NISTIR 6450

The Effect of Lubricant Concentration,
Miscibility, and Viscosity on R134a Pool
Boiling

E
Mark A. Kedzierski

NST

United States Department of Commerce
Technology Administration

National Institute of Standards and Technology
Building and Fire Research Laboratory
Gaithersburg, MD 20899



NISTIR 6450

The Effect of Lubricant Concentration,
Miscibility, and Viscosity on R134a Pool
Boiling

M. A. Kedzierski

January 2000

Building and Fire Research Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899

U.S. Department of Commerce

William M. Daley, Secretary

Technology Administration

Dr. Cheryl L. Shavers, Under Secretary of Commerce for Technology
National Institute of Standards and Technology

Raymond G. Kammer, Director



TABLE OF CONTENTS

ABSTRACT ...ttt bttt e e e et ee e sasasns 1
INTRODUCGTION ...ttt ettt oo eee et ese e e e seseseeseseneeson s 2
APPARATUS . 4
TEST SURFACE. ... e 5
MEASUREMENTS AND UNCERTAINTIES ..ottt 5
POOL-BOILING MEASUREMENTS . .....ouiiititiiie e e 7
ENHANCEMENT TRENDS ...ttt 9
MECHANISTIC INTERPRETATION. . ...ttt 12
VISUAL OBSERVATIONS. ... .., 14
CONCLUSIONS. ..ottt ettt ettt ese e s eeeseseeeesesssensressssesns 14
ACKNOWLEDGEMENTS .......coiiiiiiiiet ettt s e e s e e es e 15
NOMENCLATURE. ... ..ottt 16
REFERENCES. .. ..o, 17
APPENDIX A



The Effect of Lubricant Concentration, Miscibility,
and Viscosity on R134a Pool Boiling

M. A. Kedzierski
National Institute of Standards and Technology
Bldg. 226, Rm B114
Gaithersburg, MD 20899
Phone: (301) 975-5282
Fax: (301) 975-4032

ABSTRACT

This paper presents pool boiling heat transfer data for twelve different R134a/lubricant
mixtures and pure R134a on a Turbo-BII"-HP' surface. The mixtures were designed to
examine the effects of lubricant mass fraction, viscosity, and miscibility on the heat
transfer performance of R134a. The magnitude of the effect of each parameter on the
heat transfer was quantified with a regression analysis. The mechanistic cause of each
effect was given based on new theoretical interpretation and/or one from the literature.
The model illustrates that large improvements over pure R134a heat transfer can be
obtained for R134a/lubricant mixtures with small lubricant mass fraction, high lubricant
viscosity, and a large critical solution temperature (CST). The ratio of the heat flux of the
R134a/lubricant mixture to that of the pure R134a for fixed wall superheat was given as a
function of pure R134a heat flux for all twelve mixtures. The lubricant that had the
largest CST with R134a exhibited the greatest heat transfer: 100 % + 20 % greater than
that of pure R134a. By contrast, the heat transfer of the mixture with the lubricant that
had the smallest viscosity and the smallest CST with R134a was 45 % = 9 % of that of
pure R134a. High-speed films of the pure and mixture pool boiling were taken to
observe the effect of the lubricant on the nucleate boiling.

Keywords: alternative refrigerants, boiling, concentration, enhanced heat transfer,
miscibility, pool boiling, R134a, refrigerant/lubricant mixtures, surfactant, viscosity,
visualization

! Certain trade names and company products are mentioned in the text or identified in an illustration to
adequately specify the experimental procedure and equipment used. In no case does such an identification
imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it
imply that the products are necessarily the best available for the purpose.



INTRODUCTION

The ability to predict the effect of lubricant on the pool boiling heat transfer of
refrigerants based on the properties of the lubricant has been elusive for some time.
Modeling of refrigerant/lubricant mixture pool boiling has two main obstacles. First, it
must be determined what lubricant properties are important and how they influence heat
transfer. Second, a mechanistic model that physically represents the way a lubricant
interacts with a refrigerant in the determination of heat transfer must be developed. Most
of the work in refrigerant/lubricant mixture pool boiling has been done with these goals
in mind.

For example, Sauer et al. (1978) believed that Iubricant viscosity and surface-tension
effects were important in determining the magnitude of the nucleate boiling of
refrigerants, but they could not correlate these effects. Hahne and Noworyta (1984) also
presumed that the lubricant viscosity should have an effect on pool boiling of
refrigerant/lubricant mixtures, but they were unable to include it in their heat transfer
correlation.

Another important parameter for pool boiling is the lubricant mass fraction. For instance,
the effect of lubricant on the pool boiling performance of a Turbo-BII™ tube for R114,
R124, and R123 has been investigated by Memory et al. (1993), Memory et al. (1995),
and Webb and McQuade (1993), respectively. Although improvements in heat transfer
with the addition of lubricant were measured by Memory et al. (1993 and 1995) for
finned tubes, only degradations in heat transfer were measured for the
refrigerant/lubricant mixtures and the Turbo-BII'™ tube. In both of the Memory et al.
(1993 and 1995) studies, they also found that for lubricant mass fractions greater than 6
%, increases in lubricant concentration led to decreases in heat transfer. Bell et al. (1987)
found that this decrease was greater than would be expected based on mole fraction
weighting.

Although no studies investigating the effect of lubricant miscibility on heat transfer were
found, several works correlate the lubricant effect to the properties of the
refrigerant/lubricant mixture. For example, Jabardo and da Silva (1991) developed a
model for the pool boiling of R11, R113 and R114 lubricant mixtures by correlating the
Rohsenow (1951) surface/liquid parameter to the bubble Stanton number and to the Jakob
number for each refrigerant/lubricant mixture. Another study by Chongrungreong and
Sauer (1980) developed a correlation for the pool boiling heat transfer of
refrigerant/lubricant mixtures based on the refrigerant volume fraction and the mixture
liquid Prandtl number.

Many researchers hypothesize that foaming is the main governing heat transfer
mechanism for refrigerant/lubricant mixtures. Stephan (1963) was one of the first
researchers to connect foaming and refrigerant/lubricant evaporation and to note that an
oil-rich layer exists near the tube wall. Memory et al. (1993 and 1995) also attributed the
enhancement of refrigerant pool boiling heat transfer with lubricants to lubricant
foaming. Other models, such as those by Jensen and Jackman (1984) and Mitrovic (1998),
focus on the lubricant-rich layer that exists around the liquid-vapor interface of the bubble.



Yet, Burkhardt and Hahne (1979) believed that the influence of lubricant on pool boiling
cannot be completely explained by liquid-vapor surface tension effects or by foaming.

The mechanistic model that is endorsed in this manuscript was developed in a series of
studies: Kedzierski (1993) and Kedzierski and Kaul (1993), Kedzierski (1999a), and
Kedzierski, (1999b). In these studies, it was speculated that the pool boiling
enhancement/degradation mechanism associated with the addition of a lubricant to
refrigerant is due to an accumulation of lubricant at the boiling surface. The enhancement
mechanism of lubricants is analogous to the action of surfactants in that both
enhancements arise from the creation of an excess layer. Kedzierski (1999a) measured a
significant enhancement of R123 pool boiling with the addition of 1 % and 2 % hexane
by mass to R123. He used the Gibbs adsorption equation (Rosen, 1978) and the Young
and Dupre equation (Adamson, 1967) to speculate that the boiling heat transfer
enhancement of R123 by the addition of hexane was caused by an accumulation of
hydrocarbon at the boiling surface. In essence, the greater concentration of hydrocarbon
or “excess layer” at the heat transfer surface caused a reduction of the surface energy
between the solid surface and the liquid. The existence of an excess layer at the liquid-
solid interface is analogous to the existence of a surfactant-induced excess layer at a
liquid-vapor interface. Consequently, hydrocarbons and lubricants are not typical
surfactants because they accumulate at the solid-liquid interface rather than at the liquid-
vapor interface. However, the reduction in the liquid-solid surface energy results in a
similar reduction in bubble departure diameter that occurs with a conventional surfactant.
As a consequence of the bubble size reduction, the active site density increases. A heat
transfer enhancement exists when a favorable balance between an increase in site density
and a reduction in bubble size occurs.

To build upon the above mechanistic model, the influence of lubricant properties on the pool
boiling heat transfer must be determined. Toward this end, the boiling behavior of R134a
on a Turbo-BII"-HP surface with four different polyolester lubricants (POEs) of three
difference mass fractions under 4 % was investigated. Table 1 gives the viscosity of the
lubricants at 313.15 K: 4.59 um®s, 21.76 pm?s, 25.34 um*/s, and 197.36 pm?s. Table 1
also gives the three different critical solution temperatures (CSTs) of the R134a/lubricant
mixtures that were investigated: 203 K, 237 K and 270 K. The viscosities and CSTs of the
lubricants cover the application range for refrigeration and air-conditioning equipment. Low
viscosity lubricants are typically used with R134a home appliances. Screw compressors
require high viscosity lubricants. Most refrigeration and air-conditioning applications
require lubricants that are miscible with the refrigerant. But some applications permit the
lubricant to be partially miscible with R134a.

Typically, the lubricant viscosity and its miscibility with the refrigerant are interesting in
terms of how they influence the return of the lubricant to the compressor. This study
shows that the very properties that favor oil return promote poor pool boiling heat
transfer. Namely, a lubricant with a low viscosity and a complete miscibility with the
refrigerant may promote lubricant return (Bateman, 1997), but these characteristics are
detrimental to heat transfer. Because of lubricant return concerns, Didion (1999) states
that a "lubricant crisis" could exist if the new lubricants are less soluble in the new



refrigerants. However, the heat transfer benefit that can be obtained with the high
viscosity and partially miscible lubricants may represent an opportunity rather than a
crisis where lubricant return is not a problem or where it can be achieved by other means.
In this way, manufacturers may be able to choose a lubricant that satisfies the lubricating
requirements of the compressor and also enhances the heat transfer of the evaporator.

APPARATUS

Figure 1 shows a schematic of the apparatus that was used to measure the pool boiling
data of this study. Specifically, the apparatus was used to measure the liquid saturation
temperature (75), the average pool-boiling heat flux (g"), and the wall temperature (7,) of
the test surface at the root of the fin. The three principal components of the apparatus
were test chamber, condenser, and reservoir. The internal dimensions of the test chamber
were 25.4 mm x 257 mm X 1.54 m. The test chamber was charged with approximately

7 kg of R134a from the reservoir, giving a liquid height of approximately 80 mm above
the test surface. As shown in Fig. 1, the test section was visible through two opposing,
flat 150 mm x 200 mm quartz windows. A high-speed camera was used to film the boiling
at 1000, 3000, and 6000 frames per second (fps). Two 500 W forward lights illuminated the
specimens during filming. Films were taken at selected heat fluxes immediately after the
measurement of the heat-transfer coefficient to ensure that the heat from the lights did not
influence the measurement. The bottom of the test surface was heated with high velocity
(2.5 m/s) water flow. The vapor produced by liquid boiling on the test surface was
condensed by the brine-cooled, shell-and-tube condenser and returned as liquid to the
pool by gravity.

To reduce the errors associated with the liquid saturation temperature measurement, the
saturation temperature of the liquid was measured with a 450 mm long 1.6 mm diameter
stainless steel sheathed thermocouple. The small diameter provided for a relatively rapid
response time. To minimize conduction errors, nearly the entire length of the
thermocouple was in contact with either the test refrigerant vapor or liquid. The tip of the
thermocouple was placed approximately 2 mm above and 150 mm to one side of the top
of the test surface. This placement ensured that approximately 80 mm of the probe length
was in relatively well-mixed liquid near the two-phase fluid above the test surface. To
provide for a saturated liquid pool state, the mass of liquid in the pool was large
compared to the mass of liquid condensed. At the highest heat flux, nearly one hour was
required to evaporate and condense the entire test chamber charge. The lack of a
temperature difference between the probe and the well-insulated, low emissivity, 38 mm

aluminum test chamber walls essentially eliminated temperature errors due to radiation to
the probe.



TEST SURFACE

Figure 2 shows the oxygen-free high-conductivity (OFHC) copper Turbo-BII'™-HP test
plate and thermocouple coordinate system used in this study. Commercially, the Turbo-
BII™-HP surface is formed by a rolling process on a smooth copper tube. The test plate
was machined out of a single piece of OFHC copper by electric discharge machining
(EDM). The Turbo-BII"™-HP surface in this study was flattened from a 25 mm OD
annealed copper tube and soldered onto the top of the test plate. Figure 3 shows a
photograph of the fin surface. The Turbo-BII M_HP surface has approximately 2250 fins
per meter (fpm) oriented along the short axis of the plate. A canopy of copper diamonds
merge to create 0.1 mm wide (approximately) slit openings to the root of the fin ranging
from approximately 0.1 mm to 0.3 mm in length. The overall height and root-width of a fin
are 0.8 mm and 0.2 mm, respectively.

MEASUREMENTS AND UNCERTAINTIES

The standard uncertainty (1) is the positive square root of the estimated variance u-,z. The
individual standard uncertainties are combined to obtain the combined standard
uncertainty (1) by the law of propagation of uncertainty. The u. becomes an expanded
uncertainty (U) when it is multiplied by a coverage factor to correspond to a particular
confidence interval. All of the measurement uncertainties reported in this document are
expanded uncertainties (U) for a 95 % confidence interval except where specified
otherwise.

The thermocouples were calibrated against a standard in the NIST Temperature Group to a
residual standard deviation of 0.005 K. Considering the fluctuations in the saturation
temperature during the test and the standard uncertainties in the calibration, the i of the
average saturation temperature was no greater than 0.04 K. A thermocouple drift of within
0.1 K was determined by recalibrating the thermocouples a year after the tests were
completed. Consequently, the u. of the temperature measurements was less than 0.1 K.

Figure 2 shows the coordinate system for the 20 wells where individual thermocouples
were force-fitted into the side of the test plate. The wells were 16 mm deep to reduce
conduction errors. Using a method given by Eckert and Goldstein (1976), errors due to
heat conduction along the thermocouple leads were estimated to be well below 0.01 mK.
The origin of the coordinate system was centered on the surface with respect to the y-
direction at the plate surface-solder layer interface. Centering the origin in the y-
direction improved the accuracy of the wall heat flux and temperature calculations by
reducing the number of fitted constants involved in these calculations. The x-coordinate
measures the distance normal to the heat transfer surface. The y-coordinate measures the
distance perpendicular to the x-coordinate. The thermocouples were arranged in four sets
of five aligned in the x-direction. Following a procedure given by Kedzierski and
Worthington (1993), the size and arrangement of the thermocouple wells were designed
to minimize the errors in the wall temperature and temperature gradient measurement.

The heat flux and the wall temperature were obtained by regressing the measured
temperature distribution of the copper plate to the governing two-dimensional conduction
equation (Laplace equation). In other words, rather than using the boundary conditions to



solve for the interior temperatures, the interior temperatures were used to solve for the
boundary conditions following a backward stepwise procedure given in Kedzierski
(1995).

The backward stepwise regression was used to determine the best model or the
significant terms of the solution to the Laplace equation in rectangular coordinates for
each data point. Most infinite series solutions should converge within nine terms. The
backward stepwise method began by regressing the first nine terms of the infinite series
solution to the twenty measured plate temperatures:

T=Cot Cox+ Cry+Cy( 232 )+ 2Coxy+Cox( 2 -35°)

+Co32 -y )+ G622 ey jrac( P y-nd)

The above “full” model was reduced to its significant terms by removing terms with t-
values less than two while maintaining the original restdual standard deviation of the full
model. Terms were removed one at a time. Regression of the 20 temperatures was done
after each term with the smallest t-value was removed. Table 2 provides an overview of
the various two-dimensional conduction models that were used to reduce the measured
temperatures to heat fluxes and wall temperatures. The top three most frequently
occurring models are given with the corresponding percentage of appearance.

Fourier's law and the fitted constants (Cy, Cy, ... C,) were used to calculate the average
heat flux (¢") normal to and evaluated at the heat transfer surface, e.g.:

Il
0
(%)
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. |17 oT
q"= —Jk—dy
L, ox
7 x=0

where k is the average thermal conductivity along the surface of the plate, and L, is the
length of the heat transfer surface as shown in Fig. 2.

The average plate-solder layer interface temperature (7;) was calculated by integrating the
local temperature of the heat surface just below the solder layer that attached the Turbo-
BII™-HP tube to the test surface:



A linear conduction model was used to calculate the heat transfer across the solder layer
and the average wall temperature at the root of the fin (7,,). Appendix A discusses the
procedure that was used to extrapolate the wall temperature of the surface while
accounting for the solder layer and the thickness of the tube at the fin root. Figure 4
shows the expanded uncertainty in the temperature at the root of the fin (Ur,) as a
function of the heat flux for the thirteen test fluids on the Turbo-BIT"-HP test surface.
The correction for the solder layer adds approximately 0.004 K to the expanded
uncertainty of T,,. The expanded uncertainty of T, was calculated from the regression of
the solution to Laplace's equation. The mean uncertainties in the wall temperature for the
five fluids range from approximately 0.03 K at 5 kW/m? to 0.09 K at 160 kW/m?>. The
average random error in the wall temperature difference -- AT, =T, —T, -- for all of the

fluids was within 0.07 K for heat fluxes less than 80 kW/m?>.

Figure 5 shows the relative (percent) uncertainty of the heat flux (U,~) as a function of the
heat flux. Siu et al. (1976) estimated the expanded uncertainty in the thermal
conductivity of OFHC copper to be about 2 % to 3 % by comparing round-robin
experiments. Considering this, the relative expanded uncertainty in g” was greatest at the
lowest heat fluxes, being between 3 % and 10 % for heat fluxes less than 10 KW/m>% In
general, the £, appears to remain between 2.8 % and 4 % for heat fluxes greater than

30 kW/m”.

The uncertainties shown in Figs. 4 and 5 are "within-run uncertainties." These do not
include the uncertainties due to "between-run uncertainties" or differences observed between
tests taken on different days. The "within-run uncertainties" include only the random effects
and uncertainties evident from one particular test. All other uncertainties reported here are
"between-run uncertainties” which include all random effects such as surface past history or
seeding. "Within-run uncertainties” are given only in Figs. 4 and 5.

The test rig and the test surface were thoroughly cleaned after each lubricant mixture was
tested. A checkout test followed, which confirmed that the rig was clean by reproducing the
pure R134a data. If the checkout test did not reproduce the pure R134a results within 3 %,
the rig and surface were cleaned again, and the test was repeated.

POOL-BOILING MEASUREMENTS

The heat flux was varied from approximately 10 kW/m?” to 160 kW/m?>. This test range
includes the operating conditions of R134a chillers equipped with enhanced tubes. All
evaporation tests were taken at a saturation temperature of 277.6 K. The data were
consecutively recorded starting at approximately 160 kW/m? and then descending to

10 kW/m?. The descending heat flux procedure minimized the possibility of any hysteresis
effects on the data, which would have made the data sensitive to the initial operating
conditions. Table 3 presents the measured heat flux and wall superheat for all of the data of
this study. Table 4 provides the number of test days and total number of measured test

points for each fluid. On average, nine days of data or approximately 165 data points were
taken for each fluid.



The mixtures were prepared by first charging approximately 90 % of a known mass of
R134a into an evacuated reservoir (see Fig. 1). The liquid was injected into a drop tube that
nearly touched the bottom of the reservoir. For the near 0.5 % composition, the lubricant
was first injected with a syringe through the drop tube. Next, the drop tube was flushed with
the remaining R134a charge. For the remaining two lubricant compositions, additional
lubricant was injected with the aid of R134a as a propellant. The flushing of R134a
propellant vapor through the drop tube also assisted in sample mixing. The mass fraction
was determined from the masses of the charged components. Three nominal lubricant
mass fractions were investigated: 0.5 %, 1 %, and 2 %. The expanded uncertainty of the
mass fraction measurement for plus or minus three standard deviations was
approximately 0.02 %, e.g., the range of a 0.5 % composition was between 0.48 % and
0.52 %. The DE601, DE590, and DE599 mixtures with R134a have a greater uncertainty of
approximately = 0.06 % for the two highest concentrations. The heat-transfer test chamber
was charged with the test fluid from the reservoir before each day of testing.

Figures 6 through 18 are plots of the measured heat flux (¢"”) versus the measured wall
superheat (Ty, - T5). Symbols represent the data points. The solid line is a best-fit regression
or estimated mean of the data. A single cubic fit was used to regress the wall superheat
against the heat flux for the entire heat flux range. Table 5 gives the constants for the cubic
regression for each test fluid. Figure 19 plots the cubic fits for all of the test fluids on
logarithmic scales. The residual standard deviation of the regressions - representing the
proximity of the data to the mean - are given in Table 6. On average, the residual standard
deviation of the pure R134a and the (99.5/0.5) mixture data about the mean was
approximately 0.1 K. Figure 20 shows that the residual standard deviation of the cubic fit
increases approximately linearly with respect to lubricant mass fraction for each lubricant
except DE589. The dashed lines to either side of the mean represent the lower and upper
95 % simultaneous (multiple-use) confidence intervals for the mean. The expanded
uncertainty of the estimated mean wall superheat for pure R134a and the (99.5/0.5)
mixtures, the (99/1) mixtures and the (98/2) mixtures was on average 0.05 K , 0.1 K, and
0.16 K, respectively. Table 7 provides the average mean wall temperature expanded
uncertainty for all of the fluids.

Because of the random trends of the cubic fit residual plots, the increase in the lack of
reproducibility with increasing concentration shown in Fig. 20 is believed to be caused by a
true physical phenomenon. Apparently for some R134a/lubricant mixtures, larger bulk
lubricant concentrations can lead to greater variability in the data from day-to-day, which
leads to a spreading of the data. A possible explanation for the sensitivity of the data is that
higher bulk concentrations exhibit a greater day-to-day variation in the bubble size and site
density. The variation in the bubble parameters is likely linked directly to the between-run
variation in the concentration of the lubricant excess layer at the surface. This suggests that
the variation in the lubricant concentration at the surface may be greater for higher bulk
concentrations and result in a greater variation in the heat transfer. Considering the absence
of site density and bubble size data for the entire heat flux range and a model to relate these

bubble parameters to the heat flux, a simple cubic fit provided an unbiased means for
comparison of all the data.



Figure 6 presents the boiling curve for pure R134a at 7 = 277.6 K on the Turbo-BII'™-HP
surface. The R134a pool boiling data of Chen and Tuzla (1996) on a 19 mm OD Turbo-
BII™.HP tube at T, = 277.6 K is also given on this figure. The Chen and Tuzla (1996) wall
superheat is anywhere from 0.2 K to 0.5 K greater than the mean wall superheat of the NIST
data for a given heat flux. Differences in heat transfer performance between the flat plate
and the round tube arise primarily from differences in the bulk fluid motion and the
conduction experienced by the two surfaces. Bulk fluid motion, including the sliding bubble
effect (Cornwell and Einarsson, 1989), should cause the tube performance to be greater than
that of the flat plate. Conduction effects should be small for the copper tube and plate. As a
consequence, the proximity of the two data sets suggests that either: (1) there are
compensating effects between, for example, the heat transfer enhancement by bulk fluid
motion and measurement errors for the tube, or (2) the bulk fluid motion has only a minimal
affect on the heat transfer performance of the enhanced tube. Possibly, the fin canopies of
the Turbo-BII'-HP shelter the nucleate boiling from the bulk fluid motion causing the
boiling to be independent of the fluid motion. In any case, it appears that the flat test surface
provides a fair representation of the performance of a tube but with the advantage of
significantly smaller measurement uncertainties.

ENHANCEMENT TRENDS

Figures 21 through 24 summarize the effect of adding lubricant to R134a on the R134a heat
flux. Each figure plots the ratio of the mixture heat flux (g"y,) to the pure R134a heat flux
(q"p) versus the pure R134a heat flux at the same wall superheat. The 95 % confidence
interval for the heat flux ratio is depicted as a shaded region in the figures.

In general, a boiling enhancement occurs for the 0.5 % lubricant mass fraction for all of the
refrigerant/lubricant mixtures that were tested. For the most part, the mixture heat flux
diminishes with increasing lubricant mass fraction. The rate of degradation with increasing
mass fraction is less severe for mixtures with the DE589 lubricant. Also, no enhancement
occurs for the 2 % lubricant concentration for any of the mixtures. In addition, the heat
transfer for all of the R134a/lubricant mixtures decreases with respect to increasing heat flux
for heat fluxes greater than 60 kW/m?”. Although the heat flux ratio is shown to increase

with heat flux in some regions, the corresponding uncertainties in the heat flux ratio are too
large to confirm that trend.

Figure 21 shows the heat flux ratio for three mixtures of R134a and the DE599 lubricant.
The viscosity of the DE599 lubricant is the smallest of the four lubricants (4.6 pm?s at

313 K), and it is miscible with R134a at the test temperature. For the most part, the R134a
boiling was not enhanced by the addition of DE599. The sole improvement in the heat
transfer was an average 3 % increase in the heat flux between approximately 30 kW/m? and
80 kW/m? for the (99.5/0.5) mixture. In addition, the R134a/DE599 (97.7/2.3) mixture
exhibited the greatest degradation in heat transfer; the heat flux ratio was approximately
0.45 £ 0.09 for the entire heat flux range. The greatest heat flux ratio exhibited by the
R134a/DE599 (98.9/1.1) mixture was 0.91 +0.03 at 58.2 kW/m?>.

Figure 22 shows the heat flux ratio for three mixtures of R134a and the DE601 lubricant.
The viscosity of the DE601 lubricant is the greatest of the four lubricants (197.36 pm?s at



313 K), and it has the same CST as the DES99 lubricant with R134a (203 K). Two mixtures
of DE601 with R134a (99.5/0.5 and 98.7/1.3) exhibit a substantial enhancement within the
operating range of R134a chillers. Specifically, a 16 % and a 9 % average enhancement of
the pure R134a heat flux was obtained between approximately 14 kW/m? and 81 kW/m?>.
The two greatest heat flux ratios were 1.47 = 0.06 and 1.37 + 0.1, which were obtained at
approximately 14 kW/m” for the (99.5/0.5), and the (98.7/1.3) mixture, respectively. The
(96.7/3.3) mixture exhibits a heat transfer degradation with respect to the heat transfer of
pure R134a for all heat fluxes. Performance loss due to a given increase in mass fraction
was more severe when the lubricant mass fraction was increased from 1.3 % to 3.3 % than it
was when the increase was from 0.5 % to 1.3 %.

Figure 23 shows the heat flux ratio for three mixtures of R134a and the DE590 lubricant.
The viscosity of the DES90 lubricant is between that of the DE601 and the DE599
lubricants (25.34 um?/s at 313 K), and it has a slightly higher CST (237 K) with R134a than
these lubricants. The R134a/DE590 (99.5/0.5) mixture exhibits a maximum heat flux
increase over that of pure R134a of 37 % + 14 % at approximately 9 kW/m>. The average
heat flux ratio for the R134a/DE590 (99.5/0.5) mixture is 1.18 over the heat flux range of
interest to chillers - from approximately 11 kW/m? to 81 kW/m?>. By contrast, the heat flux
ratios of the R134a/DES590 (98.8/1.2) and the R134a/DE590 (97.3/2.7) mixtures are
s1gn1flcantly less than that of the (99.5/0.5) mixture being 0.9 +£0.03 and 0.6 + 0.5 at

110 kW/m?, respectively. Notice that because the confidence intervals for both the
R134a/DE590 (98.8/1.2) and the R134a/DES590 (97.3/2.7) mixtures include ¢, /q ,=1at

low heat flux, the relative performance of these mixtures with respect to pure R134a is
indeterminate in this region.

Figure 24 shows the heat flux ratio for three mixtures of R134a and the DE589 lubricant.
The viscosity of the DE589 lubricant is nearly the same as that of the DE590 lubricant
(21.76 umz/s at 313 K, and it has the highest CST (270 K) with R134a of all the lubricants.
Mixtures of R134a with DES89 exhibit the largest enhancements with respect to R134a
and are not as sensitive to lubricant concentration as the other lubricants investigated. In
fact, the 0.5 % and 1 % concentrations w1th DES589 have nearly identical performances
for pure heat fluxes greater than 50 kW/m?. The maximum heat flux ratio for
R134a/DE589 (99.5/0.5) is 2.0 £ 0.2 at approximately 5 kW/m?. The maximum heat flux
ratio for R134a/DE589 (99/1) is 1.18 + 0.02 at approximately 40 kW/m?”. The heat flux
ratio for the 0.5 % and 1 % DE589 mixtures, averaged over approximately 10 kW/m? and
81 kW/m’, is 1.24 and 1.13, respectively. The 2 % DES589 mixture with R134a exhibits a
boiling performance approximately equal to that of pure R134a.

Regression Analysis

The heat flux ratios given in Figs. 21 through 24 provide the heat transfer performance of
the R134a/lubricant mixtures relative to that of pure R134a for each of the four
R134a/lubricant sets. However, the effects of lubricant viscosity, CST (T.), and lubricant
mass fraction on the mixture heat transfer are not easily isolated nor understood with heat
flux ratio plots alone. To remedy this, a regression analysis of the average heat flux
ratios for each mixture versus the three salient factors and their coupling is presented.
Table 8 provides the average heat flux ratio versus the three regression factors for each

10



R134a/lubricant mixture. The heat flux ratios were averaged from approximately

10 kW/m? to 80 kW/m>. The regression factors were: (1) the lubricant mass fraction (xp),
(2) the difference between the liquid viscosity of the lubricant and that of the refrigerant
normalized by the refrigerant viscosity (vi - v)/v, all evaluated at 313 K, and (3) the
difference between the saturated fluid temperature and the CST of the R134a/lubricant
mixture normalized by the fluid temperature (T - 7.)/ Ts. The normalized viscosity
difference was evaluated at 313 K due to the lack of lubricant viscosity data at 7.
However, the use of (v, - v)/v, at 313 K is sufficient to illustrate the relative effects of
viscosity.

Figure 25 shows a plot of the average heat flux ratio versus lubricant mass fraction for the
four lubricant mixtures of this study. Clearly, the pool boiling performance decreases
with respect to increasing lubricant mass fraction for each R134a/lubricant mixture. Sato
et al. (1999) have shown a similar pool boiling performance decrease with respect to
increasing lubricant mass fraction for R134a/PAG lubricant mixtures. Because of the
large variability of the data shown in Fig. 25, the lubricant mass fraction evidently does
not capture the entire dependence of the heat flux ratio.

At this point, a regression analysis to determine the importance of each of the selected
R134a/lubricant properties for pool boiling was done. A total of seven factors - the three
salient factors listed above plus four interaction terms- were examined for their influence
on the heat flux ratio. As a result, the following model of the average heat flux ratio was
fitted to within + 0.1 for 95 % confidence:

In —125-x,191.9- L=Yr | 0529 1.92[ LTe || opy[ L= |l 5
4, v, Z T\

Figure 26 plots the measured heat flux ratio versus that predicted by Eq. 5. The figure
illustrates that including the lubricant viscosity and the miscibility effects have nearly
collapsed the data of Fig. 25 onto a single line. Equation 5 shows that a small lubricant
mass fraction, a small (T - T,)/T,, and a large lubricant viscosity all tend to benefit
R134a/lubricant pool boiling heat transfer. The lubricant mass fraction is the most
influential of the governing parameters. As compared to x., the lubricant viscosity and
the (75 - Tc)/T are less important, but they are still significant for determining the
magnitude of the average heat flux ratio. Notice that the lubricant viscosity parameter is
coupled to the (T - T;)/T; parameter. Here the (Ts - T.) /T parameter reduces the effect of
viscosity on the heat transfer. For example, if a lubricant has a large viscosity that will
benefit heat transfer, but if it also has a test temperature that is far from the CST, then the
viscosity enhancement effect will be somewhat lessened by the large (T - T)/T..

There are a couple of caveats that should be given with Eq. 5. First, the quantity within
the outermost brackets that multiplies x,, must be greater than zero to provide for a
decreasing enhancement with respect to increasing lubricant mass fraction. Otherwise,
heat flux ratios of 60 at a lubricant mass fraction of 10 % can be obtained for the highest
lubricant viscosity and the lowest CST. For these inputs, the model predicts that the heat
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flux ratio increases with increasing mass fraction for mass fractions greater than 5 %,
which is inconsistent with current experience. However, if the viscosity and CST inputs
to the model were limited such that the model produced only decreasing heat flux ratios
with respect to mass fraction, then the highest possible enhancement would be
approximately 25 %. A limit on the enhancement also does not make physical sense.
Finally, the model predicts an enhancement ratio of 1.25 rather than 1.00 for pure R134a.
Consequently, the above model should only be used to illustrate the trends of the current
data set for positive values of the xm multiplier.

MECHANISTIC INTERPRETATION

The above regression analysis has shown that the viscosity, the CST, and the lubricant
mass fraction are important factors for R1 34a pool boiling. The analysis also shows that
the influences of viscosity and CST are coupled. The role that the lubricant mass
fraction, the viscosity, and the miscibility have on R134a pool boiling can be understood
by analyzing how these parameters interact with the lubricant excess layer. The lubricant
excess layer exists as a region of liquid near a heated wall with a lubricant concentration
that is greater than that of the bulk fluid. In the following, mechanistic interpretations are
offered to explain how each of the influential factors affect R134a pool boiling.

Larger lubricant mass fractions promote smaller bubble departure diameters, which, in
turn, can lead to poorer heat transfer (Kedzierski, 1992 and Kedzierski and Kaul, 1993).
As outlined by Kedzierski (1999b), the excess layer causes a reduction in the liquid-solid
surface energy (Cis) that results in a simultaneous reduction in the bubble departure
diameter and an increase in the site density. This was illustrated with the Gibbs
adsorption equation for a dilute solution (Rosen, 1978), which shows that a greater
surface energy reduction results for increases in the surface excess concentration (1)
and/or increases in the bulk lubricant concentration (C):

do=-RT,I'dInc 6

where R is the universal gas constant, and 7, is the temperature of the interface. A heat
transfer enhancement existed when the increase in site density more than compensates for
the reduction in bubble size. However, as the lubricant mass fraction increases, the
bubble size decreases while the site density increases. The Mikic and Rohsenow (1969)
pool boiling model shows that the heat flux is directly proportional to the product of the
site density and the square of the bubble departure diameter. Consequently, the influence
of the bubble size on the heat transfer is greater than that of the site density. As a result,
the pool boiling heat transfer eventually degrades with increased lubricant mass fraction.

Even for small bulk lubricant mass fractions, a large lubricant viscosity benefits pool
boiling by promoting a thick thermal boundary layer. The existence of the excess layer
accentuates the influence of the lubricant properties on the heat transfer because pool
boiling is controlled in large part by the fluid properties at the heated wall. Because of
the excess layer, the viscosity of the liquid near the wall can be significantly greater than
what it would have been for the bulk mixture. An estimate of the relative pool boiling
thermal boundary layer thickness for two lubricants (subscripts 1 and 2) was derived
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from the model of Bosnjakovic (1930) while assuming that the bubble frequency was not
influenced by lubricant properties:

O, _ (vPr
0, v,Pr

In general, the Prandtl number (Pr) does not differ much from lubricant to lubricant
despite a large variation in viscosity. Consequently, Eq. 7 shows that the thermal
boundary layer is a strong function of viscosity providing a thicker thermal boundary
layer for larger viscosities. A thicker thermal boundary, in turn, provides for a larger
active site density (Hsu, 1962), which improves the pool boiling heat transfer.

The fact that viscosity and CST are coupled is analogous with the prediction of viscosity
relative to the proximity of the CST. Laesecke (1999) has observed that the deviation of the
measured viscosity from an ideal mixing rule for R32/propane increases as the CST is
approached. Laesecke (1999) believes that the interaction between the polar R32 and the
nonpolar propane is responsible for the nonideal behavior of the viscosity near the CST.
Because the R134a/lubricant mixture is a polar/nonpolar mixture, a similar nonideal
behavior of the viscosity near the CST should be expected. Although this does not explain
the interdependence of the lubricant viscosity and the CST, it does establish precedence for
the interaction that is quantified in Eq. 5.

The proximity of the bulk fluid temperature to the CST of the mixture benefits pool boiling
heat transfer by the formation of additional excess liquid films that draw superheated liquid
onto the bubble sides. Mitrovic (1998) describes how a lubricant-rich film exists around the
liquid-vapor interface of the refrigerant bubble. According to Jensen and Jackman (1984),
the lubricant-rich layer is formed by preferential evaporation of the refrigerant at the
bubble's liquid-vapor interface. However, it is possible that the bubble may also lift a
portion of the lubricant excess layer from the heated wall. In any case, given that an excess
lubricant layer surrounds the bubble, Fig. 27 shows how a small difference between the bulk
fluid temperature and the CST can dramatically affect the pool boiling heat transfer.

13



Figure 27 shows a theoretical critical solution diagram for a refrigerant/lubricant mixture
and a bubble on a heated wall. The critical solution diagram gives the temperature and the
compositions for which the lubricant and refrigerant are miscible. Above the dome, the
lubricant and refrigerant are completely miscible for all compositions. Within the dome,
two soluble solutions of refrigerant and lubricant exist at different compositions. The
closed circle on the critical solution diagram represents the state of the bulk liquid mixture
that is close to, but greater than, the CST. The arrow shows how the state of the liquid in the
immediate vicinity of the bubble transitions to under the dome by a combination of
composition shifting and evaporation at the liquid vapor interface. Once this happens, two
thin layers of different refrigerant/lubricant soluble solutions rest on the liquid-vapor
‘nterface of the bubble. Of course, only a partial separation is likely because of the short
time available before the bubble temperature equilibrates with the bulk liquid. It is also
likely that these films are actually liquid droplets that cover regions of the bubble but act like
films due to the relative size of the bubble and the droplet. Droplets could also lie adjacent
to rather than on top of one another. In any case, the interfaces of the two liquid films are
drawn in Fig. 27 to have large curvature gradients. The curvature gradients induce film
pressure gradients that transport superheated liquid to the sides of the bubble. The
additional bubble superheat is the cause of the pool boiling heat transfer enhancement.

VISUAL OBSERVATIONS

The visual observations from the high-speed films showed that both the type of lubricant
and the lubricant mass fraction had a marked effect on bubble formation. From past
experience with visual observations, it was believed that pure refrigerant bubbles reflected
light readily; whereas, bubbles with lubricant appeared to be dull. In general, the
refrigerant/lubricant combination that performed best was where the bubbles remained
reflective for low and high lubricant concentrations. Heat transfer degradations with
Jubricants appeared to be associated with micro-size bubbles and/or a fog of bubbles. For
example, the intermediate heat transfer R1 34a/DE590 mixture bubbles appeared clear or
reflective at 0.5 % mass fraction, and then they developed what appeared to be lubricant
caps at 1 % mass fraction. Then, finally, they developed into a fog of micro-bubbles at 2 %
lubricant mass fraction. Compare this to the high heat transfer bubbles for the
R1342/DE590 mixture where lubricant caps did not appear on the bubbles until the 2 %
Jubricant mass fraction. The low heat transfer bubbles of the R134a/DE599 mixture were
misty for all lubricant mass fractions. In summary, R134a/lubricant mixtures that appeared
to have less Jubricant on the bubbles had superior pool boiling heat transfer performance.

CONCLUSIONS

The pool boiling heat transfer of twelve R134a/lubricant mixtures were compared to that
of pure R134aon a Turbo-BII™-HP surface. The mixtures were chosen to examine the
effects of lubricant mass fraction, viscosity, and miscibility on heat transfer performance.
The range of the lubricant viscosity that was investigated was from 22 umZ/s to 197
um?/s. The critical solution temperature (CST) of the R134a\lubricant mixtures ranged
from 203 K to 270 K. The lubricant mass fraction of the mixtures ranged from 0.5t0 3.3.

The magnitude of the effect of each parameter on the heat transfer data was quantified
with a regression analysis. The mechanistic cause of each effect was given based on new
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theoretical interpretation and/or that from the literature. For example, the literature
shows that the larger lubricant mass fractions promote smaller bubble departure
diameters, which, in turn, leads to poorer heat transfer. New speculation suggests that the
proximity of the bulk fluid temperature to the CST of the mixture benefits pool boiling heat
transfer by the formation of additional excess liquid films that draw superheated liquid onto
the bubble sides. In addition, even for small bulk lubricant mass fractions, a large
lubricant viscosity benefits pool boiling by promoting a thick thermal boundary layer. To
summarize, the model illustrates that larger heat transfer enhancements can be obtained
for small lubricant mass fraction, high lubricant viscosity, and a small difference between
the refrigerant saturation temperature and the critical solution temperature of the
lubricant.

The ratio of the heat flux of the R134a/lubricant mixture to that of the pure R134a for
fixed wall superheat was given as a function of pure R134a heat flux for all twelve
mixtures. The greatest heat flux ratio was obtained for the mixture with the lubricant that
had the largest CST. For example, the pool boiling performance of R134a was enhanced
as much as (100 % = 20 %) by adding 0.5 % mass lubricant DE589. Overall, the
R134a/DE589 (99.5/0.5) mixture exhibited a 24 % greater heat transfer than pure R134a
from approximately 10 KW/m? to 80 kW/m?. The smallest heat flux ratio (0.45 +0.09)
was obtained for the mixture with the lubricant that had the smallest viscosity and the
smallest CST with R134a.
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NOMENCLATURE
English Symbols

A surface area (mz)

c molar concentration of the solute

C regression constant (Eq. 1)

k thermal conductivity (W/m K)

L, length of test surface in y- -direction (m)

P liquid Prandtl number

q" average wall heat flux (W/m?®)

R universal gas constant (8.314 J/K mol)
Rap, residual standard deviation of superheat from cubic fit (K)
t thickness (m)

- thickness of the tube wall at the fin root (m)
T temperature (K)

T; plate-solder interface temperature (K)

Tw temperature of surface at root of fin (K)

U expanded uncertainty for 95 % confidence
X test surface coordinate, Fig. 2 (m)

X model term (Table 2)

Xm lubricant mass fraction

y test surface coordinate, Fig. 2 (m)

Greek Symbols

r surface excess concentration of solute

o thermal boundary layer thickness (m)

o surface tension (kg/m s%)

AT, wall superheat: Ty, - T, (K)

1% viscosity (mz/s)

Subscripts

-~ »n = - o O G
T3 FC0Q

lubricant critical solution temperature
copper

excess layer interface

lubricant

liquid-solid interface

mixture

pure R134a

refrigerant

saturated liquid or vapor state, solder
copper tube
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APPENDIX A

This appendix outlines the procedure that was used to extrapolate the wall temperature of
the Turbo-BII™-HP surface. The boiling surface on the Turbo-BII™-HP plate originated
as a round tube. The tube was annealed, flattened and soldered onto the top of the plate.
The average temperature of the plate-solder interface (7i) was calculated from the
regression of the two-dimensional conduction equation as described in the body of this
paper. Because the solder layer was thin, a one-dimensional conduction model was used
to extrapolate the temperature drop across it.

The solder was 6 % silver and 94 % tin by mass. The thermal conductivity of the solder
was fitted to a modified form of the Smith-Palmer equation (Smith and Palmer, 1935) as:

57,8587 W
ko= ——mK T 75— 8
T\ T-38.65K mK

where T is the temperature of the solder layer in Kelvin. The Smith-Palmer equation was
modified by replacing the electrical conductivity with a linear relationship with
temperature.

The flattened Turbo-BII™-HP tube was phosphorus-deoxidized copper (C12200). The
thermal conductivity of the copper (k;) was fitted to:

£22.46 7 W
k=| ——2K 1 37.79— 9
T +63.33K mK

where T is the temperature of the copper in Kelvin. The average thickness of the solder
layer (t;) and the average distance between the copper-solder layer interface and the root
of the fin (zx) were measured with an optical-video coordinate-measurement instrument

(OVCM). The OVCM instrument had a resolution of 0.005 mm.

The average wall temperature at the root of the fin for the Turbo-BII"-HP plate was

calculated from:
T=T.-q"| 2+l 10
k: ky

The expanded uncertainty of Ty was calculated considering the uncertainty of each
parameter of Eq. 10. The expanded uncertainty of the thickness measurements as
calculated from the standard uncertainty of the thickness measurement were estimated to
be 0.02 mm. Capillary forces during the soldering process should provide for a uniform
solder thickness. The thermal conductivities of the copper and the solder were assumed
to be known to within 5 %. For these conditions, the temperature correction for the
solder layer contributes 0.01 K, 0.005 K and 0.005 K to the expanded uncertainty of the
average wall temperature for 160 kW/m?, 80 kW/m?, and 20 kW/m?, respectively. This
additional uncertainty has been included in the combined expanded uncertainty that is
shown in Fig. 4 for the Turbo-BII™-HP surface.
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Table 1 Properties of Test Lubricants (Corr, 1995)

Critical
Lubricant Viscosity at 313.15 K solution Miscible
(umz/s) temperature (K) inR134a (?)
DES589 21.76 270.15 partially
DES599 4.59 203.15 yes
DES590 25.34 237.15 yes
DE601 197.36 203.15 yes
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Table 2 Conduction model choice

X,= constant (all models) Xi=x Xo=y

X3= Xy X4=x2—y2 Xs= y(3x2-y2) Xg= x(3y2—x2)
X7= x4+y4-6(x2)y2 Xg= yx3—xy3
Fluid q”
X, X5 (87 of 158) 55 %
R134a/DE589(99.5/0.5) X, X, (550f158)35%
X (15 0f 158)9 %
X, X5 (106 of 147) 72 %
R134a/DE589(99.0/1.0) X (25 of 147) 17 %
X, Xa (9of 147)6 %
X, X3 (57 of 140) 41 %
R134a/DE589(98.0/2.0) X, X, (51 of 140) 36 %
X4 (20 of 140) 14 %
X1,X3 (120 of 177) 68 %
R134a/DE590(99.5/0.5) X (27 of 177) 15 %
X,X3.Xs (130f 17T %
X1,X3 (97 of 205) 47 %
R134a/DE590(98.8/1.2) X (68 of 205) 33 %
X, X3, X5 (19 0f 205) 9 %
X4 (114 of 259) 44 %
R134a/DE590(97.3/2.7) X1,X3 (100 of 259) 39 %
X1,X> (27 of 259) 10 %
Xy (172 of 206) 83 %
R 134a/DE599(99.5/0.5) X1,X3 (17 of 206) 8 %
X1,X2 (9 of 206) 4 %
X (121 of 146) 83 %
R134a/DE599(98.9/1.1) X1,X2 (10 of 146) 7 %
X1,X3 (7 of 146) 5 %
Xy (156 of 170) 92 %
R134a/DE599(97.7/2.3) X1,X3 (8 of 170) 4 %
X1, X4 30f170)2 %
X1,X2 (117 of 143) 82 %
R134a/DE601(99.5/0.5) X1,X3 (8 of 143)6 %
Xy (8 of 143) 6 %
X1,X2 (109 of 180) 61 %
R134a/DE601(98.7/1.3) X1,Xs (28 of 180) 16 %
X1,X3 (23 of 180) 13 %
X1,Xs (62 of 142) 44 %
R134a/DE601(96.7/3.3) X1,X2 (39 of 142) 27 %
X,X3 (22 of 142) 15 %
X (169 of 391) 43 %
R134a X1,X2, X5 (90 0f 391) 23 %
X1,X3 (38 0of 391) 10 %
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Table 3 Pool boiling data

R134a/DE589 7119 ETOR6E 1758 T6OD41 8 192 38656
2169 69791 1697 170410.1 0691 25276.1
(99.5/0.5) 1961 622909 2230 128863.9 0,694 235931
- 1940 62516.1 4206 1484129 0322 13839.7
File: DE5895.D AT 1,560 52827.0 3.924 133196.7 4590 155336.1
—— 1.609 538251 3908 133089.1 1638 159404.0
AT. (K) q" (Whn) 0,540 362398 3,562 1213569 7164 1369719
4.903 155508 8 0905 352394 3618 1217119 3149 138870.2
4857 155284.2 0469 217763 3307 109052.3 3414 1095009
4671 1476550 0,502 21613.0 3293 T00258.1 3404 09704 4
4646 1480044 0201 2845 3072 99406, 2575 §2932.5
4626 1489113 159 1547475 3052 595866 2567 R17816
4601 1487986 4671 156835.0 2692 865934 1928 658494
4.348 137254 8 1617 T59006.6 2.159 706656 2013 §77006
4357 '3(’;“"'1 1336 145939.3 3297 TIE6T.0 1304 467093
3909 119527 8 3341 1268342 7301 7a111.1 1390 360600
3.886 120948 7 3937 130299.7 7350 75336.9 7019 335663
3.360 :"72(_"’-2 3965 131674.3 3159 70665.6 1023 326296
3.646 08637.2 3718 119218.1 2178 T0476.5 0.728 35245.1
3259 95958 4 3679 1180239 1737 581713 0699 552838
978311 = - e L : 2ot
3324 3L 3378 T09579.8 1934 Y1238 0.292 11624.6
2892 “‘“‘i‘“’ 3406 06733 1410 129714 0.306 111233
2786 8224438 1152 99075.1 1489 356
;;:2 z:z; 3141 U8508.1 0793 269459
- : 3734 851199 0,784 262708
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3.656 873204
3.065 72896.1
3.002 722489
3.048 72561.7
2.550 60187.0
2.571 60424.5
2131 50819.6
2.132 50862.4
0.958 192384
1,750, 414453
1.377 30300.0
1.364 29718.1
0.958 192384
5284 160593.7
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1.936 49125.5
1.920 487124
R134a/DE599
(97.7/2.3)
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3,761 726119
3464 64250.0
5.709 148663.7
5778 150823.9
5524 136637.5
5.569 136122.3
4945 112164.6
4900 111195.9
4429 94836.6
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2.694 51555.8
2323 44353.6
2.341 44254.9
1.762 34158.7
1,769 13397.9
0911 20549.2
5902 160854.0
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5.014 122631.8
4988 123858.8
4079 Y9809
4065 90359.6
3.198 69612.2
3236 T0756.8
2993 65787.7
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2.595 735319
2.603 72788.6
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Table 4 Number of test days and data points

Fluid (% mass) Number of days Number of data points
R134a/DE589 (99.5/0.5) 6 149
R134a/DE589 (99/1) 6 137
R134a/DE589 (98/2) 6 134
R134a/DE590 (99.5/0.5) 9 163
R134a/DE590 (98.8/1.2) 8 191
R134a/DE590 (97.3/2.7) 12 263
R134a/DE599 (99.5/0.5) 9 190
R134a/DE599 (98.9/1.1) 7 134
R134a/DE599 (97.7/2.3) 9 179
R134a/DE601 (99.5/0.5) 7 133
R134a/DE601 (98.7/1.3) 8 167
R134a/DE601 (96.7/3.3) 7 131
R134a 23 173
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Table 5 Constants for cubic boiling curve fits for Turbo-BII'™™-HP
AT, = Ay + A q” + Ay q”z + Aj q”3
AT, in Kelvin and ¢” in W/m”

Fluid A, Al Ar Aj

R134d/DE589 (995/05) ATg <48K -0.552305 4.40522x10” -5.58725x 107! 8.33712x10°"
R134a/DE589 (99/1) ATS <49K -0.0785764 3.18519x10° 2.91081x10™ 2.39599x107'°
R134a/DE589 (98/2) AT, <44K -0.0545181 4.07832x10” -4.07832x10™ -2.04793x10
R134a/DE590 (99.5/0.5) AT, < 45K -0.382810 3.89896x10” 2.10968x10™" -4.4814510°7°
R134a/DE590 (98.8/1.2) AT,<5.0K -0.459516 5.35886x10” -1.50659x10™ 1.65968x10™°
R134a/DE590 (97.3/2.7) AT,<5.0K 0.273636 2.53193x10” 3.83839x10™° -2.13652x10°°
R134a/DE599 (99.5/0.5) AT, < 49K 0.384319 1.69417x10 2.55120x10™ -1.15269x107°
R134a/DE599 (98.9/1.1) AT,<53K 0.377557 2.66641x10” 1.69317x10™ -9.03561x10®
R134a/DE599 (97.7/2.3) AT.< 64K 0.0441903 8.54216x10° -3.88627x10°" 6.57693x10™°
R134a/DE601 (99.5/0.5) AT, < 51K -0.546989 4.36860x10° 4.66413x10°" -3.67216x107°
R134a/DE601 (98.7/1.3) AT.> 54K -0.540402 4.52935x10° 2.49306x10™" -4.98398x107™°
R134a/DE601 (96.7/3.3) AT, > 60K -0.444023 7.13944x10” -3.01331x10™° 6.46025x10"°
R134a AT.<45K -0.360766 5.28759x10” -1.88076x10™° 2.81359x107°
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Table 6 Residual standard deviation of AT from the mean

Fluid U (K)
R134a/DE589 (99.5/0.5) 0.09
R134a/DE589 (99/1) 0.10
R1342/DE589 (98/2) 0.10
R1342/DE590 (99.5/0.5) 0.11
R1342/DE590 (98.8/1.2) 0.33
R1342/DE590 (97.3/2.7) 0.64
R1342/DE599 (99.5/0.5) 0.11
R134a/DE599 (98.9/1.1) 0.16
R134a/DE599 (97.7/2.3) 0.40
R1342/DE601 (99.5/0.5) 0.08
R1342/DE601 (98.7/1.3) 0.20
R1342/DE601 (96.7/3.3) 0.28
R134a 0.11

Table 7 Average magnitude of 95 % multi-use confidence interval for mean Ty-T5(K)

Fluid U (K)
R134a/DE589 (99.5/0.5) 0.048
R134a/DE589 (99/1) 0.058
R134a/DE589 (98/2) 0.056
R1342/DE590 (99.5/0.5) 0.055
R134a/DE590 (98.8/1.2) 0.155
R134a/DE590 (97.3/2.7) 0.252
R134a/DE599 (99.5/0.5) 0.052
R1342/DES99 (98.9/1.1) 0.088
R1342/DE599 (97.7/2.3) 0.192
R134a/DE601 (99.5/0.5) 0.046
R134a/DE601 (98.7/1.3) 0.103
R1342/DE601 (96.7/3.3) 0.157
R134a 0.058
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Table 8 Average heat flux ratios versus governing parameters

qllm

Lubricant N Xm (VL - Vr)/ Vi (Ts - TC)/ Tc
1 @ 313K
DE589 1.24 05 151.8 0.0268
DE589 .13 1.0 151.8 0.0268
DE589 0.96 2.0 151.8 0.0268
DE590 1.18 05 176.9 0.146
DE590 1.01 12 176.9 0.146
DE590 0.81 27 176.9 0.146
DE599 1.03 05 312 0.268
DE599 0.88 1.1 312 0.268
DE599 0.46 23 312 0.268
DE601 1.16 05 1384.4 0.268
DE601 1.09 13 1384.4 0.268
DE601 0.75 33 1384.4 0.268
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Fig. 1 Schematic of test apparatus

33



y ¢&—1Allholes 0.53 mm dia.,16 mm

deep, evenly spaced
All dimensions in mm p y sp

4
4 o
| 22.2
* A
.20.3 190
&
82.55 20.3
251 |¥
12.7
v
‘/ 101.6 > \Heated surface

Fig. 2 OFHC copper Turbo-BIII™-HP test plate and thermocouple coordinate system
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Fig. 7 R134a/DE589 (99.5/0.5) boiling curve for Turbo-BII™-HP
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Fig. 8 R134a/DE599 (99.5/0.5) boiling curve for Turbo-BII™-HP
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Fig. 10 R134a/DE601 (99.5/0.5) boiling curve for Turbo-BII™-HP
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Fig. 11 R134a/DE589 (99/1) boiling curve for Turbo-BlII™-HP
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Fig. 12 R134a/DE599 (98.9/1.1) boiling curve for Turbo-BII™-HP
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Fig. 13 R134a/DE590 (98.8/1.2) boiling curve for Turbo-BII™-HP
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Fig. 14 R134a/DE601 (98.7/1.3) boiling curve for Turbo-BII™-HP
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Fig. 15 R134a/DE589 (98/2) boiling curve for Turbo-BII™-HP
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Fig. 16 R134a/DE599 (97.7/2.3) boiling curve for Turbo-BII™-HP
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Fig. 17 R134a/DE590 (97.3/2.7) boiling curve for Turbo-BII™-HP
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Fig. 18 R134a/DE601 (96.7/3.3) boiling curve for Turbo-BII™-HP
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Fig. 19 Pool boiling curves for R134a and twelve R134a/lubricant mixtures on Turbo-BII™-HP
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Fig. 20 Effect of lubricant mass fraction on residual standard deviation of cubic fit
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Fig. 21 R134a/DE599 mixtures heat flux relative to that of pure R134a
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Fig. 22 R134a/DE601 mixtures heat flux relative to that of pure R134a

54



N W R O o

.
—

f T T T | T [ T I ! | ' I '
-5/0-5)1 R134a/DE590, Turbo-BII™-HP,
Ts=277.6 K, Fixed AT,

DE590: v =25.34 um?/s
T.=237K

IIIIIIIIIII illlllllll

—

0.6 £0. 5
@ 110 kW/m
N TR BT BT

0 20 40 60 80 100 120 140 160 180
q'p (KW/m?)

g oo N oo o

Fig. 23 R134a/DE590 mixtures heat flux relative to that of pure R134a
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Fig. 24 R134a/DE589 mixtures heat flux relative to that of pure R134a
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Fig. 25 Influence of lubricant mass fraction on R134a/lubricant pool boiling
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Fig. 26 Comparison of measured heat flux ratio to that predicted by Eq. 5
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Fig. 27 Mechanistic explanation of the influence of lubricant miscibility on boiling
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