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Minimization of free energy is used to calculate the equilibrium vertical rise and meniscus shape of a liquid
column between two closely spaced, parallel planar surfaces that are inert and immobile. States of minimum
free energy are found using standard variational principles, which lead not only to an Euler-Lagrange differ-
ential equation for the meniscus shape and elevation, but also to the boundary conditions at the three-phase
junction where the liquid meniscus intersects the solid walls. The analysis shows that the classical Young-
Dupré equation for the thermodynamic contact angle is valid at the three-phase junction, as already shown for
sessile drops with or without the influence of a gravitational field. Integration of the Euler-Lagrange equation
shows that a generalized Laplace-Young �LY� equation first proposed by O’Brien, Craig, and Peyton �J. Colloid
Interface Sci. 26, 500 �1968�� gives an exact prediction of the mean elevation of the meniscus at any wall
separation, whereas the classical LY equation for the elevation of the midpoint of the meniscus is accurate only
when the separation approaches zero or infinity. When both walls are identical, the meniscus is symmetric
about the midpoint, and the midpoint elevation is a more traditional and convenient measure of capillary rise
than the mean elevation. Therefore, for this symmetric system a different equation is fitted to numerical
predictions of the midpoint elevation and is shown to give excellent agreement for contact angles between 15°
and 160° and wall separations up to 30 mm. When the walls have dissimilar surface properties, the meniscus
generally assumes an asymmetric shape, and significant elevation of the liquid column can occur even when
one of the walls has a contact angle significantly greater than 90°. The height of the capillary rise depends on
the spacing between the walls and also on the difference in contact angles at the two surfaces. When the contact
angle at one wall is greater than 90° but the contact angle at the other wall is less than 90°, the meniscus can
have an inflection point separating a region of positive curvature from a region of negative curvature, the
inflection point being pinned at zero height. However, this condition arises only when the spacing between the
walls exceeds a threshold value that depends on the difference in contact angles.
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I. INTRODUCTION

The spontaneous rise of liquid confined in a capillary is
one of the more striking phenomena associated with wetting.
Capillary rise occurs because the free energy gained by wet-
ting the internal surfaces of the capillary walls is sufficient to
perform the work of raising the liquid mass in a gravitational
potential field. Capillary action is responsible for a wide
range of natural phenomena and engineering processes, in-
cluding the movement of water in soils, drainage of tear fluid
from the eye, water transport in plants, and the wicking ac-
tion of absorbent media like concrete, plaster of Paris,
sponges, and paper towels.

The theoretical analysis of capillary rise dates back to the
seminal work of Laplace �2� and Young �3�. By balancing the
postulated upward vertical component of force, exerted by
the surface tension of the liquid meniscus at its junction with
the wall, with the downward gravitational force exerted by
the mass of liquid in the column, they derived the following
equation for the height hb at the base �i.e., the midpoint� of
the meniscus of a liquid column in a thin cylindrical tube of
diameter D:

hb =
4�lv cos �

��gD
�1�

or between two vertical and parallel plates separated by a
narrow distance w:

hb =
2�lv cos �

��gw
, �2�

where hb is the height of the lowest point on the meniscus
above the surface of the liquid reservoir, �lv is the surface
tension of the liquid-vapor meniscus, � is the contact angle
of the meniscus at the wall, using the convention in Fig. 1,
�� is the difference in density between liquid and the vapor
above the meniscus, and g is the gravitational acceleration. It
is important to note that both these equations neglect the
meniscus shape and the influence of the liquid above the
base of the meniscus, which is valid only for very narrow
capillaries or plate spacings. Although originally derived us-
ing a force balance analysis, these equations and others, such
as the Young equation for the contact angle, have been jus-
tified by later authors using more rigorous energy balance or
energy minimization analyses �1,4–10�.

When a liquid is confined between two infinite, rigid, and
parallel plates, and when the spacing between the plates is
sufficiently small, the influence of gravity on the meniscus
shape is negligible, so that the meniscus has a cross section
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that is a portion of a circle, with the center of curvature lying
outside the liquid if ��90° or inside the liquid if ��90°. In
the latter case, Eq. �2� predicts capillary depression, hb�0.

Systems involving dissimilar solids or solids with variable
wetting properties have received much less theoretical atten-
tion, but nevertheless have considerable importance in a
wide range of applications, including food processing �11�,
slip casting of ceramic slurries �12�, liquid-phase sintering of
composite materials �13,14�, and the placement and mainte-
nance of dental materials �15,16�. For dissimilar wall geom-
etries, the contact angle �0 at one of the walls is generally
different from the contact angle �1 at the other wall. If one of
the contact angles is less than 90° but the other one exceeds
90°, Laplace commented �2� that the liquid may be elevated
near the wettable wall and depressed near the nonwettable
wall, so that there may be a point of inflection between a
portion of the meniscus with negative curvature and a por-
tion with positive curvature. Laplace went on to prove, using
a balance of forces, that if such an inflection point exists on
the meniscus, then that point must be pinned at zero eleva-
tion. Laplace did not, however, argue that an inflection point
must exist whenever one contact angle is less than 90° and
the other is greater than 90°, nor did he provide quantitative
conditions under which an inflection point is expected. Ex-
perimental evidence that an inflection point need not exist
under such circumstances was provided by O’Brien, Craig,
and Peyton �1�, who measured capillary rise of water be-
tween two nearly vertical glass planes, one that was glass
only and another that was made of glass coated with poly-
tetrafluoroethylene �PTFE�. These authors independently
measured the contact angle of water drops on the glass and
PTFE surfaces and reported values of 14° and 110°, respec-
tively, at a temperature of 27 °C, and they reported that the
capillary rise of water between the two plates with spacing w
was not zero, but instead fitted their model equation

h =
�lv�cos �0 + cos �1�

�gw
, �3�

where � is the density of the liquid. These investigators do
not specify whether h refers to the elevation of the lowest
part of the meniscus, the highest part, or some average of the
two.

We are aware of no prior publication in which strict mini-
mization of free energy is used to predict meniscus shape and

capillary rise between dissimilar surfaces and to compare
with force balance �2,3� and energy balance �1,9� analyses.
Yet such an analysis seems warranted because of the ques-
tion of the existence of a meniscus inflection point and, more
generally, the influence of a nonwettable surface in close
proximity to a wettable one. In this paper, the free energy
governing these systems is formulated and variational prin-
ciples are used to determine free-energy-minimizing states.
The analysis makes no a priori assumptions about contact
angle or the shape of the meniscus. Instead, the variational
techniques lead naturally to a functional dependence of con-
tact angle on the various local surface free energies, and also
to a differential equation describing the equilibrium shape of
the meniscus which is solved by numerical methods. The
results of this approach therefore yield a general set of dif-
ferential equations that can be solved to predict capillary rise
and meniscus shape for any liquid and any pair of dissimilar
surfaces if the relevant thermodynamic material parameters
are known. Numerical solutions of the equations are used to
make direct comparison with Eq. �3�, and also to estimate the
minimum spacing required to observe an inflection point in
the meniscus.

II. THEORY

At constant temperature and volumes of the three phases
in Fig. 1, the thermodynamic potential G which governs the
equilibrium and stability of the system is �17�

G = Gb + Gg + �
i

�iAi, �4�

where Gb is the energy contribution of the bulk phases in the
absence of gravity, Gg is the contribution of gravitational
potential energy, Ai is the area of the ith type of surface, and

�i � � �G

�Ai
�

is the surface energy density of the ith type of surface.
When a liquid is bonded to one or more solids that are

inert and immobile, and when changes in the areas of the
various interfaces are the only source of variation in G, then
infinitesimal changes in G can be written in terms of the
variations in the areas of contact between the liquid and the
other phases with which it is in contact �18�,

�G = �Gg + �lv�Alv + �
i

��sl − �sv�i�Ai, �5�

where Alv is the surface area between the liquid and vapor, Ai
is the area of contact between the liquid and the ith solid
surface, and ��sl−�sv�i is the difference between the liquid-
solid surface energy and the solid-vapor energy for the ith
solid surface.

The gravitational potential energy of the liquid mass in
the column is described by an integral over the liquid volume
in the column:
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FIG. 1. Schematic drawing of a liquid column between vertical
parallel plates, showing the convention used to specify the contact
angle � at each wall.
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Gg = − 	
V

�g� · r��x1,x2,x3�dV , �6�

where r� is the position vector relative to the origin O in Fig.
1, g� is the acceleration due to gravity, � is the density of the
liquid, and we hereafter neglect the density of the vapor
phase compared to that of the liquid. Using the coordinate
system of Fig. 1, the integrated form of Eq. �5� and the
gravitational potential energy can be summed to give the
relevant thermodynamic potential for the problem at hand,

G = �lvSlvL + ��sl − �sv�0h�0�L + ��sl − �sv�1h�w�L

+
1

2
L�g	

0

w

h2�x�dx , �7�

where L is the length of the meniscus in the direction per-
pendicular to the cross section shown in Fig. 1, and now h�x�
is a function describing the height of the meniscus as a func-
tion of distance x from the left plate, and Slv is the total arc
length of the cross-section of the meniscus surface. This
equation can be transformed to dimensionless form using the
following dimensionless groupings of variables:

� = G/��lvLw�, 	0 = ��sl − �sv�0/�lv, 	1 = ��sl − �sv�1/�lv,


 = h/w, � = x/w, � = �gw2/�lv. �8�

Equation �7� is thereby transformed to

��
,
̇� = 	
0

1 ��

2

2��� + 
1 + 
̇2����d� + 	0
�0� + 	1
�1� ,

�9�

where 
̇��� is the first derivative of 
 with respect to �. The
first term in the integrand is the contribution of gravitational
potential energy, and the second term, the differential arc
length element, is the contribution of the liquid-vapor surface
energy. The task at hand is to find the function 
��� that
leads to an absolute minimum value of �. The variational
procedure closely follows that required for calculating equi-
librium shapes of sessile liquid drops on immobile sub-
strates, and the details are provided elsewhere �7,19�. Briefly,
we assume that H��� is the minimizing function, and we
examine small perturbations of the meniscus of the form

H��� = H��� + 
1p1��� + 
2p2��� ,

where p1 , p2 are arbitrary functions with continuous first de-
rivatives, and 
1 ,
2�1. Substituting H��� into Eq. �9� and
setting the gradient of � equal to zero as a necessary condi-
tion of equilibrium leads to three differential equations that
must be satisfied �19�:

��

�H
−

d

d�

��

�Ḣ
= 0, � � �0,1� , �10�

	0 − ���

�Ḣ
�

�=0

= 0, �11�

	1 + ���

�Ḣ
�

�=1

= 0. �12�

Equations �11� and �12� are the boundary conditions that
must be satisfied at �=0 and 1, respectively. Inspection of

Eq. �9� with 
=H and 
̇= Ḣ shows that

��

�Ḣ
=

Ḣ


1 + Ḣ2

The boundary conditions are then seen to be

	0 =
Ḣ�0�


1 + Ḣ2�0�
= − cos �0 �13�

	1 =
− Ḣ�1�


1 + Ḣ2�1�
= − cos �1 �14�

where the second equality in each case arises from the fact

that Ḣ�0�=−cot��0� and Ḣ�1�=cot��1� as shown Fig. 1.
Since 	i= ��sl−�sv�i /�lv, these two boundary conditions are
identical to the classical Young-Dupré equation for contact
angle �3�. The validity of the Young-Dupré equation for the
contact angle of sessile drops on flat substrates has been
scrutinized by a number of investigators �5,20–22�. The more
rigorous theoretical studies based on free energy minimiza-
tion seem to have settled the issue for sessile drops on de-
formable substrates in the absence of gravity �5� and on rigid
flat substrates in the presence of gravity �22�. Although the
equality of the contact angle for sessile liquid drops on a
solid and in capillaries of the same solid has never been
questioned, the present analysis confirms the Young-Dupré
equation for capillaries.

Turning now to the Euler-Lagrange equation �10�, substi-
tuting the expressions for the derivatives of Eq. �9� produces
the following equivalent form,

�H =
Ḧ

�1 + Ḣ2�3/2
�15�

To see the physical meaning of Eq. �15� more clearly, we
rewrite it in terms of the physical parameters:

�gh =
�lvḧ

�1 + ḣ2�3/2
� − �lv� �16�

where ��−ḧ / �1+ ḣ2�3/2 is the local mean curvature of the
meniscus.1 The left side of Eq. �16� is the specific gravita-
tional potential energy of liquid with density � and height h,
and the right side is the increase in specific chemical poten-
tial in a liquid, over the specific chemical potential per unit
volume of the surrounding vapor, when the liquid and vapor

1We use the convention, common in the theory of capillary phe-
nomena, of denoting by the term “mean curvature” a property of
surfaces that is actually twice the mean curvature as it is defined in
differential geometry.
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are separated by an interface with mean curvature �. There-
fore, the governing differential equation for meniscus shape
expresses the principle that the gravitational and capillary
pressures are balanced at each point along the meniscus. A
consequence of this is that any portion of the meniscus above
h=0 must have a negative mean curvature �i.e. center of
curvature outside the liquid� and, conversely, any portion of
the meniscus below h=0 must have a positive mean curva-
ture, thereby confirming Laplace’s inference that an inflec-
tion point on the meniscus surface, if it exists, must be
pinned at h=0.

The generalized form of the Laplace-Young equation can
be obtained by integrating both sides of Eq. �15�:

�	
0

1

H d� = 	
0

1 Ḧ

�1 + Ḣ2�3/2
d� . �17�

The integral on the left is the mean height of the meniscus,
�H
. Also, it is readily demonstrated that the antiderivative of

the integrand of the second integral is Ḣ /
1+ Ḣ2. Therefore,
Eq. �17� becomes

��H
 =
Ḣ�1�


1 + Ḣ�1�2
−

Ḣ�0�

1 + Ḣ�0�2

. �18�

The two terms on the right side are given by the boundary
conditions in Eqs. �13� and �14�. Therefore, again substitut-
ing the physical parameters for the dimensionless ones, Eq.
�18� can be rewritten as

�h
 =
�lv�cos �0 + cos �1�

�gw
. �19�

Therefore, the equation proposed by O’Brien, Craig, and
Peyton �1�, Eq. �3�, is actually an exact result at any spacing
if the elevation is identified as the mean height of the menis-
cus instead of the height of the minimum point of the menis-
cus. When �0=�1, Eq. �19� reduces to the Laplace-Young
equation which, again, is exact at any spacing with the pro-
viso that the relevant measure of capillary rise is the mean
meniscus elevation. Recently, Roura re-derived the Laplace-
Young equation �1� for narrow cylindrical capillaries using a
virtual work argument �9�. He also gave an indication of how
that derivation would need to be modified to account for the
potential energy of the mass of liquid above the base of the
meniscus in wide capillaries. The present derivation has the
advantage that the Euler-Lagrange equation for the meniscus
shape not only accounts for the mass of liquid above the base
of the meniscus, but it also can be solved numerically to give
the detailed meniscus shape at any spacing and for walls
made of identical or dissimilar materials, as shown in the
next section.

III. RESULTS AND DISCUSSION

The remaining task is to solve the Euler-Lagrange equa-
tion �15� subject to the boundary conditions given in Eqs.
�13� and �14�. Due to the nonlinear nature of Eq. �15�, a
computer program for solving two-point boundary value

problems using iterated deferred corrections �23–26� is used
to produce particular solutions corresponding to different
sets of the three input parameters �� ,�0 ,�1�.

Figure 2 compares the numerical solution of Eq. �15� to
the Laplace-Young equation �2�, as a function of the plate
separation w. The figure was plotted using input parameters
appropriate for pure water between two clean glass plates:
�lv=72.2 mJ /m2, �=1000 kg /m3, �0=�1=14°, and g
=9.8 m /s2. These properties correspond to �=0.1357w2 in
Eq. �8�. The figure shows the calculated heights both of the
base of the meniscus and of the meniscus contact with the
wall. At all widths, the height predicted by the Laplace-
Young equation falls between these two calculated heights,
although it lies closer to the calculated base height of the
meniscus. The difference between the base and contact
heights of the meniscus increases with increasing separation,
which is expected because, at infinite separation, the liquid
still wets the glass wall but the meniscus height decreases to
zero with distance from the wall. The calculated symmetric
meniscus shapes are shown for glass plate separations of 0.5,
2.5, and 10 mm in Fig. 3.

The classical equations �1� and �2� are expressions for the
elevation of the minimum point, or base, of the meniscus in
a cylinder or between vertical plates, respectively �2�.
Laplace recognized that these equations should be valid only
for very narrow capillaries for which the volume of liquid
above the base of the meniscus is negligible. At wider spac-
ings, the potential energy of the liquid mass above the me-
niscus base becomes an increasingly important contribution
to the free energy. The classical equations neglect this liquid
mass above the base, and they are known to become increas-
ingly inaccurate at wider spacings. Nevertheless, Eq. �19�,
plotted as star-shaped points in Fig. 2, is exact for any spac-
ing.

Despite being the correct measure of capillary rise at any
spacing, the mean elevation of the meniscus, �h
, is more
difficult to measure experimentally than the elevation at the

1 2 3 4 5 6 7 8 9 10
w (mm)

0

5

10

15

20

25

30

h
(m

m
)

Midpoint (base) height
Contact height
Mean height
Eq. (19)
Eq. (21)

FIG. 2. Elevation of the meniscus at the midpoint between
plates, at the contact line with the plate, and the mean meniscus
elevation, calculated by numerical solution of Eq. �15� as a function
of separation w. The solid curve is Eq. �19� for the mean elevation.
The dashed curve is a plot of Eq. �21�. Calculations were made with
�lv=72.2 mJ /m2, �=1000 kg /m3, �0=�1=14°, and g=9.8 m /s2.
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midpoint �or base�. Therefore, it is desirable to find an equa-
tion that adds a correction to Eq. �19� so that it predicts the
base elevation up to wider spacings. Laplace himself indi-
cated that the correction to Eq. �2� should be first order in w
�2�. For capillary rise of water in large glass cylindrical tubes
of diameter D, in which the contact angle is very small,
Richards and Coombs �27� fitted their experimental data us-
ing a first-order correction to Eq. �1�,

hb =
4�lv cos �

��gD
−

D

6
. �20�

One also could derive a linear correction term to Eq. �2� for
capillary rise between vertical plates. However, these kinds
of first-order corrections must have a limited value because,
as w→�, the correction becomes arbitrarily large while the
primary term becomes arbitrarily small, leading to the absurd
conclusion that hb→−� as w→�. Similarly, for contact
angles approaching 90° from below, the primary term be-
comes arbitrarily small, but the correction term remains fi-
nite, again leading to the absurd conclusion that hb�0 when
�→90° from below. A more satisfying correction term not
only should converge to zero as w→0, but also should con-
verge to zero as w→�. Based on these requirements, we
propose the following equation for the elevation of the me-
niscus base, in which the lead term is Eq. �19� with �0=�1
=�, and which in dimensionless form is

Hb =
2 cos �

�
− f���g���e−4.48�1/8

, �21�

where

f��� = 9.24 cos � + 2.13 cos3 � ,

g��� = 0.834
� − 0.024� .

In the correction term f���→0 as �→90°, which is neces-
sary because no capillary rise occurs for �=90° at any spac-
ing. In addition, g���→0 as w→0 and the exponential term
ensures that the correction term converges to zero as w→�.
The numerical coefficients were obtained by a least-squares

nonlinear multiparameter fit using DATAPLOT �28�, a graphi-
cal analysis software package developed at NIST. The coef-
ficients were fitted to the numerical calculations of the base
elevation using 598 combinations of � and �, where � varied
from 15° to 160° and � varied from 0.03 to 870. The residual
standard deviation of the fit was 0.0024. To give an idea of
the quality of this correction term, for all 598 combinations
of � and � that were investigated, the largest absolute differ-
ence between Eq. �21� and the numerical results was �Hb
=0.004, which occurred at �=15° and �=55. For water be-
tween two glass plates, this corresponds to an absolute dif-
ference of �hb=0.1 mm at a spacing of 30 mm. Equation
�21� is shown as a dashed line in Fig. 2, which is seen to
closely fit the numerical results for the midpoint elevation of
the meniscus.

Figure 4 shows some calculated meniscus profiles for a
liquid between dissimilar plates, when the spacing between
plates is 2.5 mm. The figure shows the influence of the con-
tact angle �1 when the contact angle �0 at the left wall is
fixed at 14°, a typical value measured for water drops on
glass substrates �1�. The meniscus profiles are asymmetric, as
expected, and the height of liquid in the column decreases as
�1 increases. For the profiles with �1=135° and �1=160°, the
liquid is elevated near the left wall and is depressed near the
right wall; an inflection point, pinned at zero height, sepa-
rates the regions of positive and negative mean curvature.
This behavior was anticipated by Laplace �2�. Bikerman �20�
also discusses this kind of capillary behavior for dissimilar
plates, and seems to suggest as a general fact that an inflec-
tion point can be expected whenever one contact angle ex-
ceeds 90°.

The present calculations indicate that the question of the
presence or absence of an inflection point in the meniscus is
decided not only by the difference in contact angles, but also
by the spacing between the plates. Figure 5 shows, for �0
=14° and �1=135°, the calculated meniscus profile when w

0.5 mm 2.5 mm

10 mm

28.3

28.8

5.0

6.5

0.5

3.5

FIG. 3. Calculated meniscus shapes for water confined between
two vertical glass plates with spacing of 0.5 mm �base height
28.6 mm�, 2.5 mm �base height 5.5 mm�, and 10 mm �base height
0.81 mm�. Numbers to the left of each plot indicate the heights at
the bottom and top of the vertical lines, in millimeters. Input prop-
erties are the same as for Fig. 2.
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FIG. 4. Calculated meniscus shapes for water confined between
two dissimilar vertical walls spaced 2.5 mm apart, showing the ef-
fect of different contact angles at the right wall. In each case, the
contact angle at the left wall is assumed to be �0=14°. Other input
properties are the same as in Fig. 3. Numbers at the left wall of each
plot indicate the heights at the bottom and top of the vertical lines in
millimeters. The horizontal dashed lines indicate zero elevation.
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=0.5, 2, and 10 mm. At the two wider spacings, an inflection
point pinned at zero height is predicted, but when w
=0.5 mm, there is no inflection point and the liquid is el-
evated to 3.6 mm at the less wettable wall. In fact, elevation
is predicted at a wall for when �1=135° as long as �
�0.455; for water in Earth’s gravity, this corresponds to a
separation of w=1.83 mm.

More generally, for any pair of contact angles ��0 ,�1�, for
which �0�90° and �1�90°, a critical value of � can be
found above which an inflection point should be observed on
the meniscus. Figure 6 shows a plot of the critical value �*

as a function of �1 for several different values of �0. The
curves in this figure each can be thought of as a cut through
a two-dimensional surface describing �*��0 ,�1�. This sur-
face increases without bound as one or the other of the con-
tact angles approaches 90° from above. Clearly, �* is unde-
fined when the contact angles are either both less than 90° or
both greater than 90°, in which case capillary rise or depres-
sion, respectively, occurs at all spacings.

In 1968, O’Brien, Craig, and Peyton �OCP� �1� reported
measurements of the elevation of water between vertical
walls of dissimilar solids with various spacings up to about
1 mm, and in the same paper they proposed Eq. �3� as a
modification of the Laplace-Young equation for such sys-
tems. As shown by Eq. �19�, the relation they proposed is
exact as long as the mean meniscus elevation is the measure
of capillary rise. Reference �1� also reported careful, inde-
pendent measurements of the contact angle of sessile water
droplets on tilted plates of the same materials. The greatest

difference in down-slope contact angles they measured was
between glass ��=14° � and PTFE ��=110° �. Over the range
of spacings that OCP investigated, Fig. 7 compares their
measured heights to those predicted by Eq. �19� with this
pair of contact angles. In addition, the minimum and maxi-
mum height of the meniscus at each width, predicted by
numerical solution of Eq. �15�, is also shown for the same
pair of contact angles. The measured heights in the figure
�stars� were obtained by linear interpolation from a digital
scan of Fig. 5 in Ref. �1�. The uncertainty in the interpolation
procedure is estimated to be less than 1 mm at each point. At
least up to a spacing of 0.5 mm, Eq. �19� agrees reasonably
well with the experimental measurements, although the mea-
sured values are systematically lower than prediction. OCP
made their measurements of meniscus height using the hy-
perbola method, by which the two vertical plates are
clamped together with a shim on one side, forming a small
wedge geometry. This configuration enabled those investiga-
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2.5
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-0.2

3.0

-2.0
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FIG. 5. Calculated meniscus shapes for water confined between
two dissimilar vertical walls, shown for wall spacings of 0.5, 2.0,
and 10 mm. In all three plots, �0=14°, �1=135°, and all other input
properties are the same as in Fig. 3. In each plot, the horizontal
scale is equal to the vertical scale, but the overall scale of the
10 mm plot has been reduced relative to the other two. Numbers to
the left of each plot indicate the minimum and maximum heights of
the vertical lines in millimeters, and the horizontal dashed lines
indicate zero height.
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FIG. 6. Critical values of �=�gw2 /�lv. For a given pair of con-
tact angles ��0 ,�1�, �* is the value of � above which an inflection
point, pinned at height zero, will be present on the meniscus.
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FIG. 7. Comparison of calculated meniscus elevations to experi-
mentally measured values of capillary rise of water between a glass
plate ��0=14° � and a glass plate coated with PTFE ��1=110° �
reported in Ref. �1�. Minimum and maximum elevations at any
width are calculated from numerical solutions of Eq. �15�, and the
mean elevation is given by Eq. �19�.
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tors to access a continuous range of approximately parallel
spacings between 0.1 and 0.5 mm in one experiment, but it
also could lead to systematic differences in the height mea-
sured for any particular spacing due to the fact that the plates
are not exactly parallel. Alternatively, it is possible that one
or both contact angles at the vertical walls were greater than
the advancing contact angles of sessile water drops that they
measured. OCP did not attempt to measure the actual contact
angles at either wall during the experiment, so it is difficult
to assess the likelihood of this second possibility.

OCP did not report measurements at spacings greater than
0.5 mm, but Fig. 8 shows the prediction of Eq. �19� for spac-
ings up to 10 mm, using the same pair of contact angles and
liquid properties as in Fig. 7. The star-shaped points are the
calculated mean elevation of the meniscus, calculated from
the numerical solution of Eq. �15�. The extrema in the me-
niscus elevation at each width was also obtained from the
numerical solutions and are shown in Fig. 8 for comparison.
As expected, the meniscus always obtains its maximum el-
evation at the glass wall and always obtains its minimum
elevation at the PTFE wall.

In systems with one wall having ��90° and the other
wall having ��90°, an interesting phenomenon can occur:
at the wall with ��90°, the elevation of the meniscus may
initially decrease with increasing spacing �as expected�, but
then reach a minimum at some intermediate spacing above
which the elevation increases and converges to its asymptotic
value as w→�. This phenomenon is evident in the inset to
Fig. 8. This minimum cannot occur for capillary rise between
identical walls, for which the meniscus elevation decreases
monotonically with increasing wall separations as shown in
Fig. 2. But with dissimilar walls, the elevation at the wall
with ��90° is influenced both by the work required to lift
the liquid column against gravity and by the work required to
cover a portion of wall with ��90°. At very narrow separa-
tions, the elevation can be large, despite the proximity of the
wall with ��90°, because the work required to lift the nar-
row column against the gravitational field is small. At infinite

wall separation, the wall with ��90° has no influence on the
meniscus shape near the wall with ��90°, and the meniscus
elevation at that wall therefore has a well-defined value de-
termined by a balance of the work required to lift the liquid
and the work supplied by wetting that wall. At intermediate
separations, however, both gravity and the proximity of the
wall with ��90° act to reduce the elevation. The combina-
tion of the two influences can lead to a minimum in the
elevation at the wall with ��90°.

Our analysis in this paper has been restricted to the simple
two-dimensional geometry of parallel plates. However, the
same procedure can be readily applied to axisymmetric cy-
lindrical geometries and the qualitative results are expected
to be the same as found here for identical parallel plates. For
example, the Laplace-Young equation �1� for cylinders
should be valid for any diameter with the proviso that the
capillary rise is measured by the mean elevation of the me-
niscus. For three-dimensional geometries involving dissimi-
lar surfaces, the analysis generally would become more com-
plicated because of the discontinuities that arise when
dissimilar surfaces intersect. One of us has addressed the
wetting of fluids in small rectangular cavities for which the
floor and walls have different wetting properties, which is
important in the manufacture of patterned circuits by electro-
plating �29�. But that analysis used some simplifying as-
sumptions about the shape of the liquid-vapor surface, and it
is not immediately clear how the more rigorous treatment
presented in this paper could be applied to those kinds of
situations.

IV. SUMMARY

Free energy minimization has been used to formulate the
differential equation and boundary conditions describing the
liquid meniscus shape for capillary rise or depression be-
tween vertical plates. The equations were derived with no a
priori assumptions about the contact angle at either liquid-
solid-vapor junction, but the variational principles neverthe-
less lead to the mathematical requirement that the free en-
ergy can be minimized only if the classical Young-Dupré
equation for contact angle is satisfied at each wall. A gener-
alized, exact form of the Laplace-Young equation, Eq. �19�
has been derived that is applicable at any capillary spacing as
long as the mean meniscus elevation is used as the measure
of capillary rise. At very narrow capillary spacings, the mean
elevation and the base elevation are nearly identical, but the
differences become appreciable at wider spacings. Neverthe-
less, the base meniscus elevation is a more convenient prac-
tical measurement, especially when the walls are identical
and the meniscus is symmetric about a midpoint. A relatively
simple correction to the classical Laplace-Young equation,
consistent with physical expectations, has been proposed and
demonstrated to greatly improve the Laplace-Young predic-
tions of the base elevation between identical walls at wider
spacings.

When the walls each have a different contact angle with
the liquid meniscus, the meniscus assumes an asymmetric
shape. Liquid elevation occurs at all wall spacings when both
contact angles are less than 90°, and depression occurs at all
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FIG. 8. Comparison of numerical solution of Eq. �15� to the
OCP equation �19� �the solid curve� for capillary rise as a function
of separation w when �0=14° and �1=110°. Squares and circles
indicate the maximum and minimum elevations of the meniscus,
respectively. Other input properties are the same as in Fig. 2.
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wall spacings when both contact angles exceed 90°. How-
ever, when only one contact angle exceeds 90°, capillary
elevation is still predicted, even at the nonwettable wall, as
long as the dimensionless quantity �=�gw2 /�lv is less than a
critical value that depends on the difference in contact
angles. When � exceeds the critical value, capillary elevation
still occurs near the wettable wall, but the liquid is depressed
near the nonwettable wall and an inflection point pinned at
zero height separates regions of positive and negative mean
curvature on the meniscus. Equation �3� gives excellent
agreement with the numerical solutions over the range of

separations investigated here, but again, it must refer to the
average elevation �h
 of the meniscus.
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