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Abstract. We state and briefly sketch the proof of a result on boundedness

of outer billiard orbits for trapezoidal outer billiards.

1. Introduction

Outer billiards were introduced by B.H. Neumann in about 1960 [6] and later
popularized by J. Moser in [5]. Moser used outer billiards as an example of a
problem amenable to the methods of KAM. In [5] it was shown that for outer
billiards with a six times differentiable boundary all orbits must be bounded. Moser
then went on to ask whether unbounded orbits may exist for outer billiards with
less smooth boundaries. This question has now been answered for a number of
non-differentiable outer billiards.

In the search for outer billiards with unbounded orbits, polygons are a natural
candidates since they are in some sense furthest from being integrable. In the
late 80’s several authors [8], [4], [3] independently proved that for a certain class
of polygons, extending the class of lattice polygons with non-parallel sides, the
orbits remain bounded. This larger class, named the quasi-rational polygons, also
includes all regular polygons. At this point the progress on the problem stalled
for a number of years. While numerical studies suggested that unbounded orbits
existed for some polygonal outer billiards as well as for some other non-smooth
shapes rigorous proofs could not be obtained.

In the last few years there has been a resurgence of interest in the problem and a
positive answer has been discovered in at least two cases. Specifically, R. Schwartz
proved that a large class of kite-shaped quadrilaterals, including the kite-shaped
quadrilateral of the Penrose tiling do indeed have unbounded orbits [7]. Schwartz’s
work is deep and far reaching, and is likely to be only the beginning of a very fruitful
line of research. Shortly thereafter D. Dolgopyat and B. Fayad proved existence
of unbounded orbits for a semicircular outer billiard [1], which were first observed
experimentally by S. Tabachnikov. Thus based on this admittedly small and biased
sample unboundedness appears to prevail for non-smooth billiards.
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Figure 1. Definition of the outer billiard map.

Surprisingly, for a large subset of trapezoids, which are among the simplest non-
quasi-rational polygons, all outer billiard orbits are bounded. This is the main
result of this announcement.

2. Outer billiards

Let B ⊂ R2 be a convex set with oriented boundary. The outer billiard map is
defined on R2 \B by taking the image of p ∈ R2 \B to be the point along the ray
tangent to the boundary of B, at the same distance from the point of tangency as
p (see Figure 1). The resulting map has many remarkable properties (see [9] for a
good survey).

We will consider outer billiards in which B is a trapezoid whose vertices are (-
1/2,0), (1/2,0), (1/2,1), (-1/2,1-α), where α ∈ (0, 2/3). Let this set of quadrilaterals
be denoted by Q. The main result is

Theorem 1. All orbits of an outer billiard map about a trapezoid in Q are bounded.

The result is proved by showing that the first return map to a special set of lines,
forming a Poincaré section of T , is symbolically conjugate to a simple dynamical
system related to a circle rotation by 2α. In fact, after the conjugacy is established
much more can be said about the orbit structure of the outer billiard map. For
example, periods of all periodic orbits can be easily computed as well as estimates
on the growth of orbit complexity [2].

We now briefly describe the construction leading to the proof of Theorem 1.

3. First-return map

We begin by defining a Poincaré section of T . The square of the outer billiard
map T 2 is a translation by twice the vector joining the the vertices “visited” by the



BOUNDEDNESS OF ORBITS FOR TRAPEZOIDAL OUTER BILLIARDS 73

T 2 x

x

T x

T x6

4

Figure 2. Two families of invariant line {x = 2k} and {x =
2k + 1} preserved by T 2.

orbit segment. Considering all the possible translation vectors for T 2 it is easy to
see that all of them have a horizontal component either 0 or 2. Thus the set of lines
{x = 2k + t|k ∈ Z} t ∈ [−1, 1) is preserved by T 2 (Figure 2). Furthermore, because
the orbit winds around the table in the same direction it can be shown that the
first-return map on every line in this family is well-defined.

By a symmetry argument, the attention can be further restricted to half-lines
Lt = {x = t, y > 1 − tα/2}, t ∈ (0, 1). The strip formed by the union of the
half-lines ∪t∈(0,1)Lt gives a Poincaré section of T . For simplicity we present the
argument for the half-line L0 = {x = 0, y > 1 − α/2}, since computations for Lt,
t 6= 0, are virtually identical.

Let the first-return map to L0 be denoted by F . Since T is a piecewise isom-
etry, F is an interval exchange on infinitely many intervals. A direct but lengthy
inspection yields and explicit formula for F .

(1) F (x) =


x + 2α if x ∈ Ik,1

x− 2 + 2α if x ∈ Ik,2

x + 2 if x ∈ Ik,3

x if x ∈ Ik,4

where

Ik,1 = {x ∈ Ik|Jx + 2α(k(x) + 1)K > 1− α/2, x < 2(k(x) + 1)− 2α}
Ik,2 = {x ∈ Ik|Jx + 2α(k(x) + 1)K > 1− α/2, x > 2(k(x) + 1)− 2α}
Ik,3 = {x ∈ Ik|Jx + 2α(k(x) + 1)K < 1− α/2, x < 2(k(x) + 1)}(2)
Ik,4 = {x ∈ Ik|Jx + 2α(k(x) + 1)K < 1− α/2, x > 2(k(x) + 1)}
Ik = (2k + 1− α/2, 2(k + 1) + 1− α/2)
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Figure 3. Interval exchange partition.

and

k(x) = bx− (1− α

2
)c

JxK = x− 2bx/2c
The intervals Ik partition L0 and are in turn partitioned into subintervals Ik,j which
are exchanged by F (Figure 3).

For rational α the arrangements of subintervals Ik,j are clearly periodic. Figure
4 shows one cycle of intervals Ik and their corresponding subintervals Ik,j laid out
horizontally to show the relationship between partitions of adjacent intervals. The
subinterval highlighted in blue is defined by the first of the two inequalities defining
Ik,j in (2). The partition defined by the second set of inequalities in (2) (indicated
in the figure with red vertical lines) is fixed relative to Ik, while the former interval
is shifted by 2α for each successive interval Ik. Thus, for α = p/q ∈ Q the partition
Ik,j repeats with period 2q. For α ∈ R \Q, on the other hand, the partition Ik,j is
quasi-periodic.

Figure 4 also shows why for α ∈ Q all orbits must be bounded: every cycle of
the partition Ik,j is capped above and below by “impassible” intervals, such that
orbits from below cannot go up and orbits from above cannot go down. The reason
for this is that the interval at the top of the cycle has Ik,3 = ∅ and the interval
at the bottom of the cycle has Ik,2 = (2(k + 1) + 1 − 5α/2, 2(k + 1) + 1 − α/2),
which under F transforms to (2k + 1 − α/2, 2k + 1 − 3α/2) ⊂ Ik,1. Simple as it
is, this is a new observation because parallel sides exclude the trapezoids from the
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Figure 4. Intervals Ik rotated to horizontal position and stacked
vertically, and a representative orbit (green) for α = 1/10.

set of quasi-rational polygons to which all of the known boundedness results are
restricted. Combining this with discreteness of orbits we can conclude that

Lemma 1. If α ∈ Q then all orbits are bounded and periodic.

Really, almost any question (e.g. orbit periods, orbit diameters) one might care
to ask about a lattice trapezoid can be answered by examining a diagram like Figure
4.

A simple consequence of (1) is that an F -orbit projects to an orbit of rotation
by 2α when taken modulo 2. This observation, which is key to the proof of orbit
boundedness, immediately gives

Lemma 2. If α ∈ R \Q then every non-fixed point of F is non-periodic.

That is for irrational α only the simplest periodic orbits, that close after one trip
around the table, exist.

4. Symbolic coding and the conjugate circle rotation model

The orbit of a point under iterates of F can be coded as a sequence of 0’s, 1’s
and -1’s by taking the n-th symbol to be ωn(x) = k(Fn+1(x)) − k(Fn(x)). This
encodes how the F -orbit of x moves between the intervals Ik. In spite of the three
symbols appearing in ω(x) the sequence actually turns out to be determined by a
binary coding of a circle rotation by 2α.



76 DANIEL GENIN

Definition 1. Let R : S1 → S1 be a rotation and J ⊂ S1 a subinterval then the
rotation sequence corresponding to x ∈ S1 is wn(x) = χJ(Rn(x)), where χJ is the
characteristic function of J .

Following the observation made at the end of Section 3 we can relate the rotation
sequence wn(x) and the F -orbit coding sequence ωn(x).

Lemma 3. Let π1(x) = Jx + 2k(x)α + (1 + α/2)K, π−1(x) = Jx− (1− α/2)K, and
let R be a rotation by 2α on a circle of length 2 with J = [1 + α/2 − 2α, 2 − 2α].
Then the sequence obtained by deleting 1’s from ωn(x) is the same as the sequence
−wn(π1(x)), and the sequence obtained by deleting -1’s from ωn(x) is the same as
wn(π−1(x)).

Note that whether end points of J are included or excluded is irrelevant because
they correspond to discontinuity points of F .

The two maps π1 and π−1 define a pair of projections from L0 to S1 (of length
2). As Figure 5 illustrates, F -orbits project to rotation orbits by 2α via π1 and π−1

in two different ways. (Notice that the figure also shows how the orbit reenters the
lower “impassible” interval of the cycle, as described above.) The “union” of the
corresponding rotation sequences is the coding sequence of the F -orbit. How these
sequences combine to make ω is determined by the following scheme. Let S be the
circle of length 2, J = [1 + α/2− 2α, 2− 2α], t1(0) = π1(x) and t−1(0) = π−1(x)

if t1(i) ∈ J : ωi(x) = 1, t1(i + 1) = t1(i) + 2α

if t1(i) /∈ J, t−1(i) ∈ J : ωi(x) = −1, t−1(i + 1) = t−1(i) + 2α(3)
if t1(i), t−1(i) ∈ J : ωi(x) = 0, tj(i + 1) = tj(i) + 2α, j = 1,−1

In words, we move the two points t1 and t−1 around the circle by iterates of
R until one or the other enters the distinguished interval J (the blue interval in
Figure 4) at which point the point that is outside of J stops while the point inside
J continues to move by R. Once the point that was inside J exits the interval, the
joint motion resumes. If both points enter the distinguished segment simultaneously
t1 has “the right of way”. Of course, the two points t1 and t−1 are images of F (x)
under π1 and π−1 respectively. Consequently, the coding sequence ω(x) can be
reconstructed by writing 1’s and -1’s, according to the order in which the points t1
and t−1 visit the interval J .

5. Orbit boundedness

It is now easy to show that all orbits are bounded. It suffices to check that

(4) sup
N

N∑
n=0

ωn(x) < ∞.

The proof of this bound proceeds in two steps.
First, we show that the two rotation sequences of Lemma 3 comprising ωn(x)

differ only by a shift. This follows easily because the points t1 and t−1 in (3) lie
along the same rotation orbit.

Next, we need to show that the interleaving of the two rotation sequences com-
prising ω(x) cannot create arbitrarily large deviations in the sum (4). Suppose
first that the elements of the two rotation sequences simply alternated in ω(x),
then clearly the supremum in (4) would be at most 1 because 1’s and -1’s cancel
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Figure 5. Projections π1 (a) and π−1 (b).

almost exactly. This, of course, is not very likely to happen but if we can show that
the corresponding members of the two sequences are never too far apart the result
would clearly follow. A simple analysis of scheme (3) shows this to be the case and
we have

(5) sup
N

N∑
n=0

ωn(x) ≤ C(x) + sup
N

N∑
n=0

wn+k(x)(x)− wn(x),

where C(x) is a constant depending only on x.
To complete the proof we show that the right side of (5) is in turn bounded

above by

C(x) + sup
N

N∑
n=0

wn+k(x)(x)− wn(x) ≤ C(x) + sup
N

k(x)∑
n=0

wn+N ≤ C(x) + k(x).

The left hand side is a constant depending only on x and Theorem 1 follows. Note
that the bound is not uniform in x and so it is possible for orbits to have arbitrarily
large excursions.
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6. Conclusion

A natural extension of this work would be to tackle the case of more general
polygons with families of invariant lines, whose dynamics can be reduced to an
infinite interval exchange on a finite union of lines. In [7], Schwartz succeeded in
doing exactly this for kite-shaped quadrilaterals. Already in this case, however, the
methods required are considerably more complicated because the first return map
is more complex. The reward for the hard work are deep and beautiful results (and
pictures). One can only guess what fascinating new challenges and unexpected
gems Moser’s problem will produce.
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