
NISTIR 7499

 Guidelines for Planning and Development of Software for
Buildings and Building Systems

 Priya D. Lavappa

Office of Applied Economics
Building and Fire Research Laboratory
Gaithersburg, MD 20899

U.S. Department of Commerce
National Institute of Standards and Technology

NISTIR 7499

Office of Applied Economics
Building and Fire Research Laboratory
Gaithersburg, MD 20899

U.S. Department of Commerce
National Institute of Standards and Technology

Guidelines for Planning and Development of Software for
Buildings and Building Systems
Priya D. Lavappa

Sponsored by:
National Institute of Standards and Technology
Building and Fire Research Laboratory

June 2008

U.S. DEPARTMENT OF COMMERCE
Carlos M. Gutierrez, Secretary

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
James Turner, Deputy Director

Abstract

From inception to completion, software development projects need structure and
organization so that good quality, user-friendly software is produced on time and within
budget. The structured approach presented in this paper helps achieve those goals.

The System Development Life Cycle (SDLC) is a conceptual model for software
development that divides up the process into different phases. Each phase has a distinct
role to play in the development life cycle, and is a building block for the next phase.
There are many SDLC models, each emphasizing different aspects of the life-cycle.
Implementing a structured approach requires selecting a model and utilizing it through
out the development life cycle.

This paper selects a Waterfall model for planning and executing a software project;
describes the steps each research team member takes, by project phase, in the
development of the software product; provides a one-page summary of those steps for
making a checklist of team progress; provides a blank and case illustration template for
each team member to fill out in providing requirements or specifications of the software
and provides a blank project schedule template for documenting the tasks required to
implement the software project design.

Following a structured process enables software development projects to be organized
and have a clear path to completion. Implementing a structured process is crucial for
developing good quality software in an efficient manner.

Keywords: System Development Life Cycle, Waterfall model, software project
management, software development, software requirements template.

 iii

 iv

Preface

This paper describes the steps in the software development process, knowledge of which
is useful to organize and structure software development projects. Structuring a software
development project from inception provides a clear path to completion. This set of
guidelines provides a software development team with a progression of steps to conceive
code, test, revise, and publish software applications that will best satisfy clients’ software
needs. Following these steps will clarify the respective roles for a software development
team, show how their tasks fit together in a time schedule, and contribute to an on-time,
successful, within budget software product. These steps have been used by the author on
numerous software development projects, both large and small, using an assortment of
technologies. These projects have focused on various topics including: economics,
biological sciences, insurance, taxation, and accounting. The staff members of the Office
of Applied Economics in the Building and Fire Research Laboratory at the National
Institute of Standards and Technology use these guidelines and templates in their
software development projects.

Disclaimer: Certain trade names and company products are mentioned in the text in order
to adequately specify the technical procedures and equipment used. In no case does such
identification imply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the products are necessarily the best
available for the purpose.

 v

 vi

Acknowledgments

The author would like to thank all those who helped bring this paper to fruition. I would
like to thank Dr. Robert Chapman, Ms. Barbara Lippiattt, and Dr. Harold Marshall, of the
Office of Applied Economics (OAE), for all of their insightful suggestions.

 vii

 viii

Contents

ABSTRACT .. III

PREFACE ... V

ACKNOWLEDGMENTS ... VII

1 INTRODUCTION ... 1
1.1 BACKGROUND .. 1
1.2 PURPOSE .. 1
1.3 ORGANIZATION .. 1

2 SYSTEM DEVELOPMENT LIFE CYCLE (SDLC) .. 3
2.1 PHASE 1: SOFTWARE CONCEPT .. 3
2.2 PHASE 2: ANALYSIS ... 4
2.3 PHASE 3: DESIGN ... 4
2.4 PHASE 4: CODING AND DEBUGGING ... 4
2.5 PHASE 5: SYSTEM INTEGRATION AND TESTING .. 5
2.6 PHASE 6: IMPLEMENTATION ... 5
2.7 PHASE 7: MAINTENANCE AND SUPPORT... 6

3 IMPLEMENTING THE WATERFALL METHOD FOR PLANNING AND EXECUTING A
SOFTWARE PROJECT .. 7

3.1 TASKS TO BE COMPLETED WHEN DEVELOPING THE SOFTWARE CONCEPT ... 8
3.2 TASKS TO BE COMPLETED DURING ANALYSIS.. 9
3.3 TASKS TO BE COMPLETED DURING DESIGN .. 9
3.4 TASKS TO BE COMPLETED DURING CODING AND DEBUGGING ... 10
3.5 TASKS TO BE COMPLETED DURING SYSTEM INTEGRATION AND TESTING .. 10
3.6 TASKS TO BE COMPLETED DURING IMPLEMENTATION ... 11
3.7 TASKS TO BE COMPLETED DURING MAINTENANCE AND SUPPORT ... 11

4 SUMMARY .. 13

APPENDIX A REQUIREMENTS TEMPLATE ... 15

APPENDIX B PROJECT SCHEDULE TEMPLATE .. 21

APPENDIX C PRIORITY LIST TEMPLATE ... 23

APPENDIX D REQUIREMENTS TEMPLATE: CASE ILLUSTRATION 25

REFERENCES ... 35

 ix

 x

List of Acronyms

BEES Building for Environmental and Economic Sustainability

BusiBEES Business Case for Sustainability

BFRL Building and Fire Research Laboratory

DLL Dynamic Link Library

EPA Environmental Protection Agency

LCA Life-Cycle Assessment

LCC Life-Cycle Cost

NIST National Institute of Standards and Technology

OAE Office of Applied Economics

OMB Office of Management and Budget

PDF Portable Document Format

SDLC System Development Life Cycle

 xi

 xii

1 Introduction

1.1 Background

Understanding the nature of a research problem as defined by the researcher is critical to
designing good quality software. The software engineer needs to understand the technical
domain to some degree, as well as the required function and behavior of the desired software
implementation, to develop a cost-effective, user-friendly solution.

This document provides a structured approach to researchers, software engineers and project
managers who comprise the team for developing a software application. It also serves as a
roadmap for the software engineer to follow throughout the system development life cycle.
If this approach is followed, the researchers and software engineer will be in basic agreement
on the course of development from the onset of the project, which should help to minimize
surprises late in the development life cycle and also help ensure that project milestones are
met.

1.2 Purpose

This document provides guidelines to the software engineer for defining and organizing
software development projects and to researchers for providing the necessary information to
the software engineer for developing a successful software application. It serves two
purposes: (1) it helps outline the System Development Life Cycle as it applies to building
and building systems projects and (2) it enables the users to structure a software project
based on this approach by using the included Requirements Template (Appendix A) as a
guide. The template will help in developing the project plan and provide a structure for
defining the requirements. By using the template as a guide when planning a software
project, many of the critical elements necessary for developing the software will be defined.
By documenting all the information that will impact the software development upfront,
thorough, cost-effective software planning and design can be done with respect to the
requirements.

1.3 Organization

The remainder of this document is organized into several chapters. Chapter 2 describes the
phases of the System Development Life Cycle. Chapter 3 discusses how to implement a
structured approach, and Chapter 4 concludes the paper. Appendix A contains a software
requirements template, and Appendix B contains a project schedule template, both of which
are recommended for use in any software development project. Appendix C contains a
priority list template, which is used to establish priorities for project items. Appendix D is a
case example illustrating application of the guidelines to a real-life software product
supporting an economics project.

 1

 2

2 System Development Life Cycle (SDLC)

The System Development Life Cycle (SDLC) is a conceptual model for software
development that consists of multiple phases: Software Concept; Analysis; Design; Coding
and Debugging; System Integration and Testing; Implementation; and Maintenance and
Support. Each phase can be thought of as a building block for the next phase. There are
different SDLC models that may be followed, such as the classic “Waterfall Model,”
“Spiral,” and “Evolutionary Prototyping,” as well as many modified Waterfall models.1 The
key is to adapt a model that lends structure to your project. This paper features a Waterfall
Model for the SDLC.

In the Waterfall model, a software development project progresses through a sequence of
steps from initial software concept through maintenance and support. The model is
sometimes referred to as document-driven because documents are produced in each phase
and used in subsequent phases. The documents serve as a progress indicator throughout the
life-cycle until a working software product is available. Planning is often difficult in
software development projects due to intangible items. However, when using the Waterfall
model the requirements are usually well-defined so planning can be done up front. The
Waterfall model works well with complex projects where the requirements are well
understood because the complexity can be dealt with in a structured way.

A fairly simple software project can become complicated very quickly, so keeping the project
organized and documented is essential. Many projects fail or miss deadlines and come in
severely over budget for the simple reason that thorough analysis and design are not done up
front and risk is not managed. Careful consideration of each phase of the SDLC, while
participating in a software development project, will greatly increase the chances of a
successful project. Planning on several levels is essential for the successful completion of
any software project. The SDLC can be beneficial to a software project regardless of the size
or complexity of the project if a conceptual model is followed. The following seven SDLC
phases illustrate the selected Waterfall Model.

2.1 Phase 1: Software Concept

The first phase in the SDLC identifies and defines the system to be developed. In this phase
the researcher and software engineer brainstorm about the system and what it will do.
Document requirements (using the template in Appendix A) as much as possible, so that an
adequate system can be built that will be flexible for handling future enhancements.
Communication among the research team including the software engineer, researcher, project
manager (if other than the software engineer or researcher), stakeholders, and funding

1 The “Spiral” model divides a software development project into several smaller projects that address the major
risks first. “Evolutionary Prototyping” is a model in which a prototype is developed and eventually refined into
the final software product. Hybrid SDLC models may be successfully utilized as well. S. McConnell, Rapid
Development Taming Wild Software Schedules (Redmond, Washington: Microsoft Press, 1996), pp. 136-147.

 3

sponsors is critical in this phase to ensure that proper requirements are obtained and
documented.

2.2 Phase 2: Analysis

The team analyzes the requirements of the system to gain a clear understanding of what is
required; in addition the software engineer must understand the technical aspects of the
requirements. Figure out where and how the system will be used, who the users will be, and
document everything for use in the Design phase. The team members must document even
the seemingly trivial details gleaned during analysis, because these are the things that turn
out to be very important for the proper execution of the software product.

2.3 Phase 3: Design

In the design phase, the analysis that was done in the previous phase is reviewed and the
software engineer devises a design solution. The design must support the requirements and
be as explicit as possible. Software design tends to start out relatively simple, but as all the
requirements are considered, systems tend to become complex and unwieldy. It is good
practice to prioritize the features based on importance and effort while putting together the
design. Use Appendix B, a project schedule template, for documenting the tasks to
implement the design. Use Appendix C, a priority list template, for establishing priority of
project features. This way the coding schedule can incorporate the tasks associated with high
priority features in a timely manner because there is the chance that items with lower priority
may not make it into the software or may be included in a future release.

A solid architecture and design will avoid significant rework later on. Mainstream
technology usually follows industry standards and is supported well; therefore problems can
quickly be resolved when they arise. Careful consideration must be given before utilizing
cutting edge technology. Since the technology is innovative, bugs and other technical issues
will be present, and will need to be worked out as they are encountered. When problems
arise, quick solutions are difficult to craft because the knowledge base and support is very
limited. Even minor problems in these technologies can cause a cascade of modifications
that need to be implemented which can adversely affect the whole project schedule and
ultimately jeopardize the project.

Technical complexity increases the risk for the software project and should be avoided if
possible. Issues resulting from unnecessary technical complexity can negatively impact the
schedule, because a great deal of time could be spent trying to work around issues.

2.4 Phase 4: Coding and Debugging

Coding and debugging is the phase where the design is implemented by the software
engineer. The design described in the previous phase serves as the blueprint for the system
to be built, providing most of the information the software engineer will need. The software
engineer will interpret the design and develop the code. Even when the software engineer is

 4

also the designer, it is important to have a detailed design, because it is easy to overlook
minor details that can result in a major error.

Debugging is the process of locating and removing errors from the code. Most current
programming languages allow compiling a “debug” version of the code. The “debug”
version allows stepping through code, setting breakpoints, viewing current variable values,
and offers debug information about the code that helps the software engineer locate
problems. After the code is stable, the production version of the code is compiled and used
for system testing.

2.5 Phase 5: System Integration and Testing

System integration occurs when distinct software modules are linked together and are
capable of functioning as a unit. When there are multiple software engineers on a project, all
the developers are expected to code to an accepted standard; if they do, and the design is
good, there will likely be very few problems, if any, at this point. Unfortunately, this is not
always the case. A common cause of system breakdown is a software engineer deciding that
something needs to be done differently without informing the other software engineers.
Because modules need to work together, a common protocol must be followed.

System testing helps to locate problems, and potential problems, with a software system. It is
essential to have people other than the software engineers testing the software. It is a good
idea to develop test plans to ensure that the testers adequately test critical functionality as
well as less important items. For larger software projects, reporting bugs and prioritizing bug
fixes will be a coordinated effort between the project manager, software engineer, and testers.
Use Appendix C, a priority list template, for establishing priority of bug fixes. The software
engineer and the project manager should come to an agreement on what to fix and what to let
go, based on time, effort, and risk. This phase of the project usually takes on a life of its
own, especially when the development team is large. In smaller software projects, testing
tends to be straightforward, but in large projects, it is very time consuming to test every
scenario, so adequate time must be allocated for testing in the schedule.

2.6 Phase 6: Implementation

Implementation is the process of installing the software on the customer’s (e.g., other agency
client, NIST Server) system and applying licensing agreements and access rights. This
process can be somewhat difficult since it is hard to know exactly what kind of system
hardware and supporting software may be encountered during the installation. As a result,
problems occasionally arise due to compatibility issues. Prior planning can help to minimize
some of these problems. Licensing and access rights that were established during the design
phase will be applied in the implementation phase. Software may be designed so that certain
features are limited or turned off based on the particular license that is applied. Appropriate
licensing ensures the proper level of functionality for the software product. Proprietary
libraries, dynamic link libraries (DLLs) and other modules to be used in conjunction with the
software product being implemented are examples of entities that may require additional
licensing.

 5

After implementation, do a presentation for the sponsor and invite the sponsor to do some
acceptance testing. Keep the sponsor in the loop during development so there will not be any
big surprises at the final demonstration. After acceptance testing, and any final revisions
following that meeting, present a formal letter to the sponsor transmitting the final product
and indicating closure of the project. This meeting is a good opportunity to confirm the
sponsor’s interest in funding maintenance and support activities (see 2.7) as well as to
identify the sponsor’s interest in funding additional features suggested during testing (see
3.5.4.1).

2.7 Phase 7: Maintenance and Support

Maintenance includes items such as patches and data updates, while support includes bug
fixes, help for users of the software, and collecting requests for new functionality. Discuss
maintenance and support with the customer up front. Different types of maintenance and
support may be provided based on what makes sense for the particular software product that
is being created as well as on the needs of the customer. Determining the right mix of
maintenance and support is challenging and fraught with uncertainty, but aligning customer
expectations before maintenance and support issues arise will help maintain customer
satisfaction and may potentially lead to additional future funding.

It is important to maintain a copy of the source code once the development effort has ended.
It is also recommended to maintain version specific source code. There are a few different
source control software packages that efficiently do this. Maintaining version specific source
code enables an old version to be recompiled should unanticipated issues arise after software
release. Depending on the agreement with the sponsor, updates for the software product may
be issued occasionally. Data updates may be required, if requested by the sponsor, for
software that needs to use a current data set. This should be contractually agreed to and not
implied. It is important to maintain a copy of the source code, data, installation program and
executable application in a secure manner after the project is completed. Maintain security
by having the project manager and the software engineer keep archival copies.

 6

3 Implementing the Waterfall Method for Planning and Executing a Software

Project

This chapter provides implementation guidance for a software project. The main tasks found
in a software development project are grouped by phase. These tasks are further broken
down by responsible party: Researcher, Software Engineer, Project Manager, and joint tasks.
Each software development project is unique and may require more tasks than what is listed
here.

The SDLC outlined in Chapter 2 consists of the major steps for developing a software
product. There are many different SDLC models, but what they have in common is that they
provide a structured approach for developing software. Choose a model that best fits a
project with regard to time, resources, risk and technical issues or follow the Waterfall model
described in this paper. Planning the project based on a specific model helps to identify
project tasks and milestones, as well as reveal timing issues that may not otherwise be
evident. It is less likely that time allocations for major project tasks will be underestimated
or omitted from the project plan when the structured approach is employed.

Identifying individual responsibilities (i.e., the researchers and software engineers) helps the
two groups become a team by assigning individual ownership of certain aspects of the
project. It also helps to visualize the general scheme of things so everybody has an
understanding of who does what and in what order (see Figure 1).

 7

Software
Concept Analysis Design Coding and Debugging System Integration and

Testing Implementation Maintenance and
Support

 Define
purpose

 Define user
interface

 Design
software

 Update the software
project schedule

 Review and compile
comments from
testing

 Prepare media
 Maintain version

specific source
code

 Project
proposal Define algorithms Provide

feedback

 Create application
framework, operating
modules and
mathematical
functions

 Review software and
assure that
requirements have
been met

 Install software Perform data
updates

 Define
requirements

 Define data storage
and retrieval

 Identify
milestones and
tasks

 Write code and create
the user interface

 Prioritize comments
into urgent, wish list
or future version

 Demonstrate
software to sponsor

 Maintain source
code

 Specify domain

rules and data
variables

 Develop
software
project
schedule

 Validate that
algorithms produce
correct results

 Fix bugs resulting
from testing

 Formal letter to
sponsor indicating
closure

 List assumptions

and constraints Provide
required data

 Develop draft
documentation and/or
help files

 Finalize
documentation and/or
help files

 Analyze
requirements and
document
specifications.

 Provide test
data and results

 Compile debug and
production versions of
software

 Peer review of
software and
documentation

 Determine

technology to be
used

 Provide
technical text,
terminology
and
abbreviations

 Initiate alpha and beta
testing

 Arrange sponsor
review

 Create installation
program

 Develop marketing

material

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 Phase 7

 Researcher Software Engineer Project Manager Jointly

Figure 1. Project Tasks Timeline

While many of the following tasks can be done jointly, identifying the party with primary
responsibility helps avoid future misunderstandings among team members, and it is always a
good idea to obtain input from the other party when needed.

3.1 Tasks to be Completed when developing the Software Concept

3.1.1 Researcher

3.1.1.1 Articulate the purpose of the intended software product.
3.1.1.2 Describe the level of user sophistication of the intended user group.

 8

3.1.1.3 Present the software engineer with the project proposal showing
milestones and due dates.

3.1.2 Jointly

3.1.2.1 Define the software requirements. Researcher and software engineer
collaborate while defining the requirements to avoid items that may not be
technically feasible.

3.2 Tasks to be Completed during Analysis

3.2.1 Researcher

3.2.1.1 Specify technical domain rules.
3.2.1.2 Specify key data variables.
3.2.1.3 Define the user interface features.
3.2.1.4 Define the algorithms to be used and provide brief descriptions of their

purpose.
3.2.1.5 Define the data storage and retrieval requirements.
3.2.1.6 Summarize the research model for the programmer.
3.2.1.7 List all assumptions that are being made.
3.2.1.8 List all constraints that are evident.
3.2.1.9 Inform software developer if pertinent reference materials are available

that may be helpful, such as technical reports and other software.

3.2.2 Software Engineer

3.2.2.1 Analyze the requirements to gain a clear understanding of the technical
aspects, which become the foundation for the design. Document
specifications of systems or subsystems, based on the requirements.

3.2.2.2 Determine technology to be used based on the requirements.

3.3 Tasks to be Completed during Design

3.3.1 Researcher

3.3.1.1 Provide required data in a format ready for use in the software product.
3.3.1.2 Provide a test data set and calculation-results for the developer to use to

check the validity of algorithms in the software. An Excel spreadsheet
may be created to define parameters and results for the calculations.

3.3.1.3 Provide timely feedback to software engineer.
3.3.1.4 Provide any technical text, terminology (e.g., glossary), and abbreviations

(list of symbols) to be included in the software.

 9

3.3.2 Software Engineer

3.3.2.1 Design the software.
3.3.2.2 Identify the programming milestones and break out the tasks that need to

be completed by the software engineer and researcher to meet each
milestone on schedule.

3.3.2.3 Develop the tentative software project schedule to be consistent with the
project milestones.

3.4 Tasks to be Completed during Coding and Debugging

3.4.1 Researcher

3.4.1.1 Line up internal/external testers, initiate alpha and beta testing at
appropriate times, and work with software engineer to incorporate helpful
suggestions on a priority basis, as time and budget permit.

3.4.1.2 Draft user documentation (e.g., help files and/or user’s manual).

3.4.2 Software Engineer

3.4.2.1 Update the software project schedule and identify target dates once the
design phase is complete.

3.4.2.2 Create application framework, operating modules and mathematical
functions for the software product.

3.4.2.3 Write code for the application and create the user interface.
3.4.2.4 Compile debug and production versions of the code and test it for bugs

and other errors.
3.4.2.5 Validate that algorithms produce correct results based on data test set

provided by the researcher.
3.4.2.6 Create an installation program.

3.4.3 Project Manager

3.4.3.1 Arrange for sponsor review and approval.
3.4.3.2 Develop marketing material and plan for distribution.

3.5 Tasks to be Completed during System Integration and Testing

3.5.1 Researcher

3.5.1.1 Review and compile comments resulting from testing.
3.5.1.2 Review the functioning software product, communicate to software

engineer any final changes needed in the program, and confirm that
requirements have been met.

3.5.1.3 Finalize documentation (e.g., help files and/or user’s manual).

 10

3.5.2 Software Engineer

3.5.2.1 Review comments resulting from testing. Fix bugs that were discovered
and make final enhancements where feasible.

3.5.3 Project Manager

3.5.3.1 Submit the software and user guide for peer review. These may be
reviewed separately or together. The project manager is responsible for
overseeing the peer review process unless their manager designates an
alternate.

3.5.4 Jointly

3.5.4.1 Prioritize any comments from testing into items to be addressed with
current funding and items to be included in a future version.

3.6 Tasks to be Completed during Implementation

3.6.3 Software Engineer

3.6.3.1 Prepare the product (e.g., website and/or CD) for distribution and
download.

3.6.3.2 Install the software on the sponsor’s hardware, assist sponsor with the
setup, or host the software locally.

3.6.4 Project Manager

3.6.4.1 Present a formal letter to the sponsor transmitting the final product and
indicating closure of the project (i.e., the software is complete and
functional).

3.6.5 Jointly

3.6.5.1 Demonstrate software to sponsor.

3.7 Tasks to be Completed during Maintenance and Support

3.7.3 Software Engineer

3.7.3.1 Perform data updates.
3.7.3.2 Maintain version specific source code.

 11

3.7.4 Jointly

3.7.4.1 Maintain source code. Project manager and software engineer keep
archival copies.

 12

4 Summary

This paper outlines a structured approach for developing software. The approach, known as
the System Development Life Cycle (SDLC), provides a framework and direction for
developing software from the concept phase to final completion. Following a structured
approach helps to organize a project and put boundaries around a project that may otherwise
become unwieldy. The SDLC defines seven phases that essentially are building blocks for
completing the final project. The initial phase is developing the software concept, followed
by, analysis, architecture, and design. Coding and debugging follows, which entail writing
the program and debugging it. System integration and testing comes next, and then
implementation follows. Finally, after the software is implemented locally, or at the
customer’s site, the maintenance and support phase begins. The SDLC can help to determine
realistic time frames of a software project considering all phases of the project. Utilizing the
structure provided by the SDLC in the software development project will facilitate
communication between the researcher, software engineer, and project manager, thereby
contributing to the optimization of development time, reduction of rework, and more
productive teamwork.

 13

 14

Appendix A Requirements Template
(To be filled out by the project manager/researcher.)

Project Manager Name: Target Completion Date:

Project Title:

Directions: Provide the requested information for each block in the template.

Background information:
Include any pertinent background information. If this product is an existing software product, include its
system requirements and why it is being revised.

Purpose:
Provide a brief description of the purpose of the project. Describe the purpose of the software and why it is
relevant.

Intended Audience:
Who will use this product? What is their level of technical and software expertise?

 15

Appendix A Requirements Template
(To be filled out by the project manager/researcher.)

Project Manager Name: Target Completion Date:

Project Title:

Scope of the Software Development Effort:
This section identifies the boundaries for the project by documenting what will be included and what will not be
included. While the purpose of the project generally defines the scope of the research project, careful
consideration should be given in this section to specify the exact scope of the software, as it is often different
from the project scope.

Identify what the product will do from beginning to end.

Identify the processes that will be utilized in the software product.

Identify the systems associated with the software product that will and will not be included in the scope.

Identify the organizations that will and will not be involved in the development of the software tool.

Constraints:
Include any limiting factors that will influence development. This could be anything such as a specific
programming language to use, client-specific requirements, particular database to use, must be viewable on a
pocket pc, etc.

1. constraint 1

2. constraint 2

3. constraint 3

 16

Appendix A Requirements Template
(To be filled out by the project manager/researcher.)

Project Manager Name: Target Completion Date:

Project Title:

Features:
Identify the features this product will provide. It may be helpful to think of each feature from the perspective of
the user interacting with the software. Document the feature including any input from the user and the output
from the software. If this is a rewrite of existing software or a conversion to a new platform, differing degrees
of detail will be included. The objective of this section is to communicate to the developers which features
need to be implemented in the software to help them to formulate a reasonable design based on the
requirements.

1. feature 1

2. feature 2

3. feature 3

Algorithms:
Document the calculations that will be used in the product. Provide a formula and a brief description of what it
does.

 17

Appendix A Requirements Template
(To be filled out by the project manager/researcher.)

Project Manager Name: Target Completion Date:

Project Title:

Technical Domain Rules:
Identify any technical domain rules that are to be implemented. The technical domain rules are rules that
govern the internal decision flow for your proposed software. For example, a domain rule might state that no
tax is charged to customers with out of state addresses when purchasing online.

Assumptions:
Define assumptions that are being made with regard to the software. For example, an assumption might state
that all single family homes in Maryland have basements.

User Interface Details:
Document the user interface specifications. Provide any mock ups that may be available.

 18

Appendix A Requirements Template
(To be filled out by the project manager/researcher.)

Project Manager Name: Target Completion Date:

Project Title:

Database Structure/ Data Details:
Describe the database structure, if existing. Describe the data set. Identify data storage and retrieval
functionality, if applicable.

Research Model:
Briefly describe the research model so that the software engineer can understand the basis of the software.

References:
Provide references for documentation pertinent to this software such as technical reports, other software, etc.

 19

 20

 21

Appendix B Project Schedule Template
(To be filled out by the project manager/researcher/software engineer working together.)

Project Title: Date:

Directions: Initially, include each project task on a row in the template, and the item number. Add the planned start date, the estimated
duration, planned finish date, resources required, and the task precursor item number. As the project progresses, add the actual start
date and finish date, and check the item complete column when a task is finished.

Item
Task

Estimated
Duration
(Days)

Start Date Finish Date
Resource Required

Task
Precursor

Item #
Item

Complete

Notes
Planned Actual Planned Actual

 22

Appendix C Priority List Template

Project Title:

Directions: Use this list template to establish priority for project items. Features,
tasks, or bugs are examples of items that will be prioritized during the project.
Provide the item name, designate the priority, and include any comments.

Item Priority Comments

 23

 24

Appendix D Requirements Template: Case Illustration
(To be filled out by the project manager/researcher.)

Project Manager Name: Bobbie Lippiatt Target Completion Date: 09/09

Project Title: BusiBEES

Directions: Provide the requested information for each block in the template.

Background information:
Include any pertinent background information. If this product is an existing software product, include its
system requirements and why it is being revised.

BEES, is currently a PC-based software tool for selecting environmentally preferred, cost-effective
building products. It is in widespread use across the building industry and beyond: there were about
24,000 downloaders of BEES 3.0 over the 5 years it was available, and we expect at least as many for
BEES 4.0, which has been available since 5/07. A Google search for “NIST BEES” yields about 271,000
hits, and “BEES” is the search term most used by people brought to the BFRL website by external
search engines.

BEES 4.0, runs on PCs with Windows 95 and beyond operating systems (see Vista note below) and
with at least 60 MB of available disk space. A printer must be installed in order for the graphical results
to display. Some people prefer BEES on a CD, so the Environmental Protection Agency (EPA)
distributes on our behalf free BEES 4.0 CDs and printed manuals (even though the manual is already
on the CD, some people like to see it in print). Vista: While we haven’t been able to test BEES 4.0 on a
Vista system, users tell us Microsoft no longer supports the WinHelp4-compiled BEES Help System.
We’ve compiled Win2000-based help for one user who is currently testing it for us.

With this revision, we hope to transfer the tool to a web-based platform.

Drivers for revision:

• While BEES Project Leader developed the software, her limited programming expertise—
and programming language, Visual Objects 2.6—are both rapidly becoming obsolete and
she does not expect to do extensive BEES programming herself in the future. With this
platform move, we hope to use more professional, state-of-the-art programming
techniques and transfer future programming tasks to a software engineer.

• Our largest user group is building designers, many of whom operate in Macintosh
environments and who have requested a Mac version for many years. A web-based
version would let Mac users use BEES

• We want the ability to post product data and documentation as they become available.

 25

Appendix D Requirements Template: Case Illustration
(To be filled out by the project manager/researcher.)

Project Manager Name: Bobbie Lippiatt Target Completion Date: 09/09

Project Title: BusiBEES

Purpose:
Provide a brief description of the purpose of the project. Describe the purpose of the software and why it is
relevant.

“Green,” or environmentally friendly, building is beginning to go mainstream and there is quite a bit of
interest in measuring exactly what green means. Our BEES answers to “what’s green” are widely
respected because we use standard, science-based methods and because environmental issues can
be quite controversial and NIST has a worldwide reputation for unbiased science. But the answer to
“what’s green” is, “it depends,” so we need software to let users set key parameters so we can then
develop results for them using our BEES model.

Our largest user group, building designers, consists primarily of architects—very “visual” people.
They want us to deliver simple answers to the complicated question of what makes a product green.
They would prefer a simple NIST-blessed list of “green” products to buy. By using our software, we try
to gently educate them about the many criteria involved in assessing green, while at the same time not
burdening them with so many choices that they are overwhelmed. Where possible, we provide default
parameter settings. This user group is less likely to read our online help documentation and to “drill
down” for detailed BEES results.

On the other hand, our BEES results can affect a manufacturer’s bottom line, so this stakeholder
group understandably demands that we provide detailed documentation on our assumptions for their
products and deliver a high degree of transparency about how we score product performance. These
people likely drill down for detailed BEES results and read the online help only about their own
product group.

Over the last few years the BEES user group that has grown the fastest and today is nearly as large as
designers is education, primarily at the college level. Many professors are using BEES in their
engineering and design classes, and many students are using BEES in their PhD and Masters theses.
We suspect that these users will be those most interested in the model documentation included in the
BEES online help system.

We have BEES datasets for 230 building products in BEES 4.0. Some are generic building products,
and some are brand-specific products. Designers want many more building products of both types to
be included in future versions of BEES, but it is too expensive to add products in large numbers over
short periods of time. For brand-specific products we rely on manufacturers to initiate contact with
NIST and fund us for data development under our BEES Please program. These manufacturers would
like to see their BEES results published as soon as they become available.

 26

http://www.bfrl.nist.gov/oae/software/bees/please/bees_please.html

Appendix D Requirements Template: Case Illustration
(To be filled out by the project manager/researcher.)

Project Manager Name: Bobbie Lippiatt Target Completion Date: 09/09

Project Title: BusiBEES

Intended Audience:
Who will use this product? What is their level of technical and software expertise?

Following is the current distribution of BEES users by interest group:

Their level of technical expertise varies wildly—from none at all to the Office of Applied Economics’
(OAE) external technical peers. Even the manufacturing folks we routinely interact with have diverse
backgrounds: from marketing folks to technical directors, from presidents of small family firms to
researchers from multinational companies.

The level of software expertise among BEES users is average. We have discontinued extensive
support for folks who seem to have never installed software on their own before. We also have noticed
that the “average” level of software expertise and expectations have risen since BEES 1.0 was
released in 1997, so we hope to adapt to state-of-the-art trends.

 27

Appendix D Requirements Template: Case Illustration
(To be filled out by the project manager/researcher.)

Project Manager Name: Bobbie Lippiatt Target Completion Date: 09/09

Project Title: BusiBEES

Scope of the Software Development Effort:
This section identifies the boundaries for the project by documenting what will be included and what will not be
included. While the purpose of the project generally defines the scope of the research project, careful
consideration should be given in this section to specify the exact scope of the software, as it is often different
from the project scope.

Identify what the software product will do from beginning to end.

The system to be redesigned begins with setting study parameters for evaluating the life-cycle
environmental and economic performance of products and ends with performance results being
generated for the user.

Identify the processes that will be utilized in the software product.

The product includes the working processes and subsystems required to evaluate product
performance. The design, development, and deployment of the database are part of the project scope.

Identify the systems associated with the software product that will and will not be included in the scope.

The web environment, internet, and security are part of the project scope. Windows and Macintosh
operating environments are not part of the project scope.

Identify the organizations that will and will not be involved in the development of the software tool.

The only organization involved in development of the tool is OAE. Organizations not involved include
OAE contractors and manufacturers.

Constraints:
Include any limiting factors that will influence development. This could be anything such as a specific
programming language to use, client-specific requirements, particular database to use, must be viewable on a
pocket pc, etc.

1. Code must be documented for long term use and the possibility that other software
programmers may become involved in its development.

2. Must be platform independent
3. Must report results as multicolored graphs
4. Subcontractor delivers detailed BEES product data in Excel files (Note: Other formats may be

possible as Excel is one of several formats for exporting their data from a commercial software
package known as SimaPro 7.0; Project Manager has a copy)

 28

Appendix D Requirements Template: Case Illustration
(To be filled out by the project manager/researcher.)

Project Manager Name: Bobbie Lippiatt Target Completion Date: 09/09

Project Title: BusiBEES

Features:
Identify the features this product will provide. It may be helpful to think of each feature from the perspective of
the user interacting with the software. Document the feature including any input from the user and the output
from the software. If this is a rewrite of existing software or a conversion to a new platform, differing degrees
of detail will be included. The objective of this section is to communicate to the developers which features
need to be implemented in the software to help them to formulate a reasonable design based on the
requirements.

• Let user set two study parameters

o Building Element for Comparison
o Environmental Impact Category Weights: either BEES Stakeholder Panel Weights or Equal

Weights

• Based on the two parameter settings above, report corresponding, pre-processed BEES 4.0 results
saved as PDF files

o Three summary graphs from 4.0
o “All Tables in One” report from 4.0

• Let user print and save results

• Offer context-sensitive BEES help (extensive WinHelp-based help content already developed; can

be compiled in other formats)

• Make BEES data files available for browsing (but not editing)

o All BEES product files
o LCCOST.DBF
o EQUIV12.DBF
o NORMALZE.DBF
o WTS12.DBF

• Accommodate additional products as they become available without changing the software,
requiring

o Ability to replace existing PDF results files with new ones
o Ability to add new building elements for comparison
o Ability to add self-contained product documentation to help
o Environmental vs. Economic Performance Weights can vary from 0 to 100 or 100 to 0
o Discount Rate can be set to values between 0 % and 20 %, and will default to the current year’s

OMB rate supplied by Project Manager
o Transportation Distance can be set to values ranging from 0 miles to 3,000 miles. (Note:

algorithm accounting for transportation distance changes included in BEES code, but not
included in Chapter 4 of the BEES 4.0 Technical Manual and Users Guide.)

• Offer more (≈5) Environmental Impact Category Weight sets to choose from, including a “no

weighting” option and a user-defined choice (can use Suit Selector code for the latter?)

 29

Appendix D Requirements Template: Case Illustration
(To be filled out by the project manager/researcher.)

Project Manager Name: Bobbie Lippiatt Target Completion Date: 09/09

Project Title: BusiBEES

• Offer more (≈5) Environmental Impact Category Weight sets to choose from, including a “no

weighting” option and a user-defined choice.

• Enable Project Manager to readily edit help content

• Report both fixed, PDF-based results and real-time-generated results

• Retain BEES 4.0 PRODCOMP.DBF data structure enabling separate accounting for product

components. (This ability is not now used, nor are there near-term plans for its use, but we don’t
want to rule it out over the long term.)

Algorithms:
Document the calculations that will be used in the product. Provide a formula and a brief description of what it
does.

The formulae and brief descriptions of the calculations that will be used in the product are given in
Appendix A of the BEES 4.0 Technical Manual and User Guide available at
http://www.bfrl.nist.gov/oae/publications/nistirs/7423.pdf .

Note: OAE has an Excel macro that confirms the BEES environmental performance results, so
deployment of their complex algorithms in web application can be readily validated.

Technical Domain Rules:
Identify any technical domain rules that are to be implemented. The technical domain rules are rules that
govern the internal decision flow for your proposed software. For example, a domain rule might state that no
tax is charged to customers with out of state addresses when purchasing online.

• For some products, a single environmental data file maps to more than one product

• Some Building Elements (Exterior Wall Finishes, Roof Coverings, and Wall/Ceiling Insulation) have

additional parameter settings, data files, and computations associated with development of their
BEES results

 30

http://www.bfrl.nist.gov/oae/publications/nistirs/7423.pdf

Appendix D Requirements Template: Case Illustration
(To be filled out by the project manager/researcher.)

Project Manager Name: Bobbie Lippiatt Target Completion Date: 09/09

Project Title: BusiBEES

Assumptions:
Define assumptions that are being made with regard to the software. For example, an assumption might state
that all single family homes in Maryland have basements.

• The use phase for products, relevant for developing their data files and computing their life-cycle

costs, is fixed at 50 years

• When letting user change default transportation distance for a product, we assume that product

transportation is always the first transportation column in the product’s environmental data file.

User can enter study period length on a BEES comparison-by-comparison basis.
• We will continue to evaluate all product alternatives included in a BEES comparison over the same

study period, as required by life-cycle costing methods
• A flexible study period requires scaling of data in product environment data files
• A flexible study period requires making “N” in Appendix A, section A.2, of the BEES 4.0 Technical

Manual and User Guide available at http://www.bfrl.nist.gov/oae/publications/nistirs/7423.pdf, a
variable

User Interface Details:
Document the user interface specifications. Provide any mock ups that may be available.

BEES 4.0 user interface displayed and documented in the BEES tutorial (Chapter 4 of BEES 4.0
Technical Manual and User Guide available at
http://www.bfrl.nist.gov/oae/publications/nistirs/7423.pdf).

 31

http://www.bfrl.nist.gov/oae/publications/nistirs/7423.pdf
http://www.bfrl.nist.gov/oae/publications/nistirs/7423.pdf

Appendix D Requirements Template: Case Illustration
(To be filled out by the project manager/researcher.)

Project Manager Name: Bobbie Lippiatt Target Completion Date: 09/09

Project Title: BusiBEES

Database Structure/ Data Details:
Describe the database structure, if existing. Describe the data set. Identify data storage and retrieval
functionality, if applicable.

The BEES 4.0 database structure consists of 12 indexed data tables, as well as 3 tables for temporary
storage of BEES results. Additionally, there will be a table containing environmental performance data
for each product. For additional documentation, a “Brief Database Info” and a “Full Database Info”
report can be generated for each table.

Tables with building product data; environmental files for 230 products: BLDGPROD, PRODCOMP,
LCCOSTS, and UNIFRMT2

Files required for BEES result computation: EQUIV12, NORMALZE, and WTS12

Tables for the handful of products requiring use energy computation: BTUFLOW, USEECON,
USEFLOWS, USEENVIR, and USEWALLS

Tables for temporary storage of BEES results: XTAB12, RSLTTAB, and RSLTGRH

For each BEES environmental performance data table structure:
• Note that the number of RAW, XPORT, USE, and WASTE columns can vary. Each product’s column

count for each of these life-cycle stages is given in BLDGPROD.DBF
• Note that the number of COMP columns can also vary. Each product’s column count for the number

of product components is given in PRODCOMP.DBF, by reference to this file’s row count for each
product

Data maintenance functionality
• Need ability to add, edit, and remove building products from the tool

Data storage functionality
• Two data files are used to temporarily store BEES results for graphical and tabular display by a

graphing utility, but these files are emptied at the beginning of each BEES session

Data retrieval functionality
• Table 4.1, in Chapter 4 of BEES 4.0 Technical Manual and User Guide available at

http://www.bfrl.nist.gov/oae/publications/nistirs/7423.pdf, shows the Environmental Data File
names keyed to each BEES product, indicating files to be made available for browsing (no editing
allowed)

 32

http://www.bfrl.nist.gov/oae/publications/nistirs/7423.pdf

Appendix D Requirements Template: Case Illustration
(To be filled out by the project manager/researcher.)

Project Manager Name: Bobbie Lippiatt Target Completion Date: 09/09

Project Title: BusiBEES

Research Model:
Briefly describe the research model so that the software engineer can understand the basis of the software.

BEES combines life-cycle cost (LCC) results for products with their environmental life-cycle
assessment (LCA) results into the BEES Overall Performance Score, which helps building industry
stakeholders, identify cost-effective green building product alternatives.

LCA--
Environmental life-cycle assessment is a “cradle-to-grave,” systems approach for measuring
environmental performance. The approach is based on the belief that all stages in the life of a product
generate environmental impacts and must therefore be analyzed, including raw materials acquisition,
product manufacture, transportation, installation, operation and maintenance, and ultimately recycling
and waste management. An analysis that excludes any of these stages is limited because it ignores
the full range of upstream and downstream impacts of stage-specific processes.

The strength of environmental life-cycle assessment is its comprehensive, multi-dimensional scope.
Many green building claims and strategies are now based on a single life-cycle stage or a single
environmental impact. A product is claimed to be green simply because it has recycled content, or
accused of not being green because it emits volatile organic compounds (VOCs) during its installation
and use. These single-attribute claims may be misleading because they ignore the possibility that
other life-cycle stages, or other environmental impacts, may yield offsetting impacts. For example, the
recycled content product may have a high embodied energy content, leading to fossil fuel depletion,
global warming, and acid rain impacts during the raw materials acquisition, manufacturing, and
transportation life-cycle stages. LCA thus broadens the environmental discussion by accounting for
shifts of environmental problems from one life-cycle stage to another, or one environmental medium
(land, air, water) to another. The benefit of the LCA approach is in implementing a trade-off analysis to
achieve a genuine reduction in overall environmental impact, rather than a simple shift of impact.

The general LCA methodology involves four steps. The goal and scope definition step spells out the
purpose of the study and its breadth and depth. The inventory analysis step identifies and quantifies
the environmental inputs and outputs associated with a product over its entire life cycle.
Environmental inputs include water, energy, land, and other resources; outputs include releases to air,
land, and water. (Note to programmer: BEES product data files contain their “inventories” of 504 input
and output flows. The flows are the Iijs in Appendix A, section A.1, of the BEES 4.0 Technical Manual
and User Guide available at http://www.bfrl.nist.gov/oae/publications/nistirs/7423.pdf). However, it is
not these inputs and outputs, or inventory flows that are of primary interest. We are more interested in
their consequences, or impacts on the environment. Thus, the next LCA step, impact assessment,
characterizes these inventory flows in relation to a set of environmental impacts. For example, the
impact assessment step might relate carbon dioxide emissions, a flow, to global warming, an impact.
(Note to programmer: This is what the term IAjk in Appendix A, section A.2, of the BEES 4.0 Technical
Manual and User Guide available at http://www.bfrl.nist.gov/oae/publications/nistirs/7423.pdf does. The
IAfactori term is the multiplier for each I, and is given in the BEES file EQUIV12.DBF) Finally, the
interpretation step combines the environmental impacts in accordance with the goals of the LCA
study. (Note to programmer: This involves developing IAScorejks based on environmental impact

 33

http://www.bfrl.nist.gov/oae/publications/nistirs/7423.pdf
http://www.bfrl.nist.gov/oae/publications/nistirs/7423.pdf

Appendix D Requirements Template: Case Illustration
(To be filled out by the project manager/researcher.)

Project Manager Name: Bobbie Lippiatt Target Completion Date: 09/09

Project Title: BusiBEES

category weight set (IVwtk) chosen, then summing results to a single environmental performance
score for the product, EnvScorej.)

LCC— The LCC method sums over the study period all relevant costs associated with a product.
Alternative products for the same function, say floor covering, can then be compared on the basis of
their LCCs to determine which is the least cost means of fulfilling that function over the study period.
Categories of cost typically include costs for purchase, installation, operation, maintenance, repair,
and replacement. A negative cost item is the residual value. The residual value is the product value
remaining at the end of the study period. In the BEES model, the residual value is computed by
prorating the purchase and installation cost over the product life remaining beyond the 50-year period.

The LCC method accounts for the time value of money by using a discount rate to convert all future
costs to their equivalent present value. (Note to programmer: Refer to Appendix A, section A.2, of the
BEES 4.0 Technical Manual and User Guide available at
http://www.bfrl.nist.gov/oae/publications/nistirs/7423.pdf for the BEES LCC algorithm.)

Overall—The BEES Overall Performance Score synthesizes the LCA and LCC results into a single
score, as illustrated in Figure 2.7, in Chapter 2 of the BEES 4.0 Technical Manual and User Guide
available at http://www.bfrl.nist.gov/oae/publications/nistirs/7423.pdf. Before combining the LCA and
LCC results, each is placed on a common scale by dividing by the sum of corresponding scores
across all alternatives under analysis. In effect, then, each performance score is rescaled in terms of
its share of all scores, and is placed on the same, relative scale from 0 to 100. Then the two scores are
combined into an overall score by weighting environmental and economic performance by their
relative importance and taking a weighted average. (Note to programmer: The formula for the overall
score is given in Appendix A, section A.3, of the BEES 4.0 Technical Manual and User Guide available
at http://www.bfrl.nist.gov/oae/publications/nistirs/7423.pdf.) The BEES user specifies the relative
importance weights used to combine environmental and economic performance scores.

References:
Provide references for documentation pertinent to this software such as technical reports, other software, etc.

BEES 4.0 and its technical manual/user guide (NISTIR 7423) are available for download from
www.bfrl.nist.gov/oae/software/bees . (Note: BEES 4.0 online help includes all chapters of NISTIR 7423
except chapters 1 and 5. Help also includes Appendix B.)

 34

http://www.bfrl.nist.gov/oae/publications/nistirs/7423.pdf
http://www.bfrl.nist.gov/oae/publications/nistirs/7423.pdf
http://www.bfrl.nist.gov/oae/publications/nistirs/7423.pdf
http://www.bfrl.nist.gov/oae/software/bees

 35

 References

Ferris, T. “Software User Assistance Project Management.” May 21, 2007
http://www.klariti.com/technical-writing/TF-Software-User-Assistance-Project-
Management.shtml.

Lippiatt, Barbara “Building for Environmental and Economic Sustainability Technical
Manual and User Guide.” NISTIR 7423. Gaithersburg, Maryland: National Institute of
Standards and Technology, 2007.

McConnell, S. “Rapid Development Taming Wild Software Schedules.” Redmond,
Washington: Microsoft Press, 1996.

