

NIST Technical Note 1607

 Using the BACnet
Communications DLL v1.0

Michael A. Galler

NIST Technical Note 1607

Using the BACnet Communications
DLL v1.0

Michael A. Galler

U.S. DEPARTMENT OF COMMERCE

National Institute of Standards and Technology
Building Environment Division

Building and Fire Research Laboratory
Gaithersburg, Maryland 20899-8631, USA

September 2008

U.S. Department of Commerce
Carlos M. Gutierrez, Secretary

National Institute of Standards and Technology

Patrick D. Gallagher, Deputy Director

Certain commercial entities, equipment, or materials may be identified in this

 document in order to describe an experimental procedure or concept adequately. Such
identification is not intended to imply recommendation or endorsement by the

National Institute of Standards and Technology, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available for the purpose.

In this document, we have provided link(s) to website(s) that may have information of interest to our users.
NIST does not necessarily endorse the views expressed or the facts presented on these sites. Further, NIST

does not endorse any commercial products that may be advertised or available on these sites.

National Institute of Standards and Technology Technical Note 1607
Natl. Inst. Stand. Technol. Tech. Note 1607, 29 pages (September 2008)

CODEN: NSPUE2

ABSTRACT

Using the BACnet Communications DLL v1.0

The BACnet standard defines a communication protocol for information exchange
between components of a distributed building automation and control system. The
BACnet communications dynamically linked library enables researchers to implement
selected BACnet communications, creating an interface for data collection that is easy to
use. Researchers can integrate the BACnet communications DLL (Dynamically Linked
Library) into existing tools, create a new tool with the BACnet communications DLL
(BCD), or use the BCD with common data acquisition and analysis tools. The BCD has
already been used to collect data in a variety of locations.

Table of Contents

1. Introduction..1

2. Usage ...2

2.1 Use of the readPVProperty subroutine ..3

2.2 Use of the readObjProperty subroutine..6

2.3 Use of the writePVProperty subroutine ...9

2.4 Use of the writeObjProperty subroutine ..12

2.5 Use of the BACnetObjectInfo subroutine..15

2.6 Use of the sendWhoIs subroutine ..17

2.7 Use of the WPCInit and WPCClose subroutines...19

2.8 Use of the getDefaultAdapter subroutine ..20

2.9 Use of the setDefaultAdapter subroutine...21

2.10 Use of the getAdapterMAC subroutine ...22

3. Extensibility ..23

4. Summary...24

5. Future Work...24

6. References ...24

1

1. Introduction
The BACnet standard [1] defines a communication protocol for information exchange
between components of a distributed building automation and control system. As
BACnet enabled HVAC (Heating, Ventilating, and Air Conditioning) systems have
proliferated, so have the possibilities to perform research enabled by access to them from
a personal computer or workstation. By accessing HVAC controllers from a computer,
the researcher can retrieve data from the BACnet objects on the controllers. This data
could include information on the conditions in the building space served by the
equipment, the conditions in the equipment itself, the conditions and status of the
equipment, the actions the controller is currently taking, and values which may be set by
internal program logic. This data can then be used for a variety of research purposes,
including real-time monitoring of the HVAC system, fault detection and diagnostics
(FDD), data logging, or the application of other types of research tools.

The BACnet communications dynamically linked library (DLL) is designed to simplify
communications with BACnet enabled controllers. It allows programs to read and write a
variety of values on the controllers, and to implement a range of BACnet commands. The
BACnet Communications DLL (BCD) is designed to support data collection from
BACnet devices, primarily for use by FDD, data logging, or other similar types of tools,
and thus only supports a subset of the capabilities offered by BACnet. The BCD allows
communications to any controller accessible from a computer by a local Ethernet (IEEE
802.3) connection. Since it is provided as a DLL, this capability can be integrated into
research applications with minimal effort. The BCD can also be accessed by applications
commonly used for data acquisition, which are also capable of communicating with a
DLL. This allows the same communications code to be used by several applications,
each with a different purpose. The BCD was compiled using Microsoft Visual C++ 8.0,
and uses the WinPcap 3.1 library [4] for Ethernet communications. The BCD was
designed to offer a high degree of functionality and stability, while being flexible and
easy to use.

In addition to enabling data acquisition and monitoring, the BCD is intended to be part of
a testbed for developing new BACnet objects, properties, and services. It supports
communications which allow a program to emulate a BACnet Application Specific
Controller (B-ASC), with a goal of allowing emulation of more sophisticated BACnet
devices in subsequent versions. The BCD has already been used to collect data in a
variety of locations [2,3].

2

2. Usage
Communications with the BCD is achieved by calling one of a number of subroutines.
Each subroutine is designed to perform a specific task with a simple, easy to use
interface. The subroutines are divided into three categories: retrieval of data, writing of
data, and information retrieval. The available subroutines are listed in Table 2.1.

Table 2.1- Subroutines in the BCD by category
Category Available Subroutines
Data Retrieval readPVProperty

readObjProperty
Data Writing writePVProperty

writeObjProperty
Network Information sendWhoIs
Adapter Information WPCInit/WPCClose

getDefaultAdapter
setDefaultAdapter
getAdapterMAC

BACnet Information BACnetObjectInfo

The subroutines readPVProperty and readObjProperty are used to retrieve the value of a
BACnet property. The value must be represented by a number or a text string.
Compound types are not supported, but Boolean and enumerated types are supported.
The subroutine readPVProperty could be viewed as a limited case of the readObjProperty
subroutine, as it only allows retrieval of the Present_Value BACnet property. It is
included to simplify implementation of commonly used functionality. The subroutine
readObjProperty allows retrieval of any property of a BACnet object. The subroutines
writePVProperty and writeObjProperty are used to write a new value to a property, but
otherwise have the same restrictions as their corresponding read subroutines.
Before use, each subroutine must be declared in the code of the calling application using
an extern statement. The read- and write- subroutines will initiate one or more BACnet
ReadProperty, WriteProperty, ReadPropertyMultiple, or WritePropertyMultiple
confirmed service messages to be sent to the appropriate controllers. If a read or write
request only has one item, or has consecutive items addressed to different controllers, a
ReadPropety or WriteProperty message will be sent. If a request has multiple
consecutive items addressed to the same controller, a ReadPropertyMultiple or
WritePropertyMultiple message will be sent. The sendWhoIs subroutine will initiate a
BACnet Who-Is unconfirmed service message.

3

2.1 Use of the readPVProperty subroutine
2.1.1 Description
Requests for retrieval of the Present_Value property of BACnet objects are implemented
by calling the subroutine readPVProperty. Multiple values (up to 250) can be queried
with one call to the subroutine. Any type of data that may be stored in the Present_Value
property of an allowed object type as shown in Table 2.1.2 can be retrieved, as the values
are returned as text strings.

2.1.2 Declaration
The subroutine is declared as:
__declspec(dllexport) int readPVProperty(int count, char **devAddr, int
*net, char **router, int *obj, int *inst, char **bv, int *fault);

The declaration in the calling program should be:
extern __declspec(dllexport) int readPVProperty(int count, char
**devAddr, int *net, char **router, int *obj, int *inst, char **bv, int
*fault);

2.1.3 Arguments and Return Value
The arguments to readPVProperty are described in Table 2.1.1 and the values for the obj
parameter are given in Table 2.1.2.

Table 2.1.1- Explanation of arguments to the readPVProperty subroutine

Argument Description
count The number of values being requested. Each of the other variables should be

arrays having this many elements. Accepted values are between 1 and 250.
devAddr An array of media access control (MAC) addresses. Each MAC address

entry is for the BACnet device being queried, not for their routers. The
MAC address should be in hexadecimal, and should not be preceded by an
‘x’ or ‘0x’. Examples: ‘0A’ or ‘1A2B3C4D5E6F’.

net The BACnet network number on which the BACnet device being queried is
located, or 0 for the local BACnet network.

router Router MAC address, if necessary. If there is no router for a query, this
should be a string of length 0.

obj An array of integers representing the BACnet object type of a query (see
Table 2.1.2).

inst An array of integers representing the instance of the BACnet object being
queried.

bv An array of strings holding the requested values (or an error message if there
was an error for a particular request).

fault An array of integers representing the fault status of each request, 1 for no
fault or 0 for a fault.

4

Table 2.1.2- Values for obj argument to the readPVProperty subroutine
Object Type Argument Value

Analog Input (AI) 0
Analog Output (AO) 1
Analog Value (AV) 2
Binary Input (BI) 3

Binary Output (BO) 4
Binary Value (BV) 5

The return values for readPVProperty are described in Table 2.1.3. Note that a return
value indicating a fault may still return some of the requested data, but that one or more
values could not be retrieved (i.e., there was a problem with one or more of the requests,
but not all of them).

Table 2.1.3- Description of return values for the readPVProperty subroutine.

Return Value Description

1 No faults returned
0 One or more faults returned. Examine the fault array

to determine which request returned a fault.

2.1.4 Example Code
Below are samples of code showing how this subroutine might be implemented. This
code is provided for demonstration purposes only.

Single request to device on local network

char **devAddr;// to be assigned value “A1B2C3D4E5F6”
int net[1] = { 0 }; // local net
// Note- arrays shown as statically allocated could also be dynamically
allocated
char **router; // to be assigned value “”
int obj[1] = { 1 }; // Analog Output
int inst[1] = { 5 }; // Instance number 5 (AO5)
char **bv;
int fault[1];
// Allocate memory for devAddr, router, and bv for arrays [1][20] -
code not shown
// Copy values to devAddr and router – code not shown
int i = readPVProperty (1,devAddr,net,router,obj,inst,bv,fault); //
count=1 for one value requested
if(i == 0){ } // no errors were found

Request two values, from different controllers

char **devAddr;// to be assigned values “A1B2C3D4E5F6” and “04”
int net[2] = { 0, 42 }; // local net, and BACnet network 42
char **router; // to be assigned values “” and “ABCDEF123456”
int obj[2] = { 1, 3 }; // Analog Output and Binary Input
int inst[2] = { 5, 1 }; // Instance number 5 (AO5) and number 1 (BI1)
char **bv;
int fault[2];
// Allocate memory for devAddr, router, and bv for arrays [2][20] -
code not shown
// Copy values to devAddr and router – code not shown

5

int i = readPVProperty(2,devAddr,net,router,obj,inst,bv,fault); //
count=2 for two values requested

Request a sequence of values from one controller

int count = 10;
char **devAddr;// to be assigned value “A1B2C3D4E5F6” for each item
int net[10]; // local net for each item
char **router; // to be assigned value “” for each item
int obj[10], inst[10], fault[10];
char **bv;
// Allocate memory for devAddr, router, and bv for arrays [10][20] -
code not shown
for(int i=0;i< count;i++){

// Copy values to devAddr, router, net, obj – code not shown
inst[i] = i+1; // Object instances 1 to 10

}
int i = readPVProperty(count,devAddr,net,router,obj,inst,bv,fault); //
count=10 for ten values requested

6

2.2 Use of the readObjProperty subroutine
2.2.1 Description
The subroutine readObjProperty is similar to the subroutine readPVProperty, except that
it allows the value of any property to be read, not just Present_Value. The only
functional difference is the additional parameters allowing the user to specify the
property and (optional) array index being read. This subroutine may also request data
from any BACnet object type, not just those to which readPVProperty is limited. The
only exception to this is that value of the read property must be represented by a number
or a text string. Compound types are not supported, but Boolean and enumerated types
are supported. If readObjProperty is called with the Present_Value property specified for
each requested item, the result is identical to a call to readPVProperty.

2.2.2 Declaration
The subroutine is declared as:
__declspec(dllexport) int readObjProperty(int count, char **devAddr,
int *net, char **router, int *obj, int *inst, int *prop, int *index,
char **bv, int *fault);

The declaration in the calling program should be:
extern __declspec(dllexport) int readObjProperty(int count, char
**devAddr, int *net, char **router, int *obj, int *inst, int *prop, int
*index, char **bv, int *fault);

2.2.3 Arguments and Return Value
The arguments to readObjProperty are described in Table 2.2.1. Note that the arguments
are identical to those of the function readPVProperty, except for the new arguments prop
and index.

Table 2.2.1- Explanation of arguments to the readObjProperty subroutine
Argument Description
count The number of values being requested. Each of the other variables should be

arrays having this many elements. Accepted values are between 1 and 250.
devAddr An array of MAC addresses. Each MAC address entry is for the BACnet device

being queried, not for routers. The MAC address should be in hexadecimal, and
should not be preceded by an ‘x’ or ‘0x’. Examples: ‘0A’ or ‘1A2B3C4D5E6F’.

net The BACnet network number on which the BACnet device being queried is
located, or 0 for the local BACnet network.

router Router MAC address, if necessary. If there is no router for a query, this should
be a string of length 0.

obj An array of integers representing the BACnet object type of a query.
inst An array of integers representing the instance of the BACnet object being

queried.
prop An array of integers representing the property number being queried.
index An array of integers representing the array index of the BACnet object being

queried. This should be set to a value of -1 for each object where an array index
is not used.

bv An array of strings holding the requested values (or an error message if there was
an error for a particular request)

fault An array of integers representing the fault status of each request, 1 for no fault or
0 for a fault.

7

The return values for readObjProperty are described in Table 2.2.2. Note that a return
value indicating a fault does not mean that no values were returned, but that one or more
values could not be retrieved.

Table 2.2.2- Description of return values for the readObjProperty subroutine.

Return
Value

Description

1 No faults returned
0 One or more faults returned. Examine the fault array to

determine which request returned a fault.

2.2.4 Example Code
Below are samples of code showing how this subroutine might be implemented. This
code is provided for demonstration purposes only.

Single request to device on local network

char **devAddr;// to be assigned value “A1B2C3D4E5F6”
int net[1] = { 0 }; // local net
// Note- arrays shown as statically allocated could also be dynamically
allocated
char **router; // to be assigned value “”
int obj[1] = { 8 }; // Device object
int fault[1], inst[1] = { 20 }; // Instance number 20
int index[1] = { -1 }; // Not using array instance for this request
int prop[1] = { 70 }; // request the model-name property
char **bv;
// Allocate memory for devAddr, router, and bv for arrays [1][20] -
code not shown
// Copy values to devAddr and router – code not shown
// Note that count=1 for one value requested
int i =
readObjProperty(1,devAddr,net,router,obj,inst,prop,index,bv,fault);
if(i == 0){ } // no errors were found

Request two values, from different controllers

char **devAddr;// to be assigned values “A1B2C3D4E5F6” and “04”
int net[2] = { 0, 42 }; // local net, and BACnet network 42
char **router; // to be assigned values “” and “ABCDEF123456”
int obj[2] = { 1, 3 }; // Analog Output and Binary Input
int inst[2] = { 5, 1 }; // Instance number 5 (AO5) and number 1 (BI1)
int prop[2] = { 85, 85 }; // Present_Value property
int index[1] = { -1, -1 }; // Not using array instance for this request
char **bv;
int fault[2];
// Allocate memory for devAddr, router, and bv for arrays [2][20] -
code not shown
// Copy values to devAddr and router – code not shown
// Note that count=2 for two values requested
int i =
readObjProperty(2,devAddr,net,router,obj,inst,prop,index,bv,fault);

Request a sequence of values from one controller

8

int count = 10;
char **devAddr;// to be assigned value “A1B2C3D4E5F6” for each item
int net[10]; // local net for each item
char **router; // to be assigned value “” for each item
int obj[10], inst[10], fault[10], prop[10], index[10];
char **bv;
// Allocate memory for devAddr, router, and bv for arrays [10][20] -
code not shown
for(int i=0;i< count;i++){
 // Copy values to devAddr, router, net, obj, index – code not shown
 inst[i] = i+1; // Object instances 1 to 10
 prop[i] = 77; // object-name property
}
// Note that count=10 for ten values requested
int i =
readObjProperty(count,devAddr,net,router,obj,inst,prop,index,bv,fault);

9

2.3 Use of the writePVProperty subroutine
2.3.1 Description
Commands to overwrite the Present_Value property of BACnet objects are implemented
by calling the subroutine writePVProperty. Multiple values can be sent with one call to
the subroutine. Any type of data that may be written in the Present_Value property of an
allowed object type as shown in Table 2.3.2 (i.e., float, int, or Boolean) can be set
because the values are sent as text strings.

2.3.2 Declaration
The subroutine is declared as:
__declspec(dllexport) int writePVProperty(int count, char **devAddr,
int *net, char **router, int *obj, int *inst, int *prty, char **bv, int
*fault);

The declaration in the calling program should be:
extern __declspec(dllexport) int writePVProperty(int count, char
**devAddr, int *net, char **router, int *obj, int *inst, int *prty, char
**bv, int *fault);

2.3.3 Arguments and Return Value
The arguments to writePVProperty are described in Table 2.3.1 and Table 2.3.2.

Table 2.3.1- Explanation of arguments to the writePVProperty subroutine
Argument Description
count The number of values being written. Each of the other variables should be

arrays having this many elements. Accepted values are between 1 and 250.
devAddr An array of MAC addresses. Each MAC address entry is for the BACnet

device being contacted, not for routers. The MAC address should be in
hexadecimal, and should not be preceded by an ‘x’ or ‘0x’. Examples: ‘0A’
or ‘1A2B3C4D5E6F’.

net The BACnet network number on which the BACnet device being contacted is
located, or 0 for the local BACnet network.

router Router MAC address, if necessary. If there is no router for a request, this
should be a string of length 0.

obj An array of integers representing the BACnet object type of a request (see
Table 2.3.2).

inst An array of integers representing the instance of the BACnet object being
written.

prty An array of integers representing the priority the value should be written with.
bv An array of strings holding the values being written to the controller.
fault An array of integers representing the fault status of each request, 1 for no

fault or 0 for a fault.

10

Table 2.3.2- Values for obj argument to the writePVProperty subroutine
Object Type Argument Value

Analog Input (AI) 0
Analog Output (AO) 1
Analog Value (AV) 2
Binary Input (BI) 3

Binary Output (BO) 4
Binary Value (BV) 5

The return values for writePVProperty are described in Table 2.3.3. Note that when
writing multiple values, when the return value indicates a fault the BCD may still have
written some of the requested data, but one or more values could not be written (i.e., there
was a problem with one or more of the requests, but not all of them).

Table 2.3.3- Description of return values for the writePVProperty subroutine.
Return Value Description
1 No faults returned
0 One or more faults returned. Examine the fault

array to determine which request returned a fault.

2.3.4 Example Code
Below are samples of code showing how this subroutine might be implemented. This
code is provided for demonstration purposes only.

Single request to device on local network

char **devAddr;// to be assigned value “A1B2C3D4E5F6”
int net[1] = { 0 }; // local net
// Note- arrays shown as statically allocated could also be dynamically
allocated
char **router; // to be assigned value “”
int obj[1] = { 1 }; // Analog Output
int inst[1] = { 5 }; // Instance number 5 (AO5)
int prty[1] = { 7 }; // Write at priority 7
char **bv;
int fault[1];
// Allocate memory for devAddr, router, and bv for arrays [1][20] -
code not shown
// Copy values to devAddr and router – code not shown
int i = writePVProperty (1,devAddr,net,router,obj,inst,prty,bv,fault);
// count=1 for one value requested
if(i == 0){ } // no errors were found

Request two values, from different controllers

char **devAddr;// to be assigned values “A1B2C3D4E5F6” and “04”
int net[2] = { 0, 42 }; // local net, and BACnet network 42
char **router; // to be assigned values “” and “ABCDEF123456”
int obj[2] = { 1, 3 }; // Analog Output and Binary Input
int inst[2] = { 5, 1 }; // Instance number 5 (AO5) and number 1 (BI1)
int prty[2] = { 7, 7 }; // Priority of 7
char **bv;
int fault[2];

11

// Allocate memory for devAddr, router, and bv for arrays [2][20] -
code not shown
// Copy values to devAddr and router – code not shown
int i = writePVProperty(2,devAddr,net,router,obj,inst,prty,bv,fault);
// count=2 for two values requested

Request a sequence of values from one controller

int count = 10;
char **devAddr;// to be assigned value “A1B2C3D4E5F6” for each item
int net[10]; // local net for each item
char **router; // to be assigned value “” for each item
int obj[10], inst[10], fault[10];
char **bv;
// Allocate memory for devAddr, router, and bv for arrays [10][20] -
code not shown
for(int i=0;i< count;i++){

// Copy values to devAddr, router, net, obj – code not shown
inst[i] = i+1; // Object instances 1 to 10

}
int i =
writePVProperty(count,devAddr,net,router,obj,inst,prty,bv,fault);
// count=10 for ten values requested

12

2.4 Use of the writeObjProperty subroutine
2.4.1 Description
The subroutine writeObjProperty is similar to the subroutine writePVProperty, except
that it allows the value of any property to be written, not just Present_Value. The only
functional difference is the additional parameters allowing the user to specify the
property and (optional) array index being written. This subroutine may also write data to
any BACnet object type, not just those to which writePVProperty is limited. The only
exception to this is that value of the written property must be represented by a number or
a text string. Compound types are not supported, but Boolean and enumerated types are
supported. If writeObjProperty is called with the Present_Value property specified for
each requested item, the result is identical to a call to writePVProperty.

2.4.2 Declaration
The subroutine is declared as:
__declspec(dllexport) int writeObjProperty(int count, char **devAddr,
int *net, char **router, int *obj, int *inst, int *prop, int *index, int
*prty, char **bv, int *fault);
The declaration in the calling program should be:
extern __ __declspec(dllexport) int writeObjProperty(int count, char
**devAddr, int *net, char **router, int *obj, int *inst, int *prop, int
*index, int *prty, char **bv, int *fault);

2.4.3 Arguments and Return Value
The arguments to writeObjProperty are described in Table 2.4.1. Note that the arguments
are identical to those of the function writePVProperty, except for the new arguments prop
and index.

Table 2.4.1- Explanation of arguments to the writeObjProperty subroutine
Argument Description
count The number of values being written. Each of the other variables should be

arrays having this many elements. Accepted values are between 1 and 250.
devAddr An array of Media Access Control (MAC) addresses. Each MAC address

entry is for the BACnet device being contacted, not for routers. The MAC
address should be in hexadecimal, and should not be preceded by an ‘x’ or
‘0x’. Examples: ‘0A’ or ‘1A2B3C4D5E6F’.

net The BACnet network number on which the BACnet device being contacted
is located, or 0 for the local BACnet network.

router Router MAC address, if necessary. If there is no router for a request, this
should be a string of length 0.

obj An array of integers representing the BACnet object type of a write request
(see Table 2.3.2).

inst An array of integers representing the instance of the BACnet object being
written.

prop An array of integers representing the property number being written.
index An array of integers representing the array index of the BACnet object being

written. This should be set to a value of -1 for each object where an array
index is not used.

prty An array of integers representing the write priority.
bv An array of strings holding the values being written to the controller.
fault An array of integers representing the fault status of each request, 1 for no

fault or 0 for a fault.

13

The return values for writeObjProperty are described in Table 2.4.2. Note that a return
value indicating a fault does not mean that no values were written, but that one or more
values could not be written.

Table 2.4.2- Description of return values for the writeObjProperty subroutine.

Return Value Description
1 No faults returned
0 One or more faults returned. Examine the fault

array to determine which request returned a fault.

2.4.4 Example Code
Below are samples of code showing how this subroutine might be implemented. This
code is provided for demonstration purposes only.

Single request to device on local network

char **devAddr;// to be assigned value “A1B2C3D4E5F6”
int net[1] = { 0 }; // local net
// Note- arrays shown as statically allocated could also be dynamically
allocated
char **router; // to be assigned value “”
int obj[1] = { 8 }; // Device Object
int fault[1], inst[1] = { 20 }; // Instance number 20
int prop[1] = { 85 }; // Present Value
int index[1] = { -1 }; // Index not used
int prty[1] = { 7 }; // Priority of 7
char **bv;
// Allocate memory for devAddr, router, and bv for arrays [1][20] -
code not shown
// Copy values to devAddr and router – code not shown
int i =
writeObjProperty(1,devAddr,net,router,obj,inst,prop,index,prty,bv,fault)
;
// count=1 for one value requested
if(i == 0){ } // no errors were found

Request two values from different controllers

char **devAddr;// to be assigned values “A1B2C3D4E5F6” and “04”
int net[2] = { 0, 42 }; // local net, and BACnet network 42
char **router; // to be assigned values “” and “ABCDEF123456”
int obj[2] = { 1, 3 }; // Analog Output and Binary Input
int inst[2] = { 5, 1 }; // Instance number 5 (AO5) and number 1 (BI1)
int prop[2] = { 85, 85 }; // Present_Value property
int index[2] = { -1, -1 }; // Index not used
int prty[2] = { 7, 7 }; // Priority of 7
char **bv;
int fault[2];
// Allocate memory for devAddr, router, and bv for arrays [2][20] -
code not shown
// Copy values to devAddr and router – code not shown
int i =
writeObjProperty(2,devAddr,net,router,obj,inst,prop,index,bv,fault);
// count=2 for two values requested

Request a sequence of values from one controller

14

int count = 10;
char **devAddr;// to be assigned value “A1B2C3D4E5F6” for each item
int net[10]; // local net for each item
char **router; // to be assigned value “” for each item
int obj[10], inst[10], fault[10], prop[10], index[10], prty[10];
char **bv;
// Allocate memory for devAddr, router, and bv for arrays [10][20] -
code not shown
for(int i=0;i< count;i++){

// Copy values to devAddr, router, index, prty, net, obj –
// code not shown
inst[i] = i+1; // Object instances 1 to 10
prop[i] = 77; // object-name property

}
int i =
writeObjProperty(count,devAddr,net,router,obj,inst,prop,index,prty,bv,
fault);
// count=10 for ten values requested

15

2.5 Use of the BACnetObjectInfo subroutine
2.5.1 Description
This subroutine is used to obtain information about BACnet object types supported by the
BCD and their properties. It returns information on the set of objects and properties
supported by the current version of the BCD. This is valuable to have available
dynamically as the list of BACnet objects and properties is periodically revised. Note
that future versions of the BCD may have support for draft versions of new BACnet
objects, to help fulfill its mission as a research tool. The information that is available
includes the number of BACnet object types, the names of the BACnet objects, and the
count and names of the properties of each object type. Note that this subroutine does not
give information or values from any controllers on the network, or from any specific
instance of an object or property on a controller. Use of this subroutine does not generate
any messages on the network, or rely on information previously gathered from the
network. Information about BACnet objects located on a specific controller can instead
be obtained using the readObjProperty subroutine.

2.5.2 Declaration
The subroutine is declared as:
__declspec(dllexport) int BACnetObjectInfo (int reqObject,int
reqProp,char *propName);

The declaration in the calling program should be:
extern __declspec(dllexport) int BACnetObjectInfo (int reqObject,int
reqProp,char *propName);

2.5.3 Arguments and Return Value
The arguments to BACnetObjectInfo are described in Table 2.5.1.

Table 2.5.1- Explanation of arguments to the BACnetObjectInfo subroutine

Argument
name

Value Description

< 0 Returns the number of BACnet objects reqObject
>= 0 If reqProp is < 0, returns the number of properties for the indicated

object, and copies the text name of the indicated object to
propName
If reqProp is > 0, returns the value 1 and copies the text name of
the indicated property to propName.
Note that the numbering for BACnet objects starts at 0. If there are
N objects, the last one is specified by the value N-1. This is also
valid for properties. This is standard for C and C++ programming.
If reqObject is a number greater than the number of BACnet
objects, an error value of -1 will be returned.

< 0 Only evaluated if reqObject refers to a valid object. Returns
property count for reqObject.

reqProp

>= 0 Only evaluated if reqObject is set to a valid object. Returns text
label of reqProp in the propName parameter. If reqProp is a
number greater than the number of properties for the indicated
BACnet object, an error value of -2 will be returned.

propName This variable is only used to return text labels of objects or
properties. It should be initialized as an array of characters at least
40 characters long.

16

The meaning of the return value depends on which arguments are used. If the reqObject
parameter is negative, the return value will be the number of BACnet object types
supported. If reqObject is larger than the number of BACnet object types supported, an
error value of -1 will be returned. If reqObject is valid and reqProp is negative, the return
value will be the number of properties supported by the BACnet object indicated by
reqObject. If reqProp is a valid property number, the property name requested will be
copied to propName and a value of 1 will be returned. If reqProp is larger than the valid
range, an error value of -2 will be returned. The return values are described in Table
2.5.2.

Table 2.5.2- Description of return values for the BACnetObjectInfo subroutine.

Return Value Description
> 0 The request was returned successfully.
-1 There was an error with the reqObject parameter.
-2 There was an error with the reqProp parameter.

2.5.4 Example Code
Below are samples of code showing how this subroutine might be implemented. This
code is provided for demonstration purposes only.

Retrieve the number of BACnet object types supported

char opname[40];
int i;

i = BACnetObjectInfo(-1,0,opname);
// note that the value of reqProp will not be evaluated
printf(“There are %d BACnet object types supported”,i);

Retrieve the name of, and the number of properties supported by BACnet, object type 0

// note: BACnet object type 0 is analog-input
i = BACnetObjectInfo(0,-1,opname);
//NOTE- opname == “analog-input”
printf(“BACnet object type 0 is named %s”,opname);
printf(“BACnet object type 0 has %d properties”,i);

Retrieve the name of a specific property of BACnet object type 0 (analog-input)

i = BACnetObjectInfo(0,5,opname);
// NOTE- opname == “status-flags”
printf(“Property 5 ofBACnet object type 0 is labeled ‘%s’”,opname);

17

2.6 Use of the sendWhoIs subroutine
2.6.1 Description
The sendWhoIs subroutine is used to obtain a listing of BACnet devices that are on the
BACnet internetwork, and on locally connected networks. It can be used to detect all
devices, or it can be used to do a limited search based on Device object instance number
ranges. It works by sending a global BACnet WhoIs request.

2.6.2 Declaration
The subroutine is declared as:
__declspec(dllexport) int sendWhoIs(char **devAddr, char **router, int
*net, int *devid, int max=100, int low=-1, int high=-1);

The subroutine should be declared in the calling program as follows:
extern __declspec(dllexport) int sendWhoIs(char **devAddr, char
**router, int *net, int *devid, int max=100, int low=-1, int high=-1);

Note the default values provided for the max, low, and high parameters. The variables
devAddr, router, net, and devid are arrays which are filled with return values by
sendWhoIs. If the value of the max variable is not specified, it is important that the
arrays which have return values in them are allocated with a sufficient length (i.e., at least
a length of 100).

2.6.3 Arguments and Return Value
The arguments to sendWhoIs are described in Table 2.6.1.

Table 2.6.1- Explanation of arguments to the sendWhoIs subroutine

Argument Value Description
devAddr NA Returns text labels of MAC addresses of found

devices. It should be initialized as an array of
characters at least 15 characters long.

router NA Returns text labels of MAC addresses of routers to
found devices. If a device has no router, this will
return a string of length 0. It should be initialized
as an array of characters at least 15 characters long.

net NA Returns text labels of the BACnet network number
of each found device.

devid NA Returns text labels of the device object instance
number for each found device.

max > 0 Optional; Mmaximum number of found devices for
which information should be returned. This
number should be the same as the length of the
arrays for devAddr, router, net, and devid. This
variable has a default value of 100.

low >= 0
and

<= high

Optional; Specifies the low end when searching for
device objects with instance numbers in a specific
range. If used, the variables max and high must
also be specified. If passed with a value of -1, this
parameter and the high parameter will be ignored.

high >= low
and

<= 4,194,303

Optional; Specifies the high end when searching for
Device object with instance numbers in a specific
range. If used, the variables low and high must also
be specified.

18

The return value of sendWhoIs will be the number of devices found from the request.
This will be zero if no devices responded to the request. If there is an error with one or
more of the arguments, the return value will be -1. The return values are described in
Table 2.6.2.

Table 2.6.2- Description of return values for the sendWhoIs subroutine.
Return Value Description
>= 0 and <= max The number of devices which responded to the request.
-1 There was an error with one or more of the parameters.

2.6.4 Example Code
Below are samples of code showing how this subroutine might be implemented. This
code is for demonstration purposes only.

Obtain information about devices on local network

char **devAddr, **router;
int *net, *devid ;
int max = 200, low = -1, high = -1;

// Allocate memory for devAddr, router, net and devid arrays to length
max - code not shown
int devCount = sendWhoIs(devAddr,router,net,devid,max,low,high); //
request all devices to respond
if(devCount > 0){ // information about devices was returned
 for(i=0;i<devCount;i++)
 printf(“Found device with address %s OBJ ID %d on BACnet network
%d\n”, devAddr[i], devid[i], net[i]);
} else {
 printf(“There was an error with sendWhoIs()!\n”);
}

19

2.7 Use of the WPCInit and WPCClose subroutines
2.7.1 Description
The WPCInit subroutine is used to explicitly initialize the WinPCap connection. If this
function is not called explicitly by the calling program, it will be called by the first read
or write subroutine called. When called, it will return the number of network adapters
present on the computer. If there are multiple adapters present, it will also select the first
one with a valid Ethernet address. Note that it will automatically skip modems and some
virtual network adapters. A virtual network adapter can be set as the default adapter by
calling the setDefaultAdapter subroutine with the appropriate adapter identifier.
The WPCClose subroutine is used to close the WinPCap connections. It will be called
automatically by the BCD when it closes, but it may also be called explicitly. This might
be useful if a program does not need to send or receive further BACnet packets, but has
other processing to finish.

2.7.2 Declaration
The WPCInit subroutine is declared as:
__declspec(dllexport) int WPCInit(void);

The WPCInit subroutine should be declared in the calling program as follows:
extern __declspec(dllexport) int WPCInit(void);

The WPCClose subroutine is declared as:
__declspec(dllexport) void WPCClose(void);

The WPCClose subroutine should be declared in the calling program as follows:
extern __declspec(dllexport) void WPCClose(void);

2.7.3 Arguments and Return Value
There are no arguments passed to the WPCInit subroutine. The return values are
described in Table 2.7.1.

Table 2.7.1- Description of return values for the WPCInit subroutine.
Return Value Description
< 0 An error occurred with WinPCap.
>= 0 The count of adapters found on the system

There are no arguments to or return values from the WPCClose subroutine.

2.7.4 Example Code
Below are samples of code showing how this subroutine might be implemented. This
code is provided for demonstration purposes only.

Initialize WinPCap and get the number of adapters

int count;
count = WPCInit();
if(count < 0){ printf(“There was an error initializing WinPCap.\n”);
} else { printf(“There are %d adapters on this
computer\n”,count);}
/* ... */
WPCClose();

20

2.8 Use of the getDefaultAdapter subroutine
2.8.1 Description
The getDefaultAdapter subroutine is used to get the identifier for the current default
adapter. Note that numbering starts at 0.

2.8.2 Declaration
The getDefaultAdapter subroutine is declared as:
__declspec(dllexport) int getDefaultAdapter(void);

The subroutine should be declared in the calling program as follows:
extern __declspec(dllexport) int getDefaultAdapter(void);

2.8.3 Arguments and Return Value
There are no arguments passed to getDefaultAdapter. The return values are described in
Table 2.8.1.

Table 2.8.1- Description of return values for the getDefaultAdapter subroutine.
Return Value Description
< 0 The default adapter has not been set
>= 0 The identifier of the default adapter

2.8.4 Example Code
Below are samples of code showing how this subroutine might be implemented. This
code is provided for demonstration purposes only.

Initialize WinPCap and get default adapter identifier

int count, adapter_id;

count = WPCInit();

if(count < 0){

printf(“There was an error initializing WinPCap.\n”);
} else {
 printf(“There are %d adapters on this computer\n”, count);
}

adapter_id = getDefaultAdapter();
printf(“The default adapter ID is %d\n”, adapter_id); // this will be 0
if there is only one adapter

21

2.9 Use of the setDefaultAdapter subroutine
2.9.1 Description
The setDefaultAdapter subroutine is used to select the identifier for the current default
adapter. Note that numbering starts at 0.

2.9.2 Declaration
The setDefaultAdapter subroutine is declared as:
__declspec(dllexport) int setDefaultAdapter(int i);

The subroutine should be declared in the calling program as follows:
extern __declspec(dllexport) int setDefaultAdapter(int i);

2.9.3 Arguments and Return Value
There is one argument passed to setDefaultAdapter, which is the ID of the new default
adapter. This must be a valid adapter ID, which is a nonnegative integer, and less than
the adapter count as returned by WPCInit. The return values are described in Table 2.9.1.

Table 2.9.1- Description of return values for the setDefaultAdapter subroutine.
Return Value Description
0 There was an error setting the default adapter
1 The default adapter was set to the new value

2.9.4 Example Code
Below are samples of code showing how this subroutine might be implemented. This
code is provided for demonstration purposes only.

Initialize WinPCap and set default adapter ID

int count, adapter_id, status;

count = WPCInit();

if(count < 0){

printf(“There was an error initializing WinPCap.\n”);
} else {
 printf(“There are %d adapters on this computer\n”, count);
}

adapter_id = getDefaultAdapter();
printf(“The default adapter ID is %d\n”, adapter_id); // this will be 0
if there is only one adapter
//For this example, let count=3, and the default adapter is 0
status = setDefaultAdapter(1);
if(status == 1){

printf(“The default adapter was changed successfully\n”);
} else {

printf(“There was an error setting the default adapter\n”);
}

22

2.10 Use of the getAdapterMAC subroutine
2.10.1 Description
The getAdapterMAC subroutine is used to obtain the MAC address of a network adapter.

2.10.2 Declaration
The getAdapterMAC subroutine is declared as:
__declspec(dllexport) int getAdapterMAC(int id, unsigned char *label);

The subroutine should be declared in the calling program as follows:
extern __declspec(dllexport) int getAdapterMAC(int id, unsigned char
*label);

2.10.3 Arguments and Return Value
The getAdapterMAC subroutine requires two parameters. The first parameter specifies
which adapter is being queried. If this parameter is passed as -1, then the default adapter
is used. The second parameter is an output parameter, and will have the MAC address of
the adapter copied to it by the getAdapterMAC subroutine. There must be enough space
allocated for a MAC address to be copied to this parameter. Note that the MAC address
is in unsigned char, not in a human readable format, and will only require a string length
of 6 unsigned chars to be allocated. The return values for the getAdapterMAC subroutine
are summarized in Table 2.10.1.

Table 2.10.1- Description of return values for the getAdapterMAC subroutine.
Return Value Description
0 There was an error with an input parameter:

the adapter id was out of range, or
the label parameter was not allocated

1 No error- the MAC address was copied to the output parameter.

2.10.4 Example Code
Below are samples of code showing how this subroutine might be implemented. This
code is provided for demonstration purposes only.

Initialize WinPCap and get the MAC address for the default adapter

int count, adapter_id, status;
unsigned char label[6];

count = WPCInit();
if(count < 0){

printf(“There was an error initializing WinPCap.\n”);
} else {
 printf(“There are %d adapters on this computer\n”, count);
}

adapter_id = getDefaultAdapter();
printf(“The default adapter ID is %d\n”, adapter_id); // this will be 0
if there is only one adapter
status = getAdapterMAC(adapter_id, &label);
if(status == 1){ printf(“The adapter MAC address was retrieved\n”);
else printf(“There was an error retrieving the adapter MAC address.\n”);

23

3. Extensibility
The BACnet standard periodically undergoes revisions, often resulting in changes to the
objects, properties, and other entities described by the standard. The standard also
permits proprietary extensions. The BCD can be updated to implement changes in
enumerated lists, including the addition of proprietary lists, by editing the file
bacdll2.xml, which contains every extensible enumerated list defined by the BACnet
standard (2004) and addenda A through O (2004). An example showing a modification
to the standard from an addendum, and a proprietary modification, is shown below.

 <enumList label="BACnetSilencedState" listCount="6" extensible="y"
extMin="64" extMax="65535" >
 <enumItem label="unsilenced" id="0" />
 <enumItem label="audible-silenced" id="1" />
 <enumItem label="visible-silenced" id="2" />
 <enumItem label="all-silenced" id="3" />
 <enumItem label="new-silenced-from-addendum" id="4" />
 <enumItem label="proprietary-silenced" id="64" />
 </enumList>

Enumerated lists are stored in XML format in an “enumList” tag. If an enumList has the
property “extensible” with a value of “y” as in the example above, then it is extensible
and may have proprietary items added to it. New items should have an id value in the
range given by the values of the “extMin” and “extMax” properties, and should otherwise
follow the format given in the example above.

24

4. Summary
The BACnetCommunications DLL enables programmers of HVAC related computer
programs to easily incorporate BACnet communications into their tools. It supports a
command set that enables the most common types of communications used in data
acquisition, monitoring, FDD, or other activities which require communicating with a
BACnet enabled device. Use of the BACnet DLL removes a significant barrier to entry
for users who wish to write tools but do not have the programming experience to
implement the BACnet protocol.

5. Future Work
While the BCD is already capable of being useful in a wide variety of applications, as
BACnet expands there will be more places the BCD can be used. Some planned
extensions of the BCD are inclusion of a Web Services interface, addition of new
BACnet objects and properties, establishment of BACnet/IP communications through the
simplified interface, and extensions of simplified interface to include new functionality.

6. References
[1] ASHRAE, ANSI/ASHRAE 135-2004, BACnet: A Data Communication Protocol for
Building Automation and Control Networks. American Society of Heating, Refrigerating,
and Air-Conditioning Engineers Inc. Atlanta, GA.
[2] Bushby, S.T., Castro, N.S., Galler, M.A., Park, C., House, J.M., 2001, “Using the
Virtual Cybernetic Building Testbed and FDD Test Shell for FDD Tool Development”,
NISTIR 6818.
[3] Castro, N.S., Schein, J., Park, C., Galler, M.A., Bushby, S.T., House, J.M., 2003,
“Results from Simulation and Laboratory Testing of Air Handling Unit and Variable Air
Volume Box Diagnostic Tools”, NISTIR 6964.
[4] http://www.winpcap.org

