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ABSTRACT 
 
 
 The guarded hot plate (GHP) apparatus is the most common type of absolute 
apparatus for measurement of the thermal transmission properties of thermal 
insulation. As the name implies, the hot meter plate is surrounded by a coplanar 
guard plate, separated by a narrow guard gap, that is held at a temperature close 
(e.g., 0.01 K) to that of the meter plate so as to promote one-dimensional heat flow 
through the test specimen(s).  If the apparatus is located in an environmental 
chamber, that chamber can be controlled at approximately the mean temperature of 
the test specimens so that heat gains or losses at the edges of the specimen and the 
outer edge of the guard plate can be kept acceptably small, affecting the measured 
properties by less than 0.2 percent.  However, for high-temperature apparatus, 
environmental chambers are normally not used and some form of edge guarding is 
used with the intention of controlling excessive extraneous heat flows.  Most 
commonly, for a high-temperature circular GHP apparatus, the edge guard is a 
heated cylinder located coaxially with the hot and cold plates, with edge insulation 
filling the annulus between the outer edges of the plates and the inner diameter of 
the edge guard.  The major objective of this paper is to examine the effectiveness of 
this type of edge guarding.  First, an analytical solution based on an effective heat 
transfer coefficient at the edge of the specimen(s) is summarized.  Second, analysis 
is made and computations are carried out to illustrate that, for the type of high-
temperature edge guarding that is most commonly used, there can be very 
significant heat flows in the edge insulation that are not predicted by previous 
analytical models but that can lead to serious errors in the measured thermal 
transmission properties.  Third, computations based on finite element analyses are 
presented to show the effectiveness of edge guarding for geometries that are more 
complex than can readily be handled with analytical solutions.  For existing 
apparatus, the presence of significant shunting heat flows can be confirmed by 
running tests on specimens of the largest thickness of interest at the same mean 
temperature, but with very different temperature drops across the specimens. 
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INTRODUCTION 
 
 
 The guarded hot plate apparatus is generally recognized as the primary absolute 
method for measurement of the thermal transmission properties of homogeneous 
insulation materials in the form of flat slabs.  This steady-state test method has been 
standardized by ASTM International as ASTM Standard Test Method C 177 [1] and 
by the International Organization for Standardization (ISO) as ISO 8302 [2], with 
the two test methods being similar, but not identical.  The first guarded hot plate 
built in America (circa 1912-1914) was designed by Hobart C. Dickinson and 
Milton S. van Dusen of the National Bureau of Standards (NBS), the former name 
of the National Institute for Standards and Technology (NIST).  A somewhat 
different guarded hot plate apparatus was independently designed in Germany at 
about the same time by Robert Poensgen of the Technical University of Munich.  
Several different guarded hot plate apparatus were built at NBS between 1912 and 
about 1928.  In 1945, the first version of ASTM Test Method C 177, based 
primarily upon the NBS designs, was approved.  Zarr has documented the history of 
the development of guarded hot plate apparatus at NBS and NIST over the course of 
the twentieth century [3-4].  The designs and properties of other guarded hot plate 
apparatus around the world have been described by Pratt [5] and by Klarsfeld [6].  
A “reference guarded hot plate apparatus,” based on ISO 8302, has been described 
by de Ponte et al. [7]. 
 A typical guarded hot plate apparatus consists of a square or circular meter 
plate, surrounded by a coplanar guard plate with a narrow gap between the two 
plates.  A thermopile, with junctions on both sides of the guard gap, is used to 
control the temperature of the guard plate to be very nearly the same as the 
temperature of the meter plate.  Typically, a pair of similar specimens is tested, one 
on each side of the guarded hot plate.  Heat flows from the hot plate through both 
specimens to the two cold plates, which, for use over a temperature range from, say, 
200 K to 400 K, are usually kept at the same temperature by means of a circulated 
liquid.  Ideally, all of the heat from the meter plate heater flows only through the 
meter area (i.e., an area equal to the area of the meter plate plus half of the area of 
the guard gap between the meter plate and the guard plate) of the specimens.  In 
many guarded hot plate apparatus used at moderate temperatures, the equipment is 
inside an environmental chamber, whose temperature can be adjusted to be nearly 
equal to the average temperature of the test specimens.  By this means, with or 
without the use of edge insulation, measurement errors due to heat gains to or losses 
from the edge of the guard plate and the specimens can be kept acceptably small.  In 
some apparatus, a secondary guard plate, outside of the primary guard plate, is used. 
 Figure 1 shows the overall layout of a typical high-temperature guarded hot 
plate apparatus.  The (usually cylindrical but sometimes square) “stack” is 
symmetrical about the mid-plane of the apparatus.  Each “cold plate,” which in fact 
may be quite hot but is cold as far as the specimen is concerned, is provided with an 
electrical heater and is controlled to the desired cold-side temperature.  The 
auxiliary insulation between each cold plate and the corresponding coolant plate 
keeps the heat load to the cold plate heater to a reasonable value.  Each coolant 
plate is cooled by a circulating liquid. 
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Figure 1  A typical high-temperature guarded hot plate apparatus (cross-section view). 

 
 The edge guard, which is significantly larger in diameter than the outer diameter 
of the stack, is usually controlled at a uniform temperature close to the mean 
temperature of the specimens.  The space between the stack and the edge guard (or 
guards, if there are separate guards for the two specimens) is filled with insulation.  
 The edge guard design shown in Figure 1 can lead to very serious errors, e.g., 
greater than 10 percent in extreme cases.  For tests at a high mean temperature, the 
edges of the guard plate, the two specimens, and the two cold plates will be much 
hotter than the coolant plates, with the resultant effect that there can be very large 
longitudinal heat flows in the edge insulation between the stack and the edge guard.  
The longitudinal heat flow near the stack in this annulus must be provided by radial 
heat losses from the edges of the cold plates, the edges of the specimens, and even, 
for thin specimens, from the edge of the guard plate.  Thus there can be large net 
heat losses from the edges of the specimen(s), even when the edge guard is at the 
mean temperature of the specimen.  The problem arises when these edge heat losses 
become large enough to affect heat flow from the meter plate into the specimens. 
 
PRIOR ANALYSES OF EDGE HEAT LOSS  
 
 Several investigators have carried out analyses to compute the estimated error in 
the measured thermal conductivity or thermal resistance due to the effects of edge 
heat losses or gains in a guarded hot plate apparatus (GHP).  The first such analysis 
appears to have been that by Van Dusen of NBS [8] for a square apparatus.  He 
assumed the hot plate and the cold plates to be isothermal and the temperature of 
the outside surfaces of the edge insulation to be the same as the cold plate 
temperature.  The latest version of ASTM C 177 [1] lists references to other 
analyses of errors due to edge heat loss in guarded hot plate apparatus.  In the 
following section, one particular analysis is summarized and approximate universal 
curves are generated that permit easy computation of the estimated errors, due to 
edge heat loss or gain, in measurements made using a GHP, under testing 
conditions wherein that analysis is appropriate, which certainly may not be the case 
for high-temperature GHPs similar to the one depicted in Figure 1. 
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Analysis Based upon Neumann (Convective) Boundary Condition 
 
 In 1979, Bode published solutions for the error due to edge heat losses for both 
square and circular guarded hot plates, with an effective heat transfer coefficient 
governing the edge heat loss to an arbitrary ambient temperature [9-10].  Peavy and 
Rennex of NBS had independently developed solutions that were almost identical to 
those of Bode, but generalized to the case of anisotropic specimens – their work 
was not published until 1986 [11].  In their paper, they give extensive figures 
showing the fractional errors due to edge-heat-loss to be expected under various 
circumstances.  Following Peavy and Rennex, the error due to edge heat loss or gain 
in a guarded hot plate apparatus, of either circular or square geometry, is given by 

 2( ), where m a

h c

T TA BX X
T T

ε ,−
= + =

−
 (1) 

in which Th is the hot plate temperature, Tc is the cold plate temperature, the mean 
temperature is Tm = (Th + Tc)/2, and Ta is the ambient temperature with which heat 
is exchanged at the edge of the specimen.  For circular geometry, the only case 
considered in this paper, the coefficients A and B are given by 
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where for A the summation is only over even values of n and for B it is only over 
odd values of n.  The terms in the summations are given by 
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where I0 and I1 are modified Bessel functions of the first kind of order 0 and 1, 
respectively; b is the radius of the meter plate to the center of the guard gap; d is the 
outer radius of the guard ring; is the thickness of the specimen under 
consideration; h is the heat transfer coefficient controlling the heat loss or gain at 
the outer circumference of the specimen; the anisotropy ratio, 

l

γ , for the test 
specimen is defined by γ2 = λr/λz, the ratio of the thermal conductivity of the 
specimen in the radial direction to the thermal conductivity in the longitudinal 
direction; and λ = (λzλr)1/2 is the geometrical mean of the thermal conductivities in 
the two directions.  For the range of parameters that provide good guarding, Eqs. (2) 
are quite convergent and only a few terms are required to obtain accurate results.  
Peavy and Rennex [11] provide numerous plots of A and B as functions of geometry 
and of the ratio of heat transfer coefficient, h, to specimen thermal conductivity. 
 Returning to Eq. (1), it is important to note that the error due to edge heat loss 
depends strongly on the ratio of (1) the difference between the effective ambient 
temperature (or edge guard temperature) and the mean specimen temperature to (2) 
the temperature difference across the specimen.  A consequence of this dependence 
is that it is more difficult to control edge heat loss effects at high specimen 
temperatures than it is near room temperature since it is harder to control and 
measure the effective ambient or edge-guard temperature at high temperatures.  
Accordingly, it is good practice to use larger temperature differences across the 
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specimen at high temperatures than would be used near room temperature.  Also, a 
good way to determine experimentally the effects of edge heat loss is to run tests at 
the same mean specimen temperature but with different temperature differences 
across the specimen. 
 As previously developed by the first author of this paper, and documented in 
ASTM C 1043 [12], for relatively small values of A and B, approximate, but good, 
universal curves can be obtained by writing 

 / /and ,
1 (1 / 4 )( / 2 ) 1 (1 / 2 )( / )

h hA A B B
d h d h
λ λ

γ π πλ γ π πλ
′ ′= • =

+ + + +
l l

l l l l
•  (4) 

where A and B are computed from Eqs. (2) and A′ and B′ are then computed using 
Eqs. (4).  ASTM C 1043 presents curves of A′ and B′ as functions of γℓ/d, with d/b 
as a parameter.  A′ and B′ are, aside from a very small dependence on hℓ/λ, 
functions of γℓ/d and d/b.  For a given guarded hot plate, with fixed b and d, the 
values of A′ and B′ are, again neglecting the weak dependence on hℓ/λ, functions 
only of γℓ.  The quantities multiplying A′ and B′ in Eqs. (4) are, aside from a small 
dependence on γℓ/d, functions only of hℓ/λ and thus do not depend on the guard 
radius and meter section radius of the guarded hot plate.  For fixed hot- and cold-
side temperatures, the quantity X, in Eqs. (1) is a function of Ta, the ambient 
temperature with which the specimen edges exchange heat.  Thus, for a given 
guarded hot plate, with fixed b and d, the error due to edge heat losses or gains is 
dependent upon γℓ, hℓ/λ, and Ta, and the dependencies upon these three quantities 
are easily separable.  If one is designing a new guarded hot plate, the values of b 
and d can also be varied in order to obtain acceptably small edge-effect errors for 
the specimen thermal conductivities and thicknesses of interest.  For example, for 
the new GHP apparatus being fabricated at NIST, the radius of the meter plate is 
100 mm, the radius of the guard plate is 250 mm, and there is 10 mm of insulation 
between the outer radius of the specimen and the inner radius of the edge guard.  
Assuming that the edge insulation is isotropic and has the same thermal 
conductivity as the specimen, the dimensions just given result in A= 0.000050 and 
B = 0.0122 for a specimen that is 100 mm thick, the largest thickness that the 
apparatus can accommodate.  In order for the error predicted by Eq. (1) to be less 
than 0.2 percent, it is necessary for X to be less than 0.16.  Thus if the temperature 
difference would be 20 K, it would be necessary for the edge guard temperature to 
be within 1.6 K of the mean temperature of the specimen.  In designing the 
apparatus, assumptions were made as to how well the edge guard temperature could 
be measured and controlled and then the meter plate radius and the thickness of the 
edge insulation were computed. 
 
ANALYSIS OF “THERMAL SHUNTING” IN EDGE INSULATION 
 
 In the present section, examination is made of heat flows in the annular space, 
which is filled with insulation, between the “stack” (hot plate, specimens, cold 
plates, auxiliary insulation, and coolant plates) and the coaxial edge guard.  For 
purposes of analysis, it is assumed that the edge guard extends to the outer surfaces 
of the coolant plates.  The edge-insulation region in which heat flow is to be 
analyzed is 0 ≤ z ≤ w and a ≤ r ≤ b, as shown in Figure 2.  It is assumed that the
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temperature distribution in the lower half 
of the edge insulation is the same as that 
in the upper half so that z = 0 is a plane 
of symmetry.  Because of the large range 
of temperatures from that of the coolant 
plates to that of the hot plate, the 
analysis allows the thermal conductivity, 

( )e eλ λ θ= , of the edge insulation to be a 
function of temperature so that the 
temperature distribution in the edge 
insulation must satisfy the partial 
differential equation, 

Figure 2.  Geometry for shunting analysis.  

 e∇• ∇λ θ( ) = 0 .  (5) 

In order to linearize this equation, a Kirchhoff transformation [13-15] is used.  A 
new potential, or pseudo-temperature, φ , is defined as 

 
0

0

1( ) ( ) d ,e
e

θ
φ θ λ θ θ

λ
′ ′= ∫  (6) 

where 0 (0).e eλ λ=   Applying the Laplacian operator to Eq. (6), comparing the 
results to Eq. (5), and assuming angular symmetry, it is seen that 2 0∇ =φ , so that 
the partial differential equation has been made linear. 
 The boundary conditions for the edge-insulation region are taken as 

0 z w≤ ≤  r a=  ( )g zφ =  (7a)

0 z w≤ ≤  r b=  ( )h zφ =  (7b)

0z =  a r b≤ ≤  0
z
φ∂
=

∂
 (7c)

z w=  a r b≤ ≤  
ln( / )( ) [ ( ) ( )]
ln( / )

r ag w h w g w
b a

= + −φ  (7d)

where g(z) is the longitudinal temperature distribution along the outside of the 
stack, and h(z) is the longitudinal temperature distribution along the inside of the 
edge guard.  The adiabatic boundary condition, Eq. (7c), at the mid-plane, z = 0, 
follows from symmetry.  The boundary condition, Eq. (7d), at the outside edge of 
the coolant plate corresponds to radial heat flow in a metal enclosure or shell that 
has a high thermal conductivity.  The boundary condition at that axial position, z = 
w, is not very important since the details of heat flow there would have little effect 
on the heat flow into or out of the edge of the specimen.  In many cases, the 
temperature along the plane z w=  will be constant at a value near to room 
temperature so the assumption of temperature being a logarithmic function of the 
radius does not matter. 
 The analytical solution that satisfies the above boundary conditions is 
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where 0 0 0 0 0F ( ; ) I ( ) K ( ) K ( ) I ( )x y x y x y≡ − , (9) 

with  being the modified Bessel function of the second kind of order i.  In the 
summation in Eq. (8), 

Ki

andn nA B  are the coefficients of the cosine series describing 
the longitudinal temperatures distributions at r = a and r = b, respectively, and are 
given by 
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At r = a and r = b, the terms in the summation in Eq. (8) reduce to simply 
cos( / 2 )nA n z wπ  and cos( / 2 )nB n z wπ , respectively. 

 The heat flux into the edge insulation at r = a is 
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where 1 1 0 1 0F ( ; ) I ( ) K ( ) K ( ) I ( ).x y x y x y≡ +  (14) 

Two specific cases will be considered for the longitudinal temperature distribution 
along the edge guard.  If (Case 1) the longitudinal temperature distribution matches 
the one along the stack, then 0and 0.n nB A C= =   If (Case 2) the edge guard is 
isothermal so that  is a constant, then ( ) ( )h z h w= 0.nB =  
 The longitudinal temperature distribution along the outside of the stack, r = a, is 
taken to be the same as if there were no heat flow across that boundary.  Then the 
heat flow, under that assumption, between the stack and the edge insulation is used 
to estimate the heat flows in the specimen and thus the error due to edge heat flows.  
While this analysis is approximate, it provides reliable estimation as to whether or 
not significant errors exist.  The hot plate, cold plate, and coolant plate are each 
assumed to have a sufficiently high thermal conductivity that they can be 
considered to be isothermal at temperatures 1 2 3, , and ,θ θ θ respectively.  Assuming 
that the specimen and the auxiliary insulation have thermal conductivities that vary 
with temperature similarly to that of the edge insulation, it is better to assume that 
φ , rather than θ, varies linearly across the specimen and across the auxiliary 
insulation, so that the potential, or pseudo-temperature, distribution along the stack 
is described by 
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where 1 2 3, , andφ φ φ  correspond to 1 2 3, , and ,θ θ θ  respectively, and are obtained from 
those temperatures via Eq. (6).  Substituting Eqs. (15) into the first of Eqs. (10) and 
integrating, 
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The above analysis should provide a reasonably accurate evaluation of the heat flow 
into the edge insulation provided that such heat flow does not result in a large 
change in the longitudinal temperature distribution along the stack.  As indicated in 
the text following Eq. (14), two specific cases are considered for the longitudinal 
temperature along the edge guard. 
 The following analysis was carried out to provide an estimate of the error in the 
measured thermal conductivity of the specimen due to the heat flow from the edge 
of the specimen into the edge insulation.  It is assumed that the specimen and the 
edge insulation have thermal conductivities with the same temperature dependence.  
Assuming the hot plate to be isothermal at 1φ φ=  and the cold plate to be isothermal 
at 2 ,φ φ= the potential distribution in the specimen can be described by 

 0
1 2 1

1 1

I ( / )( ) sin
I ( / )k

k

k r ,x k xD
k k a

π πφ φ φ φ
π π

∞

=

= + − − ∑ ll
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where x = z – s, ℓ = t – s, and the summation vanishes at x = 0 and x = ℓ.  The radial 
heat flux at r = a is 

 0
1

sin ,s kr a
k

k xq D πλ
∞

=
=

= − ∑
l

 (20) 

where 0sλ  is the thermal conductivity of the specimen at 0.φ =   Equating Eqs. (11) 
and (20) and invoking orthogonality, 
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the terms where the argument of the trigonometric functions is / 2k n w− l  become 
indeterminate for very small values of that argument, but this problem is easily 
handled by expanding the terms in series form, thus removing the indeterminacy.  
The axial heat flux at the surface of the hot plate is, by differentiation of Eq. (19), 
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Taking the radius of the meter plate as c, the power input from the meter plate into 
the specimen is 
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where the equation has been written so that the second term within the square 
brackets represents the fractional error in the measured thermal conductivity due to 
edge heat loss from the specimen. 
 Calculations based on the above analysis were carried out for a hypothetical 
apparatus with the stack being 500 mm in diameter (the size of the new apparatus 
being built at NIST) and the inside diameter of the edge guard being 600 mm, so 
that the annulus between the stack and the edge guard was 50 mm wide.  
Dimensions were purposely chosen so as to demonstrate a large effect due to 
shunting heat flow in the edge insulation.  The thickness of the hot plate was taken 
as 16 mm, the thickness of the specimen was 100 mm (the largest thickness for 
which the new NIST GHP was designed) and the thicknesses of the cold plate, the 
auxiliary insulation, and the coolant plate were each taken as 10 mm.  The test 
specimens, the auxiliary insulation, and the edge insulation filling the annulus were 
all assumed to have a thermal conductivity that varies linearly with temperature 
according to the equation , which is 
fairly typical of a fiberglass board in air.  For this computation, the mean 
temperature of the test specimens, as well as the temperature of the isothermal edge 
guard, was taken as 900 K, the temperature difference across the test specimens was 
10 K, and the coolant plate was at 300 K.  The upper left-hand drawing in Figure 3 
shows the temperature distribution along the stack (Eq. (15)) while the lower left-
hand drawing shows the corresponding heat flux (Eq. (11)) from the stack into the 
edge insulation for the test conditions described above.  The right-hand drawings in 
Figure 2 are expanded versions of the left-hand drawings, so as better to show the 
temperature distribution and heat flux for the hot plate and, especially, for the 

0.030[1 0.0035( 273.2)] W/(m K)Tλ = + − ⋅
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Figure 3.  Temperature distribution along the edge of the stack and the heat flux from the 
stack into the edge insulation for an isothermal edge guard.  The left and right drawings 

show the same curves but with different scales for the vertical axes. 
 
specimen.  Looking at the upper drawings of Figure 3, the assumed temperature 
distribution is seen to be uniform at 905 K through the meter plate, to drop across 
the specimen, to be uniform at 895 K in the cold plate, to drop very sharply across 
the auxiliary insulation, and to be uniform at 300 K in the coolant plate.  Looking 
now at the lower drawings of Figure 3, it is seen that from the guard plate and from 
the hotter half of the test specimen there is heat flow out of the stack into the edge 
insulation.  Some of this heat flow is radial heat loss to the edge guard.  However, 
as z approaches the interface between the hot plate and the specimen, there is an 
increase in the heat flux because heat must flow into the edge insulation in order to 
sustain there a longitudinal temperature gradient corresponding to that in the 
specimen.  In effect, there is a shunting heat flow in the edge insulation adjacent to 
the stack and that heat must be provided by, or given up to, the stack.  As z 
approaches the interface with the auxiliary insulation, there is a very large heat flow 
into the edge insulation in order to support the steep temperature gradient next to 
the auxiliary insulation.  Heat flows from the edge guard into the stack as z 
approaches the location of the isothermal coolant plate.  In order better to compare 
the results from the shunting analysis with the results from the more traditional 
convective heat loss analysis, the computed heat flux distribution, along the 
thickness of the specimen only, from the shunting analysis is shown in Figure 4 
plotted on a logarithmic scale as the solid line labeled “shunting.”  The left edge of 
the graph corresponds to the hot side of the specimen and the right edge to the cold 
side.  The two lower dashed curves were computed using the analysis for 
convective heat exchange, with radial heat flow from the edge of the specimen to
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Figure 4.  Heat flux from the stack into the edge insulation as predicted by the 

Neumann (convective) analysis and by the shunting analysis for the same dimensions 
as shown on Figure 3.  The mid-plane of the specimen is at 50 mm. 

 
the isothermal edge guard.  The left dashed curve represents a heat loss from the 
specimen to the edge guard that decreases to zero at a location near the mid-plane of 
the specimen.  The right dashed curve, shown as the absolute value of the heat flux 
out of the specimen, is actually the predicted heat gain into the specimen from the 
edge guard.  The contrast between the upper curve and the lower curves is 
startling, to say the least!  Near the mid-plane of the specimen, the convective 
analysis indicates essentially no radial heat flow, while at that location, the shunting 
analysis indicates a heat flux corresponding to a loss of 17 W/m2.  At the cold side 
of the specimen, the convective analysis predicts a heat gain of less than 4 W/m2 

while the shunting analysis predicts a heat loss of 700 W/m2.  The shunting analysis 
predicts a heat flux that is almost two hundred times larger, and of the opposite 
sign, than the flux predicted by the convective analysis. 
 A series of computations was made for the same conditions as those described 
in the previous two paragraphs, but with the width of the annulus containing the 
edge insulation being varied from 0.5 mm to 100 mm.  The computations were done 
both for an isothermal edge guard at the mean specimen temperature and for an 
edge guard with the same longitudinal temperature distribution as that along the 
stack.  The results are shown in Figure 5, where the ordinate corresponds to the 
predicted error, computed from Eq. (24), in percent, in the measured thermal 
conductivity of the specimen, and the abscissa to the thickness of the annulus that 
contains the edge insulation.  As shown in the left-hand drawing in Figure 5, which 
covers edge insulation thicknesses from 5 mm to 100 mm, the errors due to 
shunting heat flow in the edge insulation become quite significant when the annulus 
is relatively wide.  For the case of a 50 mm annulus, corresponding to the curves 
shown in figures 3 and 4, the predicted error is 4.3 % for an isothermal edge guard 
and 8.1 % for matched guarding.  The reason that an extended isothermal edge 
guard works better than a matched edge guard is that the isothermal guard provides 
more of the heat needed to establish the longitudinal temperature distribution in the 
edge insulation.  The right-hand drawing in Figure 5 shows the edge-heat-loss error 
for the two types of guarding when the annulus varies from 0.5 mm to 20 mm.  For
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matched guarding, the error is less than 0.1 % for an annulus thickness of 11 mm or 
less.  For an isothermal edge guard, at the mean specimen temperature, the error 
decreases with decreasing annulus thickness until the annulus becomes less than 7 
mm, and then the error increases with a further decrease in annulus thickness, 
becoming nearly 1 % for a thickness of 0.5 mm.  The error for small annulus 
thicknesses can be reduced by making the isothermal edge guard temperature 
slightly higher than the mean temperature of the specimen.  If the edge guard 
temperature is set at 900.03 K, rather than 900.00 K, the computed edge loss error is 
less than 0.1 % for annulus thicknesses from 13 mm down to 1 mm.  However, it 
would be exceedingly difficult to make the edge guard isothermal to within 
hundredths of a kelvin and to match the mean edge guard temperature to the mean 
specimen temperature to within such tight tolerances.  Therefore, it would be 
prudent, for the vales of the parameters for these computations, to select an annulus 
thickness somewhere near 10 mm so that the edge loss error will not be so sensitive 
to the edge guard mean temperature. 
 The conditions selected for the computations shown in Figures 4 and 5 were 
intentionally quite extreme, with very thick specimens and rather thin cold plates 
and auxiliary insulation, a high mean temperature, and a rather small temperature 
drop across the specimens.  In order to obtain more realistic estimates of the errors 
that might be encountered due to edge heat loss, computations were made for the 
same stack diameter, hot plate thickness, meter plate diameter, and insulation 
thermal conductivity  as described  above, but  increasing the  thickness of the  cold 
plates and the auxiliary insulation to 25 mm.  The inner diameter of the edge guard 
was 600 mm, corresponding to an edge-insulation thickness of 50 mm, as was the 
case for the computed values plotted in Figures 4 and 5.  Computation of the edge 
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temperature differences across the specimens, for the conditions described in the text. 

 
loss error (see Eq. (24)) was made for temperature differences across the specimens 
of 5 K, 10 K, 20 K, and 40 K, at mean temperatures ranging from below 90 K to
above 900 K, with the edge guard at that mean specimen temperature, and with the 
coolant plates held at 300 K.  The results, shown in Figure 6, indicate that 
significant edge loss errors would be expected when the mean temperature of the 
specimens differs considerably from that of the cooling plate, particularly for 
smaller temperature differences across the specimens.  Additional computational 
results and a computer program based on the above analysis are available [16-17]. 
 
FINITE ELEMENT ANALYSES 
 
 As described elsewhere [18-20], the edge-guard configuration for the new NIST 
GHP is more complex than the simple model assumed for the analysis in the present 
paper.  Finite element analyses were carried out for the geometry and material 
properties documented in Figure 13 and Table 4 of the paper by Healy and Flynn 
[19].  These analyses were carried out for two cases having an isothermal edge 
guard at the mean specimen temperature, one with a 50 mm wide annulus between 
the stack and the edge guard and one with a 10 mm annulus.  Only the case with a 
10 mm annulus was discussed in the previous paper [19].  The temperature contours 
for both cases are shown here in Figure 7.  With 50 mm of edge insulation there is 
significant shunting heat flow from the specimen into the edge insulation, resulting 
in a serious edge-loss error.  By reducing the inside diameter of the edge guard from 
600 mm to 520 mm, it is seen that there is little shunting heat flow in the edge 
insulation.  Although it is not evident in the figure, when the annulus is reduced to 
10 mm, the computed shunting error is reduced to less than 0.2 % for the case with 
a 40 K temperature difference across the specimen. 
 
CONCLUSIONS 
 Traditional analyses based upon a Neumann (convective) boundary condition 
are suitable for estimating the effects of edge heat flow for guarded hot plates at 
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Figure 7.  Temperature contours within the specimen and edge insulation for an isothermal edge 

guard with, on the left, a 50 mm wide annulus and, on the right, a 10 mm annulus. 
 
moderate temperatures if there are no nearby heat sinks or sources at a temperature 
quite different from that of the test specimens.  However, such analyses may 
drastically underestimate measurement errors due to edge heat flows in high-
temperature guarded hot plate apparatus. 
 Analytical solutions have been presented that provide good estimates of the 
errors in measured thermal conductivity values due to shunting heat flows in the 
edge insulation surrounding a high-temperature guarded hot plate apparatus.  The 
results of computations based on these analyses (and confirmed by finite element 
analysis) have been plotted showing that if the edge insulation is too thick, there 
may be serious measurement errors due to the effects of shunting heat flow.  On the 
other hand, if the edge insulation is too thin, it may not be practical to match the 
edge guard temperature closely enough to the desired value to avoid excessive heat 
exchange between the perimeter of the specimens and the edge guard. 
 In the design of new guarded hot plate apparatus, it is important to analyze the 
potential effects of extraneous heat flows in the edge insulation and then to design 
the apparatus so as to minimize measurement errors due to such heat flows.  For 
existing apparatus, the presence of significant shunting heat flows can be confirmed 
by running tests on specimens of the largest thickness of interest at the same mean 
temperature, but with very different temperature drops across the specimens. 
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