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A Water-to-Water Heat Pump Using Hydrocarbon and
Hydrofluorocarbon Zeotropic Mixtures With and Without
an Internal Heat Exchanger

W. Vance Payne II, Eric A. Silk*, and Piotr A. Domanski

Abstract

This investigation overviews the results of an experimental study pertaining to flammable
refrigerant alternatives in water-to-water heat pumps for building and home applications.
The system studied here used a secondary heat transfer loop to communicate with the indoor
space. This isolates the flammable refrigerant in the outdoor section of the unit and
demonstrates one configuration that could be accepted in the United States. In contrast to the
fluid survey of the initial study (Payne et al., 1999), the present study emphasizes the
performance of R32/290, R22, R290, and R22-REF (direct expansion case) in the cooling
and heating modes. The vapor compression cycle used an internal heat exchanger added
between the liquid and vapor lines. Fluid performance as a function of thermophysical
properties and heat transfer characteristics are addressed for each cycle configuration.

The heat pump charged with R32/290 had the closest performance to the R22 direct
expansion system in the cooling mode. Furthermore, the internal heat exchanger system
performance exceeded that of the basic vapor compression cycle configuration. In the
heating mode, R290 in the basic configuration had the closest approximation to the R22
direct expansion performance. The application of the internal heat exchanger degraded
R290's performance.

Keywords: Water-to-water heat pump, zeotropic mixtures, flammable refrigerants, COP

" Research Assistant from University of Maryland, Center for Environmental Energy Engineering, College Park,
Maryland



1: Introduction

Didion (Mulroy et al., 1988) originally proposed the use of zeotropic mixtures in the water-
to-water heat pump as a method for improving heat pump performance for low-lift/high-glide
applications. A later simulation study showed that the coefficient of performance, COP, of
the water-to-water system charged with a zeotropic mixture can approach the COP of the
direct-expansion R22 system if large counter-flow heat exchangers are used as the evaporator
and condenser (Domanski et al., 1994). The follow-up experiment in a general-purpose
mini-breadboard heat pump (MBHP) showed the importance of adequate sizing of the heat
exchangers (Choi et al., 1996). The evaporator and condenser of the MBHP did not have
sufficient capacity to obtain a sizable gain in COP due to glide matching between the
zeotropic mixture and heat-transfer fluid.

In this study an internal heat exchanger (ICHX) was used to exchange heat between the high-
pressure refrigerant leaving the condenser and two-phase refrigerant leaving the evaporator.
The name ICHX is used instead of “liquid line/suction line heat exchanger “ to emphasize
that a two-phase flow refrigerant participates in the heat transfer although the designs of both
heat exchangers are basically the same. The current study was also performed in a specially
designed apparatus with a large brazed plate evaporator and condenser to ensure adequate
capacity.

The use of an ICHX with zeotropic mixtures was originally outlined by Vakil (1981). The
benefit of using the ICHX with zeotropes stems from the fact that zeotropic mixtures have a
temperature glide while evaporating or condensing at constant pressure. Increased condenser
subcooling results in a lower enthalpy at the entrance of the evaporator. For a fixed system
capacity, the average fluid-to-refrigerant temperature difference will be a constant, the
evaporation process will start at a lower quality, and the evaporator pressure will increase.
This increase in pressure reduces the pressure ratio seen by the compressor, thus lowering the
compression work. However, an increase in the COP is only observed for fluids with high
molar heat capacity (Domanski, 1995).

Isolation of the flammable refrigerant in the outdoor section of the heat pump allows these
refrigerants to be included in the list of alternatives for R22. The application of zeotropic
mixture glide matching, larger heat exchangers, and internal refrigerant cycle heat transfer
seeks to remove the added temperature lift penalty associated with an indoor secondary heat
transfer fluid loop. The current study uses both large heat exchangers and the concept of
internal heat exchange to maximize the performance of zeotropic blends. Using the internal
heat exchanger in the refrigerant cycle in addition to glide matching between the secondary
heat transfer fluids and the refrigerant produced increases in COP. The configuration under
study does not exclude flammable refrigerants because the refrigerant charge is isolated
outdoors along with all of the vapor compression cycle components.



2: Experimental Setup

The experimental setup consisted of four main subsystems; the vapor-compression system,
the indoor heat transfer fluid loop, the outdoor heat transfer fluid loop, and the ground loop.
A detailed description of all sub-loops is provided by Payne et al. (1999). For clarity of

presentation, a description of the vapor-compression system with the ICHX is also included
in this report.

2.1: Vapor-compression System

Figure 2.1 shows a schematic of the vapor-compression system with the intracycle heat
exchanger. The system consisted of a reciprocating compressor, condenser, a manually
adjustable expansion device, evaporator, and an accumulator. The compressor was a two-
cylinder open-drive reciprocating design displacing from 3.53 m/h (2.08 cfm ) to 21.76 m*/h
(12.81 cfm) with minimum speed of 500 rpm and maximum speed of 3 000 rpm.
Compressor bore was 55 mm (2.16 in) and stroke was 49 mm (1.93 in). The intracycle heat
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Figure 2.1: Vapor-compression system with intracycle heat exchanger
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exchanger consisted of two conventional liquid line-to-suction line heat exchangers in series.
One of the intracycle heat exchangers could be bypassed, and each heat exchanger was sized
for a 10.6 kW (36 000 Btu/h) R22 cooling system. The brazed plate heat exchangers were
installed to provide for counter-flow heat exchange between the refrigerant and a 70/30 by
mass water/ethylene glycol heat transfer fluid. The system was designed for a cooling load of
10.6 kW (36 000 Btu/h). The high pressure refrigerant tubing was copper with 12.7 mm OD



(0.5 in) and 9.5 mm ID (0.375 in). The low pressure refrigerant tubing was copper with

15.9 mm OD (0.625 in) and 12.7 mm ID (0.5 in). The compressor was driven by an 11.2 kW
(15 hp) explosion-proof motor coupled to the compressor shaft through a torque and RPM
transducer. The motor speed was controlled by a variable frequency drive. The motor was
oversized to compensate for the loss of torque at high frequency. The use of an open drive
compressor removed the motor power consumption from COP calculations and did not affect
vapor superheat entering the compression cylinders.

2.2: Experimental Uncertainty

All tests were conducted under steady-state conditions. For cooling tests, steady state
occurred after one hour and when a steady stream of condensate was being produced by the
indoor heat exchanger. For the heating tests, the heat pump was operated for one hour after
indoor room conditions were stable. The expanded uncertainty for all measurements was
estimated using the propagation of uncertainty through the appropriate equations. All
expanded uncertainties are reported for a 95 % confidence interval and are evaluated by
statistical methods. The estimates shown below were calculated for typical test conditions
and are median values of the expanded uncertainty. A detailed development of the expanded
uncertainty for this study may be found in Payne et al., (1999).

Table 2.1: Measurement uncertainty for typical tests

Performance Value 95 % Confidence
Parameter Limit on Mean
COP 5.3 2.7 %
Capacity 9.10 kW (31036 Btu/h) 2.4 %
COP 5.0 3.9 %
Capacity 6.78 kW (23120 Btu/h) 3.7 %
COP 4.4 14.1 %
Capacity 2.71 kW (9261 Btu/h) 14.0 %
COP 6.5 15.3 %
Capacity 3.11 kW (10619 Btu/h) 15.2 %




3: Experimental Procedure

3.1: Test Procedure

The internal heat exchanger, ICHX, tests were carried out under the same conditions as
specified for the basic cycle tests (Table 3.1). The only difference was the state of the
refrigerant exiting the evaporator. For all of the ICHX tests, the refrigerant was not
superheated,; it left the evaporator at 90 % + 5 % quality. This two-phase refrigerant then
entered the ICHX, subcooling the liquid refrigerant exiting the condenser at a subcooling of
3.9 K (7.0 °F). The extent of the additional subcooling depended upon the mass flowrate of
the refrigerant and whether both intracycle heat exchangers were in operation. The intracycle

heat exchangers were selected to give a 3.9 K (7.0 °F) superheat at the entrance to the
accumulator.

Table 3.1: Cooling conditions for all tests

L ___Location _ _ Setpoint | Tolerance
Indoor Dry-bulb Temperature 26.7°C 03K
(80 °F) (#0.5°F)
Indoor Dewpoint Temperature 158°C 0.3 K
(604°F) | 0.5°F)
Condenser HTF Inlet Temperature 25.0°C +0.3 K
(770°F) | #0.5°F)
HTF Temperature Differences Across the Evaporator and 56K 103K
Condenser (10.0°F) | (0.5°F)
Refrigerant Evaporator Superheat and Condenser Subcooling 4.9 K 11K
(70°F) | (2.0°F)

ICHX heating tests were performed just as they were for the basic refrigeration cycle. The
heat transfer fluid, HTF, flowrates were reversed with cooling test condenser flowrate being
met in the evaporator and cooling test evaporator flowrate being met in the condenser. The
same number of ICHXs used in the cooling tests were used for the heating tests. Refer to

Payne et al. (1999) for a complete description of the basic configuration test procedures and
conditions.



Table 3.2: Heating test conditions

Location Setpoint | Tolerance

e ———————————————————————————————————————————————————————————————
B ——

21.1°C 103 K

Indoor Dry-bulb Temperature
(70.0°F) | 0.5°F)

12.06 ° C

Indoor Dewpoint Temperature (537 °F) 103K

. (#0.5°F)
maximum

00°C 0.3 K

Evaporator HTF Inlet Temperature
(320°F) | #0.5°F)

HTF Temperature Differences for the Evaporator and Condenser NA NA

39K +1.7K

Refrigerant Evaporator Superheat and Condenser Subcooling
_ (70°F) | (£3.0°F)

The ICHX was implemented in the refrigerant loop for both modes. Its application was used
in two different manners.

3.2: Refrigerants Tested

The fluids surveyed in the ICHX system configuration were R32/290, R290, and R22.
R32/290 and R290 were the best performers in the initial study for the cooling and heating
modes respectively. R22 was investigated because it was used as the baseline fluid (direct
expansion model fluid) in the initial study. Table 3.3 presents selected properties of the
tested refrigerants with refrigerant properties calculated using REFPROP (NIST 1996).



Table 3.3: Selected properties of tested refrigerants at 4.4 °C (40 °F) saturation temperature”

L Vapor Volumetric
GWP® ASHRAE| Vapor Taew o Tb‘éb Lé]m;l Th-e r;n al Absolute Capacity
Name Standard [Pressure | K> C F) (\);1] y UCtiZ 1y Viscosity kJ/m?
34 Safety [kPa (psia) O | kghms) | @)
Group (Btu/(h ft °F)) (Ib/(ft h)
R22 1500 Al 574.3 0 0.09467 11.891x10°® 4895.8
(83.3) (0.0547) (.02873) (131.4)
R290 20 A3 541.9 0 0.10395 7.81836x10° 4344.4
(78.6) (0.06006) (0.01889) (116.6)
R32/290 | 335 | A2/A3 | 9769 5.7 0.12015 9.70569x10°° 8532.3
(50/50) (141.69) | (10.3) (0.06942) (.02345) (229.0)
R32/152a | 395 | A2/A2 | 551.6 7.9 0.13062 1.05707x10° 5059.8
(50/50) (80.0) (14.2) (0.07547) (.02554) (135.8)
R290/600a | 20 | A3/A3 | 4154 6.6 0.10516 7.599x10°° 3524.7
(70/30) (60.25) | (11.9) (0.06076) (0.01836) (94.6)

* From REFPROP 5.16 (NIST 1996)

b

integrated time horizon 100 years; CO; as reference

¢ zeotropic mixture pressure at a 4.4 °C (40 °F) average of dew and bubble temperatures




4: Experimental Results
4.1: Basic Test Summaries

While the primary empbhasis of this study was the performance impact due to internal heat
exchange, much insight was gained from the results of the basic cycle study that did not include the
intracycle heat exchanger (Payne et al., 1999). These insights were based on the fluid rankings,
and the thermophysical and transport properties of the fluids surveyed. The fluid performance in
the basic cycle study provided a gauge for determining the impact of intracycle applications. With
this in mind, the results from the basic tests have some bearing upon the conclusions of the
intracycle tests. In the basic cycle study, the fluids surveyed could be categorized into three

different analysis groups. Those groups were pure fluids vs. pure fluids, pure fluids vs. mixtures,
and mixtures vs. mixtures.

Figure 4.1 displays a summary plot for the basic configuration cooling mode tests. None of the
fluids produced a higher COP than the experimentally simulated direct expansion indoor coil case
of R22-REF. With regard to the pure fluids, R290 performed better than R22 throughout the
cooling capacity regime. R22 had a much higher density than R290; thus it required fewer
compressor revolutions to achieve the same capacity as R290. While evaporator pressures where
approximately the same at corresponding capacities, condenser pressures for R290 were lower then
those for R22. Examination of the UA values also revealed that those for R290 were consistently
higher than those for R22.

CAPACITY (kW)
2.93 3.93 4.93 5.93 6.93 7.93 8.93 9.93 10.93
10.0 t ; ' ; ; t f - 10.0
90T R22-REF 190
8.0 + + 8.0
o o
[}
3 3
g 7.0 + +7.0 S
£ 2
g R32/152a gl
3] o
6.0 + 1 6.0
R290/600a
50 + + 5.0
4.0 + t t } + 4.0
10000 15000 20000 25000 30000 35000 40000

CAPACITY (Btu/h)
Figure 4.1: Cooling COP as a function of capacity; basic cycle



Comparison of the mixture COPs in Figure 4.1 shows that R32/290 and R32/152a both performed
better than R290/600a. General COP rankings for the mixtures correspond directly with the
volumetric capacities of the fluids (highest to lowest). For rankings see Payne et al., 1999.
R290/600a had the lowest COP of the three mixtures. R32/290 performed the best, while
R32/152a ranked second. R32/290 had the highest COP of all the fluids surveyed and had the
highest volumetric capacity as well. All of the fluids performed better than R22 throughout the
capacity range shown.

Figure 4.2 displays heating COP as a function of capacity for the basic cycle that did not include
the internal heat exchanger. The mixture COPs were much the same as in the cooling mode results.
R32/290 and R32/152a both had higher COPs than R290/600a. Furthermore, R32/290 performed
better than R32/152a throughout the capacity range above 5.3 kW (18 000 Btu/h). Below this
value, R32/152a had a higher COP than R32/290. R290 also performed better than R22 in this
case. The thermophysical trends and heat transfer characteristics witnessed in the cooling mode are
also present here. R290 and R22 performed better than the other fluids with producing higher
COPs than R22-REF in the 7.0 kW (24000 Btu/hr) capacity range. The R290 trace shows a
performance within 5 % of that of the reference curve at higher capacities.

One possible explanation for the performance difference between R290 and R290/600a was
advanced by Kedzierski et al. (1992). Their investigation showed that the convection coefficient

for a mixture can be approximated as a linear interpolation between the values of the individual
constituents.

h2¢,linear = ‘xm hRZ + (1 - xm )th

It has been found that degradation of the convection coefficient in the two-phase region may occur
(Kedzierski et al., 1992). With this degradation, the convection coefficient is better represented as:

h2¢,aauat =X, hg, + (1 — X )hm + Ah2¢

The degradation is imposed by a negative Ah,, term. The Ah,, value is a function of the

constituent fluids and their compositions. Concentration gradients in the fluid are the primary
cause of the degradation. The driving potential for concentration gradients is the difference
between the liquid and vapor compositions in the fluid. The more volatile constituent of a binary
mixture is considered to be the dominant component in determining the heat transfer degradation of
amixture. The molecular size of the more volatile constituent controls the diffusion rate of the
concentration gradients. Smaller molecules imply larger diffusion rates and lower degradations
(Kedzierski et al., 1992). In the case of R32/290, R32 is the more volatile constituent; its small
molecular size leads to a small heat transfer coefficient degradation, and it would tend to dominate
in the mixture. For the basic cycle tests, R290 was used as a mixture constituent twice. The
mixtures were R32/290 and R290/600a. Figure 4.1 shows that there was a COP degradation for
R290/600a, and a COP improvement in the case of R32/290. The lowering of the R290 COP when
R600a is added and the increasing of the COP when R32 is added could be caused by the
mechanisms hypothesized by Kedzierski et al. (1992).
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Figure 4.2: Heating COP as a function of capacity; basic cycle

4.2: Intracycle Study: suction line HX superheated/ internal HX configuration

The highest COPs for the basic configuration’s (no internal heat exchanger) heating and cooling
cases (R290 and R32/290 as well as R22) were further tested in the intracycle configuration, ICHX.
Of primary interest was the ability of these fluids to approximate the R22-REF case COP or
possibly exceed it. The fluids were tested in two different manners with the internal heat
exchanger. The first had superheated vapor at the evaporator exit. The second had two-phase fluid
exiting the evaporator. By having two-phase fluid exit the evaporator, the evaporator pressure will
increase, and there will be an increase in the efficiency of the system (Domanski and Kim, 1996).

Figure 4.3 is a summary of the R32/290 cooling mode tests for all of the configurations studied.
Curve fits were placed through the data points for ease of distinguishing the data trends. The
middle line is for the basic configuration. Application of the ICHX with superheat caused a
nominal decrease in COP of 4 % compared to the basic cycle with no internal heat exchanger. This
is displayed by the bottom line. This was the lowest COP case. The ICHX application (two-phase
at the evaporator exit) was the best case scenario, and it improved upon the COP of the basic and
superheated configuration by 2 % and 6 %, respectively. The top line represents the ICHX data.
There was a pressure drop on the vapor side of the heat exchanger when implementing the
superheated mode. However, this pressure drop was negated when using the ICHX in the two-
phase mode. Maximum COP’s were achieved at the lower capacities for each case.

10
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Figure 4.3: Cooling COP as a function of capacity for R32/290 basic and intracycle configuration

During the heating mode tests with no internal heat exchanger, R290 had the highest COP. Thus
R290 was the primary fluid of interest in the intracycle heating mode study. Figure 4.4 displays a
summary plot for the COP of R290 in the various cycle configurations. R290 experienced a
different impact from the application of the internal heat exchanger than did R32/290. Here, the
COP degraded with the application. This occurred in the cooling mode as well. The best
performance (top curve) was for the basic configuration. Performances for the intracycle heat
exchanger applications were nearly identical. This is displayed in the plot by the two bottom
overlay lines. The basic configuration performed 5 % better than when the internal heat exchanger
was used. Lower COP was partly due to pressure drop through the intracycle heat exchanger.

Figure 4.5 displays cooling mode COP’s for all of the refrigerants tested with the internal heat
exchanger. The original R22-REF test is included as well for purposes of comparison. The lowest
COP was produced by R22. The R32/290 ICHX (two-phase leaving evaporator) configuration had
a higher COP than R22, ranging from 16 % to 22 % higher over a comparable capacity range.
However, even with the enhanced cycle and substantial improvement, R32/290 ICHX was still not
able to fully compensate for the penalty of the additional indirect heat exchange loop. The R32/290
COP deficit varied from 19 % to 4 % lower than R22-REF.

11
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Figure 4.5: Comparison of cooling COP’s for R22, R290, and R32/290

12

CoP



Figure 4.6 displays a summary plot for the refrigerants tested in the enhanced cycle heating mode
study. Linear fits have been drawn through the selected data points. Given that the internal heat
exchanger superheated and intracycle applications degraded performance, the best case (basic)
configurations have been plotted here for R22 and R290. While R32/290 basic had the lowest
COP of the fluids surveyed, it did experience an improvement of greater than 8 % in the ICHX
(two-phase) configuration. This improvement could be partially due to the pressure ratio, which
was lowered by an average of 8 % when the intracycle heat exchanger was used with two-phase
exiting the evaporator. At capacities above 7.0 kW (24 000 Btwh) it actually performed better than
R290 and R22-REF.
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X
4.0 - - 4.0
3.5 Y T T 3.5
10000 15000 20000 25000 30000

CAPACITY (Btu/h)
Figure 4.6: Comparison of heating COP’s for R22, R290, and R32/290
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5.0: Conclusions

R290 in the heating mode and R32/290 in the cooling mode produced the highest COPs in the
simple cycle that excluded the internal heat exchanger. The addition of the internal heat exchanger
with two-phase flow at the exit of the evaporator (ICHX configuration) improved COP for
R32/290 in the cooling mode by as much as 5 %. However, the R32/290 with the ICHX could not
equal the performance of R22-REF in the experimentally. simulated direct expansion arrangement.
COP for the R32/290 system with the internal heat exchanger was still 10 % below the R22-REF
case. The additional AT required by the indoor heat transfer fluid loop could not be overcome
using glide matching or an internal heat exchanger. In the cooling mode, all of the alternative
refrigerants produced higher COPs than R22 when all the refrigerants were used in the same water-
to-water configuration. R32/290 with the ICHX improved on the performance of R22 by 10 % +
3 % throughout the capacity range tested. One added advantage of this 50/50 mixture by mass of
R32/290 is its use of mineral oil in the compressor. Where regulations allow, R32/290 can provide
an improvement over R22 in water-to-water heat pump applications.

The R290 basic heating mode test showed that the penalty in the heating mode of the extra HTF
loop was less than that in the cooling mode. This was partially due to the evaporators being at the
same condition for all of the refrigerants. Attempts to enhance COP using the internal heat
exchanger with R290 failed. As opposed to improving COP, internal heat exchange produced
performance degradation. The COP degradation was due to superheated conditions at the outlet of
the heat exchanger on the vapor side and the added pressure drop of the internal heat exchanger.
The same held for R290 in the cooling case. Additional testing should be performed with R290
and the R32/290 mixture over a wider range of temperature lifts (pressure ratios). This would
allow a more informed comparison of the COP characteristics of these mixtures.
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