
 1

Fast automatic registration of range images from 3D imaging systems

using sphere targets

Marek Franaszek∗,1), Geraldine S. Cheok1), and Christoph Witzgall2)

Construction Metrology and Automation Group1),

Mathematical and Computational Sciences Division2),

National Institute of Standards and Technology, Gaithersburg, MD 20899 USA

Abstract

The use of 3D imaging systems (e.g., laser scanners) in construction has grown significantly in the

past decade. Range images acquired with such systems often require registration. This paper describes an

automatic method to rapidly locate spheres and perform a registration based on three pairs of matching

points (centers of fitted spheres) in two range images. The proposed method is directly applicable for

regularly gridded datasets obtained with instruments that are typically used for construction applications

and whose maximum ranges are greater than 50 m. A lab was scanned from two locations at three different

scan densities. Four spheres were located in the lab, and the total number of points hitting the four spheres

was a small fraction (< 0.01 %) of all the points in the dataset. At the highest scan density, the registration

of two datasets with 6.4 x 106 and 3.4 x 106 points is obtained in less than 30 s. At the medium scan

density, two range images with 1.6 x 106 and 0.8 x 106 points can be registered in less than 2 s.

Keywords: 3D imaging system, automated object recognition, sphere fitting, target-based registration

∗ Corresponding author. Tel: +1 301 975 6408; fax: +1 301 869 6275. E-mail: marek@nist.gov

 2

1. Introduction

The applications for three-dimensional (3D) imaging systems are widespread and

include generation of 3D models, surveying and mapping, reverse engineering, quality

control, forensics, autonomous vehicle navigation, and historic preservation. 3D imaging

systems are line-of-sight instruments [1], and thus, parts of a scanned scene which are

occluded from one instrument position need to be obtained by positioning the instrument

at other locations to fill in the missing data. Therefore, to build a 3D model of an scanned

object or scene, registration of all point clouds to one coordinate system is required [2].

A registration process can consist of two parts: 1) an initial estimate of

transformation parameters so the two coordinate systems are roughly aligned; 2) final

tuning of the transformation parameters. The first task can be performed either fully or

semi-automatically, with some user intervention (e.g., manual identification of

features/points common to both datasets). This task can be accomplished either with or

without the use of targets. Depending on the application, the initial estimate may be all

that is required. The second task is usually performed automatically using algorithms

such as ICP (Iterative Closest Point [3]). Although accuracy of the registration is the

ultimate goal, the main concern for an initial, automatic registration is the execution time

because large datasets need to be searched quickly. In the second part, the focus is shifted

from algorithm speed to the accuracy of the final transformation.

Target-free registration is the desired goal for registration. The obvious reasons

being that placement of targets in a scene may not be possible and placement of targets

 3

require planning and set-up time. The algorithms which perform automatic target-free,

pair-wise registration generally follow one of two main strategies: 1) automatic

identification of local features (e.g., planes, lines, surface patches, curvatures) common to

both datasets [4-8]; or 2) maximization of the correlation of global characteristics (e.g.,

Extended Gaussian Images) [9]. The performance of the first strategy depends on the

presence of selected features in images to be registered and therefore the strategy is not

well generalized (e.g., datasets which do not contain features used earlier to train a

classifier are prone to many mismatches). The second strategy requires relatively large

overlap regions. Thus, the time for planning and placing targets for targeted registration

may be offset by the additional scans necessary due to the need for large overlap regions

needed for target-free registration. The algorithms that perform the target-free registration

may be fast (run time of a few seconds for large datasets [8]) but both strategies require

preprocessing of the data to segment the images and extract features or geometric

primitives which requires extra time [10] (on the order of minutes). Until issues such as

large overlap regions, the ability to quickly segment the data for identifiable features, and

assurance that target-free registration is as accurate and robust as target-based registration

are resolved, target-based procedures are more commonly used for initial registration.

Two types of targets are in use: planar or 3D targets. The use of targets for pair-

wise registration requires a tradeoff between two conflicting conditions: 1) targets should

be well distributed within the measurement volume; 2) two scans to be registered should

have small overlap region (to reduce data acquisition time). Planar targets with high

contrast or highly reflective regions are commonly used. Reflective targets enable quick

and automatic target identification based on the returned intensity values. However,

 4

planar targets do not allow direct registration of two datasets with small overlap unless

they are re-oriented to face the instrument (stick-on planar targets cannot be re-oriented

and therefore requires the placement of more of these targets [11]). The registration of

scans with several intermediate viewpoints can cause accumulation of registration error

and the manual re-orientation limits the application of 3D imaging systems in a fully

automated environment.

The most common type of 3D target (the second type of targets) is a sphere as it

remains the same from different viewpoints. Properly placed sphere targets can be seen

from more viewpoints without the need to re-orient the spheres and this gives a user more

flexibility in locating an instrument and to reduce the number of required scans [12].

Correctly identified spheres in two or more datasets provide a well defined set of

common points (sphere centers) which may be used for registration [13-16]. As long as at

least three common spheres are identified in every acquired data set, all scans (regardless

of the amount of overlap region) can be directly registered to the same coordinate system,

without the need for intermediate registrations. Commercial software packages

commonly include a registration algorithm based on sphere targets but these packages

require a user to identify the spheres. Some of these packages require separate high

density scans of each sphere in addition to the actual scan of the entire scene. Such an

approach severely limits the application of 3D imaging systems in a fully automated

environment. The goal of the current study is to introduce a fast algorithm which

automatically extracts three pairs of matching points (sphere centers) from two datasets,

without prior scanning of individual spheres. Once the three common points are found, a

transformation relating the two coordinate systems can be determined.

 5

Automatic registration based on 3D targets requires a quick and reliable

procedure to find the targets in a large range image. Automated target recognition (ATR)

from data acquired by 3D imaging systems has been studied by many researchers [17].

Different approaches have been developed, like fuzzy scene matching [18], adaptive

texture representation [19], maximum-likelihood surface estimator [20], or methods

based on segmentation [21, 22]. Many approaches rely on surface fitting procedures with

a variety of error functions used [23, 24]. Automated retrieval of CAD model objects

specifically in construction range images has also been studied [25]. These procedures

usually deal with large targets which occupy a substantial part of the scanned scene or

they locate small targets which move with respect to the surrounding background.

However, targets used for registration do not move. Additionally, they occupy a small

portion of a scanned scene, and they are, therefore, prone to noise and having only a few

measurements on the target. Because of this, currently available procedures cannot

identify such targets quickly.

Raw data acquired by 3D imaging instruments are in a format of 2D images with

measured range value rm,n = r(θm, φn) assigned to every (m,n) pixel, and (θm, φn) are

elevation and azimuth angles at which a given range is recorded. From these 2D images,

datasets containing Cartesian coordinates um,n = [xm,n ym,n zm,n] are exported and available

to a user for further processing. We developed the algorithm for datasets measured on a

regular grid, i.e. all data points um,n can be indexed by a pair (m,n), where m=1,…, Mmax

and n=1,…, Nmax. If a point cloud is unstructured and sequentially recorded points ui =

[xi yi zi] cannot be mapped on um,n (because of ‘holes’ in the gridded data for some

(θm, φn) due to the lack of a return signal), then the dataset needs to be preprocessed (e.g.,

 6

using a binning procedure) so the correspondence between ui and um,n can be established.

We will not discuss this preprocessing procedure further and assume the dataset is on a

regular 2D grid. It should be noted that every target finding procedure, including the one

proposed in this paper, has to deal with the problem of unstructured datasets.

Our algorithm is able to rapidly and automatically locate spheres and to register

two large datasets (each containing several millions of points) in less than 30 s using the

fitted sphere centers. The algorithm checks every data point in both datasets as a possible

sphere center. Checking every data point is necessary as sphere targets inserted in a

scanned scene are generally represented in a dataset by a small fraction of all data points

(below 0.01 %). In addition, range images obtained with 3D imaging instruments contain

many discontinuities. Thus, any other strategies which look for sphere centers by

checking only some selected search paths are at risk of missing the true sphere location.

On the other hand, if the sphere targets represent more than, say 5 % of all data points,

then there may be more efficient algorithms for locating the spheres than ours.

The paper is organized as follows: in section 2 the algorithm is introduced, in

section 3 the choice of algorithm parameters is discussed, in section 4 the experiment is

described, the results are presented in section 5, and section 6 presents a discussion of the

results and conclusions.

2. Algorithm

Our proposed algorithm consists of two major steps: 1) Automatic location of

spheres: for every dataset, a list of possible candidates of sphere centers is created (list

 7

includes both true and false positives); 2) Registration: for every pair of datasets which

are subject to registration, a pair of congruent triangles is determined. All vertices of a

single triangle are chosen from one list of candidates and the selected pair of triangles

minimizes a defined error function. Then, the isometry which transforms one triangle into

another is the initial transformation that yields an initial estimate of the registration of one

dataset to another.

2.1 Automatic Location of Spheres

The core of the automation is the location of the spheres. Step 1 of the location

algorithm can be partitioned into six functional blocks: a) Three Points Filter: a quick

search for an initial list of candidate sphere centers; b) Geometrical Constraints Filter:

calculation of the error function and other features (available as output resulting from the

error calculation) for every accepted candidate and keeping only the points which have

feature values satisfying certain user defined conditions; c) Selection of unique sphere

centers (two or more points retained in the previous step can belong to the same sphere

and they are not considered as unique centers); d) Sphere Fitting: refinement of sphere

locations by running an optimizer; e) Data-free Zone Filter: extension of the Three Points

Filter; f) Sorting: sort resulting list based on error values. These steps are described in

more detail in the following sections.

Step 1A: Three Points Filter

 8

Spheres used for target-based registration are placed in such a way that they can

be seen from different scanner positions. This implies there has to be some free space

around each sphere to ensure the view is not obstructed by other objects. This property

can be used as a filter - those points which don’t have this feature can be eliminated as

candidates of sphere centers. For every range rm,n measured by a 3D imaging instrument

at elevation and azimuth angles (θm, φn), a proxy sphere of known radius R is placed in

Cartesian coordinates at the location given by a vector Um,n = [Xm,n Ym,n Zm,n], defined by

nm

nm
nmnm r

rR

,

,
,,

+
= uU (1)

where vector um,n = [xm,n ym,n zm,n] is defined by the Cartesian coordinates of a point in

the dataset and

2
,

2
,

2
,, nmnmnmnm zyxr ++= (2)

is the measured range. This defines a circular cone with an apex at the scanner center and

aperture equal to 2βm,n (see Fig. 1), where

nm
nm rR

R

,
,)sin(

+
=β (3)

If there is indeed a sphere centered at Um,n, then there should be no other points in the

region around this sphere. This region is bounded by four user selected constants: outer

and inner radius Gmax and Gmin (see Section 3 for the reason why Gmin is greater than R)

and the range limits Dmin and Dmax, see Fig.1. These constants are used for all points

um,n in a dataset.

 9

This step of the algorithm is repeated for every point in a dataset and in order to speed up

the process, we check only three selected points in the marked region. In Fig.1b, these

points are marked as small squares corresponding to three points from dataset located at

um,n-T , um,n+T and um+T,n. Index T is calculated as

δγ= nmT , (4)

where δ is the angular increment used in scanning and

()RrG nmnm +=γ ,min,)sin((5)

Spheres used as targets for registration are generally placed in such way that Gmin << rm,n

and small angle approximation can be used in (5). When different angular increments δθ

and δφ are used for scanning along the elevation and azimuth directions, then two

different indices Tθ and Tφ have to be used. If any of the three ranges rm,n-T , rm,n+T or

rm+T,n falls within the limits (rm,n - Dmin , rm,n + Dmax), then Um,n is rejected as a possible

sphere center, otherwise a corresponding point from dataset um,n is accepted and kept for

further processing. The size of the region marked in Fig. 1 depends on two factors: 1)

Fig.1 Geometrical relations used in the algorithm: a) top view of the scanner and sphere – the
processed data point is shown as Point A at distance rm,n = r(θm, φn) from the scanner. The grey
region around a sphere target should not contain data points; b) view from instrument in scanning
direction - the light grey represent the same region as shown in Fig. 1a, the three small squares
correspond to three data points checked in step 1A. Small circles in grey region represent all other
data points checked in step 1E. Sphere center located at (θm, φn, R+rm,n).

a) b)
Gmax

Rrm,n

rm,n- Dmin

Gmin

2βm,n

rm,n+ Dmax

GminGmax

R
θm

φnφn -T φn +T

θm + T

A

a) b)
Gmax

Rrm,n

rm,n- Dmin

Gmin

2βm,n

rm,n+ Dmax

GminGmax

R
θm

φnφn -T φn +T

θm + T

A

 10

how the sphere is mounted to the base; 2) where it is placed. Fig. 2a,b show examples of

two different mountings and how they affect the value of inner radius Gmin. Fig. 2c,d

show how good or bad sphere placement may impact the choice of the three other

parameters: in Fig. 2c Gmax, Dmin and Dmax can be large while in Fig.2d they all have to be

small. Generally, it is advantageous to place all spheres in such way that the grey region

marked in Fig.1 is as large as possible. Detailed discussion on the choice of these and

other parameters is given in section 3.

Step 1B: Geometrical Constraints Filter

For every point um,n from a dataset which passed the test from step 1A, a cone

depicted in Fig. 1a can be defined. Three different categories of points may be

distinguished from points inside the cone: category A points are located behind the

sphere and are shadowed by it (squares in Fig. 3); category B points are in front of the

sphere (triangles in Fig. 3); and category C points are hits on the sphere surface (indicated

by dots). Due to noise, points in category C will not lie perfectly on the surface of the

sphere but are scattered within a small distance on both sides of its surface. Assignment

of points to category C and B depends on the user defined parameter ψ which specifies

Fig.2 Different sphere mounting: a) sphere on a single stem, parameter Gmin is related to sphere
radius R; b) sphere inside a ring, Gmin is related to outer radius of a ring. Image in c) shows an
example of good sphere placement, with a lot of free space around the sphere, while d) shows an
example of bad sphere placement in a cluttered part of the scanned scene.

a) b) c) d)a) b) c) d)

 11

the maximum allowed deviation of experimental points from the surface of the front

hemisphere. A rule for choosing the right value of ψ is discussed in section 3. All points

within the cone which have ranges larger than rm,n + 1.5R are assigned to category A. All

points with ranges smaller than rm,n - ψ are assigned to category B.

All points within the cone are in category C if their ranges satisfy |rm,n – tm,n| ≤ ψ, where

(θm, φn, tm,n) is a point on the front hemisphere. Those points are shown in Fig.3 inside

both grey regions and only they contribute to the error function defined by

cnmnm NPErr)()(,, UU = (6)

with

∑
=

−−+−+−=
cN

j
nmjnmjnmjnm RZzYyXxP

1

22
,

2
,

2
,,])()()([)(U (7)

where a location of sphere center Um,n = [Xm,n Ym,n Zm,n] is related to the currently

processed data point um,n by (1) and uj = [xj yj zj] is the location of j-th data point from

category C and Nc is the total number of points in category C.

Fig.3 Selecting points inside a cone for sphere fitting: only points in the category C contribute to the
error function. Dark grey region is determined by the level of instrument noise σ, light grey region
extends beyond dark grey and is determined by parameter ψ, where ψ = S σ with 3 ≤ S ≤ 5. All points
in the category C are located within both grey regions.

R

2σ
2ψ

category A

category B

category C

R

2σ
2ψ

category A

category B

category C

 12

At any arbitrary location Um,n , all three categories are usually present. However,

if the point is the center of a true sphere, there cannot be any points (category A points)

behind it. This cannot be said about the points from category B as a true sphere may be

partially occluded by other objects which are located between the sphere and the scanner.

In addition to the error function, a fill ratio Fill(Um,n) is calculated

conecnm NNFill =)(,U (8)

where Ncone is the total number of points inside a cone. After step 1B is completed, only

those points are kept for which the number of points in category A is zero, Nc > Nmin and

Fill(Um,n) ≥ Tfill , where Nmin and Tfill are user-defined thresholds. A discussion on the

choice of these two parameters is given in section 3.

Step 1C: Selection of Unique Sphere Candidates

All unique minima of the error function are determined from the points accepted

in step 1B - subset 1B. First, from subset 1B, the point Um1,n1 with the smallest error

function is set as the global minimum. Next, all points in subset 1B are checked, and if

their distance to the minimum Um1,n1 is smaller than R, then these points are flagged.

Next, the location of a new minimum Um2,n2 is determined from the remaining points in

subset 1B (i.e., points that have not been flagged thus far) and again, all points closer than

R are flagged. The process continues until all points in subset 1B are exhausted. The final

outcome of this step of our algorithm is a list of K points {Um1,n1 , Um2,n2 ,…, UmK,nK}

which defines a set of possible candidates for approximate locations of the sphere centers.

Step 1D: Sphere Fitting

 13

Every point from the output list from step 1C becomes a starting point for a

sphere fitting procedure. We use the error function defined by (6) and (7) for which an

analytical expression for the gradient can be easily derived. We use the standard quasi-

Newton optimization procedure as described in [26]. During the optimization, a sphere is

fitted to the same set of Nc points from category C determined in step 1B. It should be

noted that starting points for the fitting procedure are located at the nominally measured

coordinates Um,n = [Xm,n Ym,n Zm,n] while the final optimized sphere locations may have

any location Uk = [Xk Yk Zk] (k=1,…,K) which need not coincide with the nominal values

and may be somewhere in between them.

Step 1E: Data-free Zone Filter

We repeat the check similar to that performed in Three Points Filter, but this time

the region marked in Fig.1 is centered only at the K points corresponding to the locations

of minima Uk determined in step 1D. More precisely, for every Uk, the closest Up,q related

to data point up,q by (1) is found, and the region defined by the four parameters Gmin,

Gmax, Dmin and Dmax is established, as in step 1A. Now, every point marked by a small

circle in the grey region in Fig.1b can be checked. If there is a true sphere located at

Uk, then not only three points marked by small squares in Fig.1b should have ranges

outside the interval (rp,q - Dmin , rp,q + Dmax) but the same should apply to all points

marked as circles. If this is not true for any candidate sphere center Uk then this candidate

is rejected. This step may further cut the list of possible candidates to N points where

N ≤ K.

Step 1F: Sorting

 14

Finally, the list of all Un candidates, n=1,…, N, is sorted in increasing order of

final error values which were determined in the optimization step 1D. This completes the

first major step of our algorithm.

Steps 1A-1F are repeated for every dataset. Once a list of possible sphere centers

is determined for every dataset, the step 2 is performed. Initial registration of one dataset

to another is done by finding three pairs of matching points from the corresponding two

lists obtained from step 1.

2.1 Registration

The task of registration is to transform two datasets so that they have a common

coordinate frame. After the locating algorithm has produced a list of candidate spheres in

a scan, it needs to be determined which of these spheres represents an actual target, and if

so, which particular target. Once corresponding sphere centers have been determined, the

desired rigid-body transformation can be easily determined. This whole procedure, Step

2, is described below and can be further subdivided into four functional blocks.

Step 2A: Match Paired Points

Two lists of possible sphere centers)1(
1nU and)2(

2nU , n1 = 1,…, N (1) and n2=1,…, N

(2), are read, together with the corresponding residual error values determined in step 1D.

Then, a list of matching pairs)1(
, jid and)2(

,lkd is created, where)1(
, jid is the distance between

)1(
iU and)1(

jU , and similarly)2(
,lkd is the distance between)2(

kU and)2(
lU . A pair ()1(

, jid ,)2(
,lkd)

 15

is added to a list when both i and k are less than the total number of true spheres M and

|)1(
, jid -)2(

,lkd | < ε, where ε is a user defined threshold. The condition imposed on i and k

restricts matching distances to only those pairs of points which have one point chosen

from the top M possible sphere centers, no restriction is set on a second point, i.e. 1 ≤ j ≤

N (1) and 1 ≤ l ≤ N (2). Both list)1(
1nU and)2(

2nU are sorted by increasing error value, and so,

it is reasonable to expect at least one true sphere center among the first M candidates on

each of the lists. The parameter ε is a tolerance threshold for matching)1(
, jid with)2(

,lkd and

it depends on how good the sphere fitting is at)1(
iU ,)1(

jU ,)2(
kU and)2(

lU : if ε is selected too

low, it can lead to a rejection of legitimate pair ()1(
, jid ,)2(

,lkd) and if ε is too large value, it

can cause spurious matches to be included. The choice of ε is discussed in section 3. The

final list should only contain unique pairs, i.e.)1(
, jid is considered the same as)1(

,ijd .

Step 2B: Determine Congruent Triangles

Based on the list of pairs ()1(
, jid ,)2(

,lkd) output from step 2A, a separate list of pairs

()1(
pΔ ,)2(

qΔ) of congruent triangles is created. Each triangle is defined by its three vertices,

)1(
pΔ = ()1(

iU ,)1(
jU ,)1(

pU) and)2(
qΔ = ()2(

kU ,)2(
lU ,)2(

qU). For each triangle, the lengths of two

sides are calculated, i.e. for)1(
pΔ , in addition to the already calculated)1(

, jid ,)1(
, pid and)1(

, pjd

are determined. Similarly, for triangle)2(
qΔ its side lengths)2(

,qkd and)2(
,qld are calculated. A

pair of triangles ()1(
pΔ ,)2(

qΔ) is added to a list when one of the two conditions is fulfilled: 1)

 16

|)1(
, pid -)2(

,qkd | < ε and |)1(
, pjd -)2(

,qld | < ε, or 2) |)1(
, pid -)2(

,qld | < ε and |)1(
, pjd -)2(

,qkd | < ε (at this

stage, the correspondence of the vertices of)1(
pΔ and)2(

qΔ has not been established yet).

Step 2C: Select Best Matched Pair of Triangles

For every pair ()1(
pΔ ,)2(

qΔ) of triangles on the list, an error function is determined as

)()()()()()(),()2()2()2()1()1()1()2()1(
qlkpjiqp ErrErrErrErrErrErrE UUUUUU +++++=ΔΔ (9)

where individual errors (Err) are output from the optimization performed at step 1D.

Then, a pair with the smallest value),()2()1(
ppE ΔΔ is selected for final processing.

Step 2D: Match Corresponding Vertices

In order to determine the parameters of the transformation which relates)1(
pΔ

to)2(
qΔ , a unique correspondence between vertices of both triangles has to be known. In

each of the two triangles, the longest side is found. This side, defined by two vertices,

determines uniquely the third vertex. Thus, the first pair of matching vertices (a(1), a(2)) is

determined. In a similar fashion, the next longest side and a vertex laying opposite to that

side is found for both triangles. After the second pair of matching vertices (b(1), b(2)) is

determined, there is no more ambiguity and the correspondence between (a(1), b(1), c(1))

and (a(2), b(2), c(2)) is established and parameters of the sought transformation can be

calculated. It should be noted that this procedure is applicable only to scalene triangles.

3. Choice of parameters

 17

Our algorithm requires the following nine parameters to be specified: R, Gmin,

Gmax, Dmin, Dmax, ψ, Nmin, Tfill and ε. The choice of these nine parameters is a sensitive

issue because some of them are interdependent. The algorithm requires careful planning

prior to data acquisition to ensure that the input parameters are within their domain of

applicability.

We assume that two factors are known at the onset: 1) the manufacturer reported

uncertainties of the 3D imaging instrument; 2) the selected scan density (angular

increment δ). Based on these two fundamental factors, the nine parameters used in the

algorithm can be estimated. The noise level, σ, for an instrument is usually manufacturer

specified, and σ can be used to select the sphere radius, R. We suggest that the ratio σ/R <

0.1 where σ is the largest specified value.

Once the radius is known, parameter ψ can be estimated. This parameter should

be large enough to avoid rejection of legitimate hits on a sphere from category C. On the

other hand, it should be small enough to exclude points in category C which clearly

belong to category A or B. Thus, ψ should be some multiple of the noise level σ. We

recommend calibrating the instrument so the noise dependence on measured range σ(r) is

known and then use ψ(r) = S σ(r) with 3< S <5.

Knowing the sphere radius and sphere mounting, the inner radius Gmin can be

determined. In order to avoid any interference from mixed pixels (which yield a spurious

range reading when a laser beam hits the edge of an object) we suggest setting Gmin =

1.5D0. For spheres similar to that shown in Fig.2a, D0 = R while for the type of mounting

shown in Fig.2b, D0 is the outer radius of the ring on which the sphere is mounted. Of the

two types of sphere mountings, the one shown in Fig. 2a is preferable as it does not

 18

require re-orientation of the sphere from different instrument locations and there will be

no points from the outer ring. For other types of mounting, D0 needs to be defined

appropriately and Gmin can be treated as a constant. Three other parameters: Gmax , Dmin

and Dmax depend on where the sphere is placed or, more precisely, how close it is to other

nearby objects. As mentioned previously, the parameters define the free space around the

sphere which should be as large as possible. Fig.2d shows an example of bad sphere

placement: the sphere is located next to a forklift which forces Gmax and Dmax to be small.

Similarly, a cone in front of the sphere prohibits a choice of large Dmin. Low values of

these parameters could cause a large number of false positives as many data points would

pass the test in step 1A. Conversely, the selection of large values for Gmax, Dmin and Dmax

would reject candidate sphere centers if a sphere were placed as in Fig.2d. The user often

has flexibility when placing the sphere targets and we recommend the following lower

bounds to be satisfied for every sphere: Gmax ≥ 2.0 D0, Dmin ≥ 9R and Dmax ≥ 3R.

The next parameter needed in our algorithm is ε - the upper bound for the length

tolerance which is used when searching for congruent triangles. This parameter should be

related to the magnitude of the error in sphere center location but without explicit

knowledge of that error, we recommend setting ε = 0.5R.

The parameters we discussed so far all depend on the instrument noise level σ.

The remaining two parameters: Nmin and Tfill depend on the scan density. An upper limit

on the distance from the instrument to the sphere is rmax and is defined when βm,n (Fig. 1)

is equal to the angular increment δ. From (3), rmax can be derived by setting βm,n equal to

δ which leads to

δ= Rrmax (10)

 19

provided that δ is small and small angle approximation can be used. If the distance

between a sphere and a scanner is larger than rmax, then the total number of all data points

inside the cone (including all points in category C) cannot exceed 5, see Fig.4. This

increases the risk of detecting false positives with a very low value of error function as

obtained from (6) and (7). Therefore, we set the lower bound for points in category C to

Nmin = 7. This means that the largest actual distance between the instrument and the

sphere accepted by major step 1 is limited to rmax.

The last parameter Tfill could be set, in theory, to its maximum value of 1.

However, there are two reasons why this should be avoided. First, the scanner may need

to be placed in a location where a sphere is partially occluded and large Tfill could reject a

legitimate sphere center. Second, a high value for Tfill requires that the value of ψ also be

large so all points from category C are correctly classified. However, large values of ψ

will lead to many false positives and such a situation should be avoided. The combination

φn

θm

δ

δ βm,n

φn

θm

δ

δ βm,n

Fig.4 Geometric relations used to define parameter rmax. If a true sphere center is located at (θm, φn,
R+rm,n) then the largest possible number of hits on a sphere cannot exceed 5 for rm,n > rmax. For rm,n
equal to or even slightly smaller than rmax the actual number of hits may be as low as 3 if the sphere
center (marked by a cross) does no coincide with nominal experimental bearings (θm, φn).

 20

of small or medium values of ψ and high Tfill increases the risk of rejecting spheres

whose distances to the scanner approach rmax . Such spheres will have a low number of

points in category C (Nc) and even one or two points incorrectly excluded from this

category will yield a substantial drop in the value of the Fill parameter. This, in turn, will

cause rejection of such spheres when Tfill is large. On the other hand, too low a value of

Tfill will also generate many false positives, and we, therefore, suggest keeping this

parameter between moderate limits, like 0.5 ≤ Tfill ≤ 0.7.

4. Experiment

Four anodized aluminum spheres, shown in Fig.2b, with radius R = (76.2 ± 0.5)

mm and external radius of the mounting ring D0 = (127± 0.5) mm, were placed

throughout the laboratory. The lab [42 m (Length) x 10 m (Width) x 7 m (Height)] was

scanned with a 3D imaging system from two different positions (see Fig. 5) with the

sphere locations fixed. The 3D imaging system has a manufacturer specified range

uncertainty of ± 10 mm. At each instrument position, three angular increments were used

(δ=0.14º, 0.08º and 0.04º). Table I summarizes the experimental settings. In addition,

every sphere was scanned individually at an angular increment 0.004º yielding high

density datasets. In all scans, the same angular increment was used for both azimuth and

elevation angles. The data from the individual sphere scans were manually segmented

and used to fit spheres. The resulting sphere centers were used as ground truth for

verifying the locations of the spheres calculated in the first step of our algorithm on the

datasets of the entire scene.

 21

The residual values of the error function resulting from the sphere fitting of the

individual sphere datasets scanned with δ = 0.004º were used to develop a relationship

between the instrument noise and range, shown in Fig.6.

To determine the sensitivity of the parameters, all six datasets (three angular

increments in two scanner positions) were processed using the following ranges for the

input parameters: S = {3.0, 3.5, 4.0, 4.5, 5.0}, where S is the scale factor between ψ(r)

and σ(r), Tfill = {0.55, 0.60, 0.65, 0.7}, Dmin = {9R, 12R}, Dmax = {3R, 4R}, Gmax = {2D0,

2.5D0}, Nmin = 7 and Gmin = 1.5 D0, which totals to 160 different combinations of

Fig.5 Schematic plan showing locations of four spheres (marked by dots) and a scanner (triangle)
placed in two scanning positions Pos1 and Pos2. Semicircles around a scanner indicate the field of
regard.

D

C

B

A
12.6m

8.9
m

25.2m
18.5m

Pos1

D

C

B
A6.9m

6.6m
26.1m 12.3m

Pos2

D

C

B

A
12.6m

8.9
m

25.2m
18.5m

Pos1

D

C

B
A6.9m

6.6m
26.1m 12.3m

Pos2

Table I. Summary of experimental settings. For two scanner positions Pos1 and Pos2, #pts/col and
#pts/row is the number of data points per column (elevation) and per row (azimuth). Tcpu is the
longest time (among all runs with different parameters) needed to process step 1 for a given dataset.

Angular Pos1 Pos2

Increment [º] #pts/col #pts/row total #pts Tcpu [s] #pts/col #pts/row total #pts Tcpu [s]

0.04 1 176 5 526 6 498 576 21.5 701 4 926 3 453 126 3.6

0.08 590 2 764 1 630 760 1.6 352 2 464 867 328 0.3

0.14 339 1 581 535 959 0.2 203 1 409 286 027 0.05

 22

parameters. In addition, a more detailed study of the two most sensitive parameters, Tfill

and S, was done. A grid of 50x50 points on [Tfill S] plane was built with 0.55 ≤ Tfill ≤ 0.7

and 3.0 ≤ S ≤ 5.0 with the remaining parameters fixed: Dmin = 12R, Dmax = 4R, Gmax =

2.5D0, Nmin = 7 and Gmin = 1.5 D0. For each of three angular increments δ, the second

major step of the algorithm was run on a pair of two lists of possible sphere centers

)1(
1nU and)2(

2nU , corresponding to the two instrument locations. Step 2 was repeated for

every list of pairs ()1(
1nU ,)2(

2nU) created by step 1 for each combination of input parameters.

The only input parameter required in step 2 was ε and it was kept constant at 0.5R. The

output of step 2 is a pair of congruent triangles ()1(
pΔ ,)2(

qΔ). If all three vertices of the first

triangle were close to three true sphere centers in a first coordinate system and the same

was valid for the second triangle in a second system, then the algorithm was successful

Fig.6 Residual values of error function of sphere fitting versus scanner-sphere distance. Labels
A1,…, D2 correspond to spheres scanned in two instrument positions Pos1 and Pos2, as shown in
Fig.5. The regression line was used to model the relationship between instrument noise σ and range r.

Err(r) / R = 0.135r + 6.382

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

0 5 10 15 20 25 30 35
range r [m]

E
rr

 /
R

[%

]
A1

A2B2

C2 C1

D1
B1

D2

 23

for a given combination of input parameters. Otherwise, the algorithm failed for that

particular combination of input parameters.

5. Results

For both datasets, one from each instrument location, scanned with an angular

increment δ = 0.04º, all 160 runs of the algorithm finished successfully, i.e., three

matching sphere centers in both scanner positions were identified correctly. The same

held for all 2500 runs while only varying parameters (Tfill , S) with the other parameters

fixed. For δ = 0.08º, the algorithm finished successfully in 78/160 combinations of input

parameters. A graph showing the performance of the algorithm on [Tfill S] plane is shown

in Fig.7.

For the largest angular increment δ = 0.14º, none of 160 sets of input parameters

yielded successful results. Similarly, all 2500 pairs of (Tfill , S) parameters failed to

identify the three common sphere centers in both coordinate systems. Execution time Tcpu

of step 1 was recorded (without input/output operations). For a given dataset, the time

varied slightly for different sets of input parameters. The largest value of Tcpu recorded

for every processed dataset is shown in Table I. The total time needed to estimate an

initial transformation between two coordinate systems is equal to)2()1(
cpucpu TT + , where

)1(
cpuT and)2(

cpuT are times needed by step 1 of the algorithm to process a dataset acquired in

the first and the second coordinate system, respectively. The processing time for step 2 is

negligible (maximum time below 0.01s). All computations were performed on a PC with

a 3.0 GHz processor.

 24

Fig. 8 shows the 2D intensity images of three regions of the lab section scanned

with an angular increment of 0.04º from Pos1. Fig. 9 shows an overall perspective 3D

view of the point cloud of the scanned scene. Fig. 10 presents four point clouds zoomed

in on the individual spheres scanned from Pos1. For the cases when spheres were

identified, the maximum calculated distance between the fitted sphere center and the

ground truth was 0.05R or 3.81 mm.

6. Discussion and conclusions

The presented results demonstrate that the proposed algorithm can be useful in

automating target-based registration when used with properly selected input parameters.

The initial transformation needed to register two large 3D imaging datasets (6.4x106 and

3.4x106 points for δ = 0.04º) can be performed in less than 30 s. For smaller datasets (1.6

x106 and 0.8 x106 points for δ = 0.08º), the required processing time is less than 2 s. We

have provided a set of rules to guide the choice of input parameters. Performance of the

Fig.7 Performance of the algorithm as a function of Tfill and S on datasets acquired with δ = 0.08º, all
other parameters were fixed. Light grey regions mark successes while dark grey regions were failures.

0.56 0.58 0.6 0.62 0.64 0.66 0.68
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

S

Tfill

0.56 0.58 0.6 0.62 0.64 0.66 0.68
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

S

Tfill

 25

algorithm beyond the bounds investigated in this paper needs to be examined in future

work.

For two instrument locations, the pair of matching triangles is expected to be

{A(1), B(1), C(1)} and {A(2), B(2), C(2)}. This pair should have the smallest value of error

function defined by (9) because D(2) is farther away from the scanner than A(1) and Fig.7

shows that the sphere fitting error increases with range. Based on this observation, it is

useful to define the largest distance, Rmatch, between a vertex from the matching triangles

and the corresponding instrument location. From Fig.5, Rmatch = 25.2m for sphere A(1).

D
C

a)

c)

b)

B

A

Fig.8 2D intensity images from the scans obtained with an angular increment 0.04º. Shown are three
regions of the lab scanned from position Pos1: a) sphere D (mounted on tripod); b) sphere C on top of
a cabinet; c) spheres A and B. Sphere B is partially occluded by a steel column. White arrows point
toward color patches marking no-data regions, all spheres occupy less then 0.01 % of the scanned
scene.

 26

Parameter Rmatch is related to the parameter rmax given by (10), and they both should be

used in planning the locations of the spheres and instrument as well as the number of

required spheres M prior to conducting the scans. We recommend that Rmatch < rmax/2

based on the observations presented in the following paragraph.

The algorithm failed for all tested input parameters for datasets acquired with the

largest angular increment δ = 0.14º. It is not surprising because for this δ, the

corresponding value of rmax is 31 m and the condition Rmatch < rmax/2 is violated (Rmatch is

greater than rmax/2 by 60 %). Conversely, for the smallest δ = 0.04º, the corresponding

rmax is 109 m. In this case, the condition is satisfied and the algorithm succeeds for all 160

combinations of the input parameters. For the intermediate δ = 0.08º, the corresponding

rmax = 54 m and the condition Rmatch < rmax/2 is also violated but in this case, Rmatch is

greater than rmax/2 by 7 % . In this case, for about 50 % of the cases, the algorithm was

still able to correctly match the three sphere centers in both coordinate systems. It should

Fig.9 Perspective view of the 3D point cloud representing the dataset scanned from position Pos1,
angular increment 0.04º.

D

C

B
A

 27

be noted that the region where the algorithm was successful, contains a compact subset

on [Tfill S] plane defined by 0.55 ≤ Tfill ≤ 0.6 and 3 ≤ S ≤ 5, (see Fig.7). However, since

the size of this region depends on how much the condition Rmatch < rmax/2 is violated, we

would not recommend using these values and we conservatively suggest that the

condition for Rmatch be met.

Although our algorithm provides an initial registration, it is very close to the final

transformation. This is based on the assumption that if the sphere centers obtained from

C2 C1

C0 C3

B2 B1

B0 B3

A2 A1

A0 A3

D2 D1

D0 D3

Fig.10 Zoomed-in 3D point clouds containing sphere targets scanned from position Pos1. Each row
shows the same sphere, each column represents the same angular increment: 0.004º for images A0-
D0, 0.04º for A1-D1, 0.08º for A2-D2 and 0.14º for A3-D3. Column 0 shows datasets used to define
ground truth and each image in this column displays all points (except B0 where part of the points
occluding a sphere was cropped out). Images in the remaining three columns (1-3) show only a small
part (≈ 0.1%) of the corresponding full dataset. To enhance visualization, pixel sizes were increased
for decreasing scanning density.

 28

the algorithm are close to the ground truth values, then the transformation resulting from

using these sphere centers will be close to the transformation obtained using the ground

truth. The largest deviation between the center and ground truth was 0.05R or 3.81 mm

while the smallest distance between two sphere centers (A and B) was 7.3 m.

Step 2 of the algorithm determines the correspondence between the spheres from

two datasets without any prior knowledge of the distances between sphere centers. If the

distances between the spheres are known, the observed performance of algorithm

improved from 78/160 successes to 128/160 successes for angular increment δ = 0.08º.

For angular increments of δ = 0.04º and 0.14º, this additional knowledge did not change

the success or failure ratio. An example of when the distances between the spheres are

known would be a manufacturing facility where spheres are placed permanently

throughout a facility and an example of when the distances are not known would be a

construction site where placement of objects is temporary by necessity.

The order in which two first components of the step 1 are executed is important:

we first perform a quick check in step 1A and then, for accepted points only, we calculate

the error function given by (6) and (7) in step 1B. Step 1A filters out more than 99.9 % of

all data points in an efficient manner: for every checked data point um,n and

corresponding range rm,n, there are only two floating point operations needed to calculate

the index T in (4) and (5) (Gmin/δ needs to be calculated only once), and a maximum of

six if statements to check the ranges of the selected three points (in fact, since the if

statements are executed sequentially, the corresponding loop is in most cases terminated

after two or three steps). This small number of operations performed in step 1A reduces

the processing even though every point in the dataset is checked. Again, it is emphasized

 29

that it is necessary to check every point because the targets occupy only a small fraction

of the entire scene being scanned and the data contains a lot of discontinuities. Therefore,

other procedures such as the Hough transform or those based on RANSAC approaches

may take longer because they require more operations per data point. If the execution

order of step 1A were swapped with step 1B, much time would be wasted in calculating

the error function for data points which are not potential sphere centers. The number of

operations per data point in our registration using sphere targets is comparable with those

for registration using reflective planar targets. Thus, our algorithm may be an alternative

in the situations when the use of planar targets would require additional scans or

intermediate registrations of data sets with small overlap.

In summary, we have presented an algorithm which can be helpful in automating

target-based registration using spheres. The transformation is determined by finding three

matching points (sphere centers) in two datasets obtained from a 3D imaging system. Due

to its speed, the algorithm may be very useful in automated construction processes which

utilize a 3D imaging system. The algorithm can be very easily parallelized and used in a

control loop together with modern fast scanners.

 30

REFERENCES

[1] W. C. Stone, M. Juberts, N. Dagalakis, J. Stone, and J. Gorman, "Performance
Analysis of Next-Generation LADAR for Manufacturing, Construction, and
Mobility," NISTIR 7117, 2004.

[2] S. Hsu, S. Samarasekera, and R. Kumar, "Automatic registration and visualization
of occluded targets using ladar data " in SPIE Laser Radar Technology and
Applications VIII, 2003, pp. 209-220.

[3] P. J. Besl and N. D. McKay, "A method for registration of 3-D shapes," IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 14, pp. 239-256, 1992.

[4] C. Dold and C. Brenner, "Registration of Terrestrial Laser Scanning Data Using
Planar Patches and Imaga Data," in ISPRS Commission V Symposium 'Image
Engineering and Vision Metrology', 2006, pp. 78-83.

[5] D. F. Huber and M. Hebert, "Fully automatic registration of multiple 3D data
sets," Image and Vision Computing, vol. 21, pp. 637-650, 2003.

[6] T. Rabbani and F. v. d. Heuvel, "Automatic Point Cloud Registration Using
Constrained Search for Corresponding Objects," in 7th Conference on Optical 3-
D Measurement Techniques, Vienna, Austria, 2005.

[7] I. Stamos and P. K. Allen, "Geometry and Texture Recovery of Scenes of Large
Scale," Computer Vision and Image Understanding, vol. 88, pp. 94-118, 2002.

[8] I. Stamos and M. Leordeanu, "Automated Feature-Based Range Registration of
Urban Scenes of Large Scale," in IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2003.

[9] A. Makadia, A. Patterson, and K. Daniilidis, "Fully Automatic Registration of 3D
Point Clouds," in IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2006.

[10] S. W. Kwon, F. Bosche, C. Kim, C. T. Haas, and K. A. Liapi, "Fitting range data
to primitives for rapid local 3D modeling using sparse range point clouds,"
Automation in Construction, vol. 13, pp. 67-81, 2004.

[11] D. Akca, "Full Automatic Registration of Laser Scanner Point Clouds," in Optical
3D Measurement Techniques VI, Zurich, Switzerland, 2003, pp. 330-337.

[12] Y. Reshetyuk, "Investigation and calibration of pulsed time-of-flight terrestrial
laser scanners," in Department of Transport and Economics, Division of Geodesy
Stockholm: Royal Institute of Technology (KTH), 2006.

[13] W. Gander, G. H. Golub, and R. Strebel, "Least-squares fitting of circles and
ellipses," BIT, vol. 34, pp. 558-578, 1994.

[14] J. Garcia-Lopez, P. A. Ramos, and J. Snoeyink, "Fitting a set of points by a
circle," Discrete and Computational Geometry, vol. 20, pp. 389-402, 1998.

[15] C. M. Shakarji, "Least-Squares Fitting Algorithms of the NIST Algorithm Testing
System," Journal of Research of NIST, vol. 103, pp. 633-640, 1998.

[16] C. Witzgall, G. S. Cheok, and A. J. Kearsley, "Recovering Circles and Spheres
from Point Data," in Perspectives In Operations Research, F. B. Alt, M. C. Fu,
and B. L. Golden, Eds. New York: Springer, 2006, pp. 393-413.

 31

[17] J. R. Beveridge, M. T. Stevens, and A. N. A. Schwickerath, "Toward Target
Verification Through 3-D Model-Based Sensor Fusion," Colorado State
University, Fort Collins 1996.

[18] J. Marjamaa, O. Sjahputera, J. M. Keller, and P. Matsakis, "Fuzzy Scene
Matching in LADAR Imagery," in IEEE International Fuzzy Systems Conference,
2001, pp. 692-695.

[19] K. Messer, D. d. Ridder, and J. Kittler, "Adaptive texture representation methods
for automatic target recognition," in Proceedings on British Machine Vision
Conference, 1999, pp. 443 - 452.

[20] R. T. Whitaker and J. Gregor, "A maximum-likelihood surface estimator for
dense range data," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.
24, pp. 1372-1387, 2002.

[21] X. Yu, T. D. Bui, and A. Krzyzak, "Robust Estimation for Range Image
Segmentation and Reconstruction," IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 16, pp. 530-538, 1994.

[22] D. Belton and D. Lichti, "Classification and Segmentation of Terrestrial Laser
Scanner Point Clouds Using Local Variance Information," in Image Engineering
and Vision Metrology, Proceedings from ISPRS Commision V Symposium,
Potsdam, 2006, pp. 44 - 49.

[23] D. Marshall, G. Lukacs, and R. Martin, "Robust Segmentation of Primitives from
Range Data in the Presence of Geometric Degeneracy," IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 23, pp. 304 - 314, 2001.

[24] C. Grönwall, "Ground Object Recognition Using Laser Radar Data," in Linköping
Studies in Science and Technology Linköping, Sweden: Linköpings Universitet,
2006.

[25] F. Bosche and C. T. Haas, "Automated retrieval of 3D CAD model objects in
construction range images," Automation in Construction, vol. 17, pp. 499-512,
2008.

[26] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical
Recipes in C, 2nd Edition: Cambridge University Press, 1995.

