highly successful. With K = 1000 and s = 0.001,
the evolution of uS(x, y, t) as t decreases from 1 to 0 is shown in Figure 7. The im-
age at t = 0.67 corresponds to f#(x, y), the rectified version of the MNS partially
deblurred image. Evidently, the APEX/SECB intervention provides considerable fur-
ther sharpening, and fully deblurs the image. Conservation of L1 norm was enforced
at each displayed t value, by rescaling ‖ uS(., t) ‖1 to the value ‖ g ‖1. However,
prior to rescaling, there is a 3% increase in ‖ uS(., t) ‖1, from 107.4 at t = 1 to 110.2
at t = 0. This is accompanied by a thirteenfold increase in ‖ uS(., t) ‖TV . The otf
k̂L(ξ, η) that produced Figure 7 was not the same as the one that synthetically blurred
the Marilyn Monroe image.
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t=1.0 t=0.67 t=0.3

t=0.2 t=0.05 t=0.0

  (Blurred) (MNS)

SECB CONTINUATION IN MARILYN MONROE IMAGE.

Fig. 7. SECB deblurring of blurred Marilyn Monroe image by solving parabolic equation in Eq.
(26) backwards in time, using Eq. (35) with k̂L(ξ, η) identified using a process similar to Figure 5,
and regularization parameters K = 1000, s = 0.001. Original blurred image is data at time t = 1.0,
while MNS partially deblurred image corresponds to t = 0.67. APEX/SECB intervention continues
solution to t = 0. Here, best results occur near t = 0.2. Unflattering oversharpening develops at
smaller values of t.

While no ringing or noise arifacts are visible at t = 0 in the reduced Figure 7, the
full-size image exhibits unflattering oversharpening effects. A more faithful image is
found at t = 0.2, compared to which, the person at t = 0 appears to be an older look-
alike. This suggests resetting p to the value p = 0.8 × p = 2.4. Indeed, this leads to
a more realistic fivefold increase in ‖ uS(., t) ‖TV . We perceive here one of the major
difficulties in blind deconvolution. A simple mathematical characterization of the true
image is needed, one that can easily be implemented computationally as an a priori
constraint. That constraint should lead to a cost functional that is easily minimized,
while having the true image, and not a look-alike, as its unique minimum. Such an
algorithm has not yet been found. The APEX/SECB evolutionary approach allows
continuation to be terminated at a user-determined optimal point. The selection of
the optimal image may involve complex and possibly subjective prior knowledge, not
necessarily expressible in mathematical terms.

3. USS Kittyhawk image. We now consider improving the partially deblurred
MNS image in Figures 2(B) and 3(B). The false MNS otf in Figure 1(A) was restricted
to the interval ρ ≤ ρ# = 50, and a nonlinear least squares fit to the expression on
the right of (17) with N = 1, was found. This produced ĥ#(ρ) with parameters
α# = 0.001469, β# = 0.733929, λ# = 0.463893, and γ# = 0.00022, assumed valid for
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all ρ ≥ 0. With K = 1000, s = 0.001, p = 3.5, and k̂L ≡ {ĥ#}p in (35), ‖ uS(., t) ‖1

is conserved as t decreases from t = 1 to t = 0.05. However, there is an unrealistically
large increase in ‖ uS(., t) ‖TV . In fact, the image at t = 0.05 is seriously affected by
ringing artifacts. Reducing the value of β# to 0.9β# in (35), while leaving all other
parameter values unchanged, produces significantly better results. We again have L1

norm conservation at t = 0.05, with a ninefold increase in ‖ uS(., t) ‖TV . Considerable
improvement becomes apparent on zooming in on the control tower in the island part
of Kittyhawk’s deck. The original blurred image is shown as the leftmost image in
the first row in Figure 8, while the middle image is the unrectified MNS partially
deblurred image. The rightmost image is the SECB image at t = 0.05.

4. Alphanumeric image. The blurred 512 × 512 alphanumeric image, shown as
the leftmost image in the middle row in Figure 8, is an important example. Here,
the initially obtained ĥ#(ρ) was not useful. Applying the MNS algorithm produces a
nonmonotone false otf. The corresponding psf is oscillatory, with sustained negativity
as in Figure 1(B). The negative part of k†(x, y) integrates to −160, while the positive
part integrates to +161. The partially deblurred MNS image f †(x, y) is shown as the
middle image in Figure 8. The false MNS otf was again restricted to the interval ρ ≤
ρ# = 50, and a nonlinear least squares fit to the expression on the right of (17) with
N = 1 was found. This produced ĥ#(ρ) with parameters α# = 0.000362529, β# =
0.80643992, λ# = 0.756433752, and γ# = 0.005456718. As in previous cases, this
definition of ĥ#(ρ) was assumed valid for all ρ ≥ 0. However, with k̂L ≡ {ĥ#}p

in (35), only slight deblurring was achieved at t = 0, even with p values as high as
p = 5. An alternative least squares fit ĥ#

1 (ρ) on ρ ≤ ρ# = 50 was sought, without
the logarithmic term in (17). This produced the parameters α#

1 = 0.0387745, β#
1 =

0.523677, and λ#
1 = 0. Again, this was assumed valid for all ρ ≥ 0. While log{ĥ#(ρ)}

and log{ĥ#
1 (ρ)} roughly coincide on ρ ≤ ρ# = 50, the function log{ĥ#

1 (ρ)} decays
much faster on ρ > 50. Now, with K = 1000, s = 0.001, p = 2, and k̂L ≡ {ĥ#

1 }2

in (35), full deblurring is achieved at t = 0, as shown in the rightmost image in the
middle row of Figure 8. Prior to rescaling, we find a 6.6% increase in ‖ uS(., t) ‖1,
from 8.809 at t = 1 to 9.388 at t = 0. This is accompanied by a sixfold increase in
‖ uS(., t) ‖TV . Clearly, in this example, extending the definition of the initial ĥ#(ρ)
to all ρ ≥ 0 did not produce a viable pth root for the true otf, because log{ĥ#(ρ)}
decayed too slowly on ρ > 50.

5. Pyramids image. The MNS algorithm was applied to a 512 × 512 blurred
Pyramids image, shown as the leftmost image in the last row in Figure 8. While
the MNS otf k̂†(ξ, η) exhibited the usual false nonmonotone behavior, a plausible
partially deblurred image was obtained, as shown in the middle of the last row in
Figure 8. Considerable further sharpening is possible with APEX/SECB intervention.
Least squares fitting of k̂† on ρ ≤ ρ# = 50 produced ĥ#(ρ) with parameters α# =
0.011654282, β# = 0.67079376, λ# = 0.0282072, and γ# = 2.789097 × 10−7. With
K = 1000, s = 0.001, p = 2.5, and k̂L(ξ, η) ≡ {ĥ#(ξ, η)}p in (35), uS(x, y, t) is quite
well-behaved as t decreases from 1 to 0. One has conservation of ‖ uS(., t) ‖1 along
with a sixfold increase in ‖ uS(., t) ‖TV . The SECB image at t = 0 is the rightmost
image in the last row of Figure 8.

14. Images with multiplicative noise. The examples in the preceding section
were reconsidered in the presence of noise. Each blurred N × N image g(x, y) was
replaced by the noisy image gn(x, y) = g(x, y) + 0.001σ(x, y)g(x, y), where σ(x, y) is
an N × N array of uniformly distributed random numbers in the range [−1, 1]. Such
nonlinear multiplicative noise can significantly curtail the reconstruction of fine scale
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Blurred MNS SECB

Fig. 8. APEX/SECB intervention as discussed in Examples 3–5 produces striking improve-
ments of MNS results. Leftmost column contains synthetically blurred images g(x, y). Middle col-
umn contains unrectified MNS partially deblurred images f†(x, y). Rightmost column contains the
improved APEX/SECB images. First row: Zooming on control tower in USS Kittyhawk image in
Figure 2 (Example 3). Second row: Alphanumeric image (Example 4). Last row: Pyramids image
(Example 5).

structure in many deconvolution methods. Behavior in the following two examples
shown in Figure 9 is typical of what can be expected.

In the noisy 1024 × 1024 Marilyn Monroe image, the detected MNS otf k̂†(ξ, η)
exhibits little change from the noiseless case on ρ ≤ ρ# = 50, although quite noticeable
changes occur at high frequencies. However, such high frequency behavior is discarded
in SECB intervention, and a nonlinear least squares fit on ρ ≤ ρ# yields parameter
values for the rectified blur k̂L(ξ, η) that differ very slightly from the noiseless case.
What does change is the value of K in the SECB constraint, which must be reduced
to K = 10, with s = 0.001. Now, ‖ uS(., t) ‖1 is conserved from t = 1 to t = 0.2,
along with a fourfold increase in ‖ uS(., t) ‖TV . The SECB image at t = 0.2, shown as
the rightmost image in the top row of Figure 9, is less sharp than the corresponding
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Blurred            MNS              SECB

Fig. 9. Noisy imagery. Perturbing blurred images in section 13 by low level multiplicative noise
affect MNS-detected otfs at high frequencies, but cause little change on ρ ≤ ρ# = 50, and hence little
change in previously constructed rectified blurs k̂L(ξ, η). However, SECB regularization parameter
K must be reduced and continuation terminated further away from t = 0 to mitigate noise-induced
graininess in SECB images. Considerable improvement over MNS reconstruction is still evident.

image at t = 0.2 in Figure 7. Nevertheless, the SECB image in Figure 9 is a very
substantial improvement over the MNS image.

In the noisy 512×512 Pyramids image, one is again led to the same rectified blur
k̂L(ξ, η) as in the noiseless case. However, the effects of multiplicative noise are more
apparent in this case. Even with K reduced to the value 10 with s = 0.001, there is
more than a sevenfold increase in ‖ uS(., t) ‖TV as t decreases from 1 to 0. Some of
that increase is undoubtedly due to noise in the reconstruction. At the same time,
‖ uS(., t) ‖1 is conserved. The full-size image at t = 0 is affected by noise-induced
background graininness. Such graininess is reduced in the image at t = 0.05, and
becomes tolerable in the image at t = 0.1. There is a more moderate fivefold increase
in ‖ uS(., t) ‖TV from t = 1 to t = 0.1. The image at t = 0.1 is shown as the
rightmost image in the bottom row of Figure 9. While that image is less sharp than
the corresponding image at t = 0 in Figure 8, it is still noticeably sharper than the
MNS image.

15. Concluding remarks. Formulating an appropriate variational principle
that would result in full deblurring of images with unknown blurs is an unsolved
problem in mathematical analysis. The great diversity of possible image blurs, to-
gether with the difficulty of encapsulating the subtleties of the unknown sharp image
into a mathematical statement that can serve as an a priori constraint, makes it un-
likely that a useful all-encompassing principle can be found. Rather, just as the study
of hyperbolic equations requires a different set of mathematical tools than does the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1118 ALFRED S. CARASSO

study of elliptic equations, it is more likely that distinct classes of blurs will require
distinct analytical approaches, variational or otherwise. Therefore, it should not be
surprising to uncover pathological behavior in variational blind deconvolution.

The MNS procedure is partially successful on zero phase kernels, and not at all
useful on kernels with phases [21]. The class L of blurs considered in this paper is
intimately tied to diffusion processes, probability theory, and parabolic equations.
The expression (17) is the Fourier transform of the Green’s function for the evolution
equation (26). The astonishing success of the recovery method in the above examples
was unanticipated.
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