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Abstract.  Motivated by recent efforts to mitigate blast loading using energy-absorbing materials, this 
paper investigates the uniaxial crushing of cellular media in sandwich construction under impulsive 
pressure loading. The cellular core is modeled using a rigid, perfectly-plastic, locking idealization, as 
in previous studies, and the front and back faces are modeled as rigid, with pressure loading applied to 
the front face and the back face unrestrained. Predictions of this analytical model show excellent 
agreement with explicit finite element computations, and the model is used to investigate the influence 
of the mass distribution between the core and the faces. Increasing the mass fraction in the front face is 
found to increase the impulse required for complete crushing of the cellular core but also to produce 
undesirable increases in back-face accelerations. Optimal mass distributions are investigated by 
maximizing the impulse capacity while limiting the back-face accelerations to a specified level. 
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BACKGROUND 
 

Cellular materials such as metal foams and 
honeycombs are being considered in a wide variety 
of structural applications because of their capacity 
to absorb impact energy. Surprisingly, however, 
their use under blast loading has often led to 
enhancement, rather than mitigation, of blast 
effects. Experiments by Hanssen et al. [1] showed 
that increased upswing results from the addition of 
an aluminum foam layer to the face of a massive 
“pendulum” subjected to blast loading. Nesterenko 
[2] noted that in these experiments, the blast 
impulse is imparted primarily to a lightweight plate 
covering the foam layer, leading to significantly 
higher kinetic energy than if the same impulse 
were imparted directly to the more massive 
pendulum. Xue and Hutchinson [3] noted a similar 

effect in a computational study of blast loading on 
sandwich plates, in which the kinetic energy 
imparted to a sandwich plate was observed to be 
greater than for a solid plate of the same mass. In 
spite of this, it was found that deflections of 
sandwich plates could be significantly less than for 
the corresponding solid plate. Xue and Hutchinson 
considered front and back face sheets with equal 
mass but suggested that further reductions in 
deflections might be achieved by increasing the 
mass fraction in the face sheet near the blast. 
 

ANALYTICAL MODEL 
 
Motivated by these observations, an analytical 

model is developed in this paper to investigate the 
influence of mass distribution on the uniaxial 
crushing of cellular material sandwiched between 



rigid layers. The cellular core material is 
represented by the simplified stress-strain 
relationship shown in Fig. 1(b), originally proposed 
by Reid and Peng [4] for modeling crushing of 
wood and subsequently applied to cellular metals 
in a number of studies (e.g., [1,5]). Arbitrary 
masses of the front and back faces are permitted, 
and a pressure pulse p(t) is applied to the front face 
with the back face unrestrained. This sandwich 
model is a generalization of that in [1], which 
considered a fixed back face, and of that in [5], 
which considered front and back faces of equal 
mass with blast loading represented by an initial 
velocity imparted to the front face.  

A strip of sandwich panel with unit cross-
sectional area is considered, with total mass given 
by 1 0 0m m m2ρ= + + , where 0ρ  and  are the 
uncompressed density and thickness of the cellular 
core, and  and  are the areal densities of the 
front and back faces. The acceleration of the center 
of mass, denoted u , follows directly from 
application of Newton’s second law to the strip: 
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Provided the applied pressure is sufficiently high, 
densification of the cellular core commences at the 
front face, and a densification front propagates 
through the core. By conservation of mass, the 
density of the compressed core material is 

0 /(1 )ρ ε− . According to the simplified model of 
Fig. 1(b), the compressed core material moves as a 
rigid body with the same velocity as the front face, 
denoted , while the uncompressed core material 
moves as a rigid body with the velocity of the back 
face, . The stress just ahead of the densification 
front is 

1u

2u

0σ , and application of Newton’s second 

law to the material ahead of the densification front 
then yields the following equation: 
 

0 0 2( 2)x m uσ ρ= +      (2) 
 
where x denotes the thickness of the uncompressed 
core material, and the thickness of the densification 
front itself is assumed to be negligible. By forming 
and differentiating an expression for Gx , the 
distance of the center of mass from the back face, it 
follows that 
 

[ ]{ }2
0 1 0 0 0( / ) ( )Gx m m x x xε ρ ρ= + − −  (3) 

 
Eqs. (1) - (3) can then be combined through the 
relation 2 G Gu u x= +  to yield the following 
nonlinear ordinary differential equation for x: 
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Eq. (4) can be integrated numerically with initial 
conditions 0(0)x =  and . A triangular 
pressure pulse is considered, as shown in Fig. 1(c), 
with total impulse denoted . The following 
symbols are introduced to denote the 
nondimensional peak pressure and total impulse: 
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The following symbols denote the mass fractions in 
the core and in the front and back faces: 

 
0 0 0 / mη ρ= ; 1 1 /m mη = ; 2 2 /m mη =  (6) 

Figure 1. Analytical model definition: (a) Strip of sandwich panel with partially compacted core; (b) Stress vs. 
volumetric strain relationship for core material; (c) Triangular pressure pulse applied to front face. 
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Figure 1. Analytical model definition: (a) Strip of sandwich panel with partially compacted core; (b) Stress vs. 
volumetric strain relationship for core material; (c) Triangular pressure pulse applied to front face. 
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1100.250.50.25sandwich
0.015100.9750.01250.0125pendulum

I∞P0η2η0η1Case

1100.250.50.25sandwich
0.015100.9750.01250.0125pendulum

I∞P0η2η0η1Case

Table 1. Parameters of computational simulations.

 
COMPARISON WITH COMPUTATIONS  

  
The predictions of the analytical model are 

compared with explicit finite element computations 
using LS-DYNA. In the computations, the cellular 
core was represented by a single row of solid 
elements with total thickness  = 5 cm, using 
material model 26 (*MAT_HONEYCOMB) with 

0

0ρ  = 250 kg/m3, 0σ  = 1 MPa, and 0ε  = 0.7. A 
large elastic modulus of E = 700 GPa was used to 
represent the “rigid” portions of the idealized 
stress-strain relationship in Fig. 1(b), and Poisson’s 
ratio was set to zero. The material viscosity 
coefficient μ was set to 0.001, and 150 elements 
were found to be sufficient for convergence.  

The front and back faces were represented in 
the computations by added nodal masses, and two 
different mass distributions were considered, as 
indicated in Table 1. The “pendulum” case 
corresponds to the blast pendulum experiments of 
[1], with the large back-face mass representing the 
pendulum. The “sandwich” case corresponds to the 
sandwich plates of [3] and [5], with equal front-
face and back-face masses.  

In Figs. 2 and 3, computational results are 
compared with predictions of the analytical model, 
and good agreement is observed. Results are 
plotted against nondimensional time, 0( / )i tτ σ ∞= . 
The nondimensional velocities in Figs. 2 and 3 are 

defined as 1 1 /v u v∞=  and 2 2 /v u v∞= , where 
/v i m∞ ∞=  is the final velocity of the center of 

mass. Due to the small mass of the front face, 
much larger nondimensional front-face velocities 
are observed in the “pendulum” case, despite the 
much smaller nondimensional impulse I∞ in this 
case, as shown in Table 1. 

  
INFLUENCE OF MASS DISTRIBUTION  

 
 Fig. 3(a) shows contours of the critical 
nondimensional impulse I∞ for which complete 
densification of the core is first achieved. These 
contours correspond to the limiting case of a Dirac 
delta impulse ( ) and were obtained by 
numerical solution of Eq. 

0P → ∞
(4). Fig. 3(a) shows that 

increasing the mass fraction in the core and in the 
front face increases the impulse capacity of the 
sandwich system. However, Fig. 3(b) shows that 
increasing the mass fraction in the core and in the 
front face also leads to increased back-face 
accelerations, thus sacrificing a protective function 
of the cellular core. The nondimensional back-face 
accelerations presented in Fig. 3(b) are defined as 

2 0( / )a m u2σ= . It follows from Eq. (2) that the 
peak back-face accelerations occur at the instant of 
complete compaction (x = 0), for which 

2 0 /u m2σ=  or 2 1/a 2η= . A design optimization 
problem can be posed by seeking to maximize the 
impulse I∞ that can be sustained while limiting the 
back-face accelerations to a specified level. Fig. 4 
shows a contour plot of the maximum impulse I∞ 
that can be sustained with accelerations limited to 

2 5a = . The grey curve in Fig. 4 corresponds to  

21/ 5η = . Below this curve, the values of 
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Figure 2. Comparison of LS-DYNA computations (―) with predictions of analytical model (○): Nondimensional front-
face and back-face velocities for (a) “pendulum” case; (b) “sandwich” case. 
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Figure 2. Comparison of LS-DYNA computations (―) with predictions of analytical model (○): Nondimensional front-
face and back-face velocities for (a) “pendulum” case; (b) “sandwich” case. 
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Figure 3. Contours with varying mass distribution: (a) Critical nondimensional impulse I∞ required for complete 
compaction of core (P0 →∞); (b) Peak nondimensional back-face acceleration ā2 at complete compaction of core.
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Figure 3. Contours with varying mass distribution: (a) Critical nondimensional impulse I∞ required for complete 
compaction of core (P0 →∞); (b) Peak nondimensional back-face acceleration ā2 at complete compaction of core.
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maximum impulse correspond to complete 
compaction of the core and are the same as in Fig. 
3(a). Above this curve, 2 5a >  at complete 
compaction, so only partial compaction is 
permitted and the values of maximum impulse are 
less than in Fig. 3(a). In the shaded region of Fig. 
4, defined by , 1

0 2( ) 5η η −+ > 2 5>a  at initiation of 
compaction, so the maximum allowable impulse is 
zero. It is evident in Fig. 4 that for a given mass 
fraction in the core 0η , the allowable impulse is 
maximized along the grey curve, i.e., by adjusting 
the mass distribution so that the acceleration at 
complete compaction equals the allowable value. 
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Figure 4. Contours of maximum nondimensional
impulse I∞ with nondimensional back-face 
accelerations limited to ā2 = 5.
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Figure 4. Contours of maximum nondimensional
impulse I∞ with nondimensional back-face 
accelerations limited to ā2 = 5.
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