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ABSTRACT 
 
Parametric studies are reported which investigate the feasibility and accuracy of calculating 
volumes from LADAR (laser detection and ranging) scans of artifacts.  The Triangulated 
Irregular Network (TIN) technique was employed to construct the surfaces on which the volume 
calculation was based.  The artifact used was a plywood box of known size and volume.  Scans 
were taken of a tight fitting background screen, with and without the box placed against it.  The 
volume of the box was then recovered as the difference between respective cut or, alternatively, 
fill volumes.  A procedure for determining such cut and fill volumes is described.  The 
representation of point clouds by triangulated surfaces offers several algorithmic options as well 
as choices of parameters.  The sensitivity and accuracy of volume calculations was examined 
for several alternative algorithmic options and parameter settings. 
 
 
Keywords:  approximation, Delaunay, experiments, LADAR, meshing, surface, TIN, 
triangulation, volume.  
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1. INTRODUCTION 
 
NIST is investigating the utility and accuracy of LADAR (LAser Detection And Ranging) 
scanning devices for surface recovery with particular emphasis on applications by the 
construction industry [Cheok et al., 2000].  NIST is also involved in planning a performance 
evaluation facility for LADAR instruments and associated data processing methods. 
 
As a step towards accuracy assessment, LADAR scans of a plywood box were collected in a 
laboratory environment.  The resulting point clouds were meshed using Triangulated Irregular 
Network (TIN) techniques as part of the volume calculation.  Comparison of that calculated 
value with a separately measured volume of the box provides an indication of the accuracy of the 
instrument as well as various methods of data analysis.  Of particular interest are the sensitivities 
of the results to alternate data representations such as choices of the coordinate system and 
cropping, as well as parameter settings and procedural options included in the meshing 
algorithm.  The volume so calculated was then used to gauge the accuracy of the scanning 
instrument as well as of the meshing algorithm by comparing it to the separately measured 
volume.  The NIST prototype routine 
 

“TINvolume” 
 
was used for both meshing and volume calculations. 
 
The experiment set-up included a screen of two perpendicular rectangular plywood sheets, 
positioned flush against the faces of the box not visible from instrument position (Fig. 1.1).  
Scans were taken from the same instrument position and without changing instrument orientation 
of (i) the screen by itself without the box, and (ii) the screen with the box.  Those two kinds of 
measurements were then used to determine the volume of the box from the difference between 
corresponding surfaces. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 a. Scan with screen only.                b. Scan with box and screen. 

 
Figure 1.1.  Experiment Set-up. 

Scan Direction 

Screen 

Scan Direction 
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A previous report [Witzgall and Cheok 2001] provided a first analysis of scans of the same box 
taken from four separate locations so as to cover areas occluded by individual scans.  In addition 
to meshing, those experiments required registration, that is, rigid transformation of separate 
coordinate frames to a common frame.   Since the experiments in this report aim to assess the 
accuracy of meshing techniques, and since registration introduces additional errors, the data 
collection for the experiments was designed to avoid the need for registration. 
 
The following Chapter 2 provides an overview of the TIN meshing process.  For more details, 
the reader is referred to the report by [Witzgall et al., 2004].  Post-processing procedures, such as 
elevation and triangulation adjustments are discussed in Chapter 3, and the numerical basis for 
the volume calculations is presented in Chapter 4.  The experiments are reported in Chapter 5. 
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2. THE MESHING PROCESS 
 
A LADAR device gathers 3D data in the form of a 
 

“point cloud”, 
 
a collection of 3D locations represented in some coordinate system or “frame.” The immediate 
output will typically be in instrument-centered “polar” coordinates, given by 
 

“angle, angle, distance”  (φ , θ , r) , 
 
where the angles  φ, θ  represent instrument settings, and the distance or “range” r  is measured. 
The polar coordinates are commonly converted to “Cartesian” coordinates  (x, y, z)  centered at 
the instrument.  The coordinate  z  of such a point is interpreted as its elevation, and the 
projection  (x, y)  as its location or 
 

“footprint”. 
 
In this report, the data points  Pi  are assumed to be given in such coordinates, 
 

Pi = (xi , yi , zi) , 
 
with footprints   pi = (xi , yi) . 
 
In many applications, and often intuitively, the  z-coordinate of the Cartesian coordinate system 
is considered as the vertical elevation above a horizontal footprint plane.  It is important to 
realize that the  x, y, z-coordinate system need not be chosen in this fashion.  For instance, the 
footprint plane may be perpendicular to a scanning direction.  In that case, the  z-coordinate 
approximates distance from the instrument. 
 
The purpose of meshing is to represent a point cloud by a surface.  The surfaces considered in 
this report (e.g., the surface depicted in Fig. 2.2) satisfy the following 
 

Single Elevation Property:  Any footprint is the projection of a single surface 
point.  In other words, no two different surface points have the same footprint. 

 
This condition excludes surfaces with undercuts.  A surface with this single elevation property is 
commonly referred to as an 
 

“elevated surface”,  “parametric surface”,  or  “2.5 D surface”. 
 
In typical applications, point clouds are either approximated or interpolated by elevated surfaces.  
Because of the single elevation property, however, interpolation, that is, the passing of an 
elevated surface through all data points  Pi  will not be possible if the point cloud contains what 
here will be called 
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“duplicate points”, 

 
that is, points with identical footprints but different elevations. 
 

2.1 TRIANGULATED IRREGULAR NETWORKS (TINS) 
 
The computational procedures used in this work are based on a particular kind of 
 

“triangular mesh”, 
 
referred to [Peucker et al., 1976, 1978] as a  
 

“triangulated irregular network” or “TIN”. 
 
Here elevated surfaces are constructed with reference to a 
 

“triangulation” 
 
in the footprint plane (Fig. 2.1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1  A triangulation in a plane perpendicular to the scan direction. 
 
 
A triangulation is the covering of a 2D region by triangles which do not overlap, that is, have no 
common points other than vertices and along edges where two triangles join.  If elevations  zv  
are specified at the vertices  qv = (xv , yv)  of triangles of the TIN, then a TIN surface is created 
that passes through the corresponding 3D points  Qv = (xv , yv , zv)  by elevating each planar 
triangle  tk  with vertices 
 

( ) ( ) ( )
332211

,,,,, vvvvvv yxyxyx  
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to the 3D triangle  Tk  with the corresponding vertices 
 

( ) ( ) ( )
333222111

,,,,,,,, vvvvvvvvv zyxzyxzyx . 
 

These elevated triangles then meet along common edges and form a surface in space called a 
 

“TIN surface” 
 

(see Fig. 2.2).  The triangulation of the footprints  qv = (xv , yv)  determines an entire class of 
TIN surfaces, each of which is defined by the choice of the elevations  zv  at the footprints  qv .  
The image of “tent poles” of height zv , supporting the surface at the locations qv , is appropriate.  
It also suggests the idea of “raising” and “lowering” those “tent poles” so as to best represent the 
points in the point cloud – a procedure to be discussed in Section 3.2. 
 
 
 

 
Figure 2.2.  A triangulation of data footprints (TIN) and its 

corresponding TIN surface. 
 
 

2.2 DELAUNAY TRIANGULATIONS 
 
There are many ways of triangulating a set of planar points and, consequently, there are many 
TIN surfaces through the corresponding sets of 3D vertices.  It would therefore be highly 
desirable to identify a triangulation concept that, given a set of vertices, defines triangulations 
that are essentially unique, and that would come close to reproducing the intuitive triangulation 
an analyst would choose.  For instance, the occurrence of very long edges and of associated 
“skinny” triangles will, in general, be reduced.  Obviously, such triangles would distort the 
appearance of any corresponding TIN surface.  Such a suitable triangulation concept exists.  It is 
based on the following: 
 

z 
y 

x 

z
y

x
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Empty Circle Criterion:  No triangulation vertex  (xv , yv)  lies in the interior of the 
circumcircle of any triangle of the triangulation [Delaunay 1934]. 

 
Such triangulations (Fig. 2.3) are widely considered standard, employing the terms 
 

“Delaunay triangulation” or “Delaunay TIN”, 
 
and for the corresponding TIN surface, the term 
 

“Delaunay surface”. 
 

In fact, the term “TIN” is often used synonymously with “Delaunay TIN”.  A Delaunay 
triangulation is, in general, uniquely determined by the empty circle criterion, the exception 
being the case in which the circumcircle of one of the triangles contains more than three vertices 
on its periphery.  In that exceptional case, the vertices on the periphery of such a triangle 
determine a convex polygon, which can be subdivided by diagonals in different ways into 
triangles, and each of these subdivisions is acceptable within a Delaunay triangulation.  
 
 

 
Figure 2.3.  Two triangulations of the same set of points.  The one on the left is Delaunay. 

 
 

2.3 INTERPOLATION AND APPROXIMATION 
 
So far no assumption has been made about how the footprint points  qv = (xv, yv)  and their 
corresponding surface vertices  Qv = (xv , yv , zv) , which describe the TIN surface, are to be 
chosen.  The typical TIN approach, which is also adopted here, is to assume that – with minor 
exceptions –  
 

triangulations are constructed from footprints   pi = (xi , yi)  of data points  
Pi = (xi , yi , zi) .   
 

 
If all possible data points are included in the triangulation, then the term  
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“full triangulation” 

 
is used as opposed to 
 

“partial triangulation”, 
 
where a selected subset of the data footprints is triangulated. 
 
In general, the TIN surface from a full triangulation “interpolates” the point cloud, that is, it 
passes through every one of its points.  Exceptions occur if there are different data points with 
the same footprints, that is, duplicate points as mentioned at the beginning of this chapter.  In that 
case, only one of these points can be selected as a vertex of a TIN surface, and it is not possible 
to pass a TIN surface through all points of the point cloud. 
 
The TIN surface from a partial triangulation provides approximation only, that is, many points of 
the point cloud are not part of the TIN surface.  The quality of the approximation can sometimes 
be checked by means of visualization.  In general, however, there is a need for a numerical 
 

“measure-of-fit,” 
 
that is, a single number “grading” the quality of an approximation.  For a point  Pi = (xi , yi , z)  
in the point cloud, let  ẑ   denote the elevation of the approximating TIN surface at the footprint  
pi = (xi , yi) .  The 
 

“residual”  ri = zi - ẑ  
 
then measures the deviation in the  z-direction of the data point  Pi  from the TIN surface.  The   
 

“Root-Mean-Square (RMS)”: ∑ 21
irn

 

and the 

“Average-size-deviation (ASD)”:  ∑ irn
1  

 
of the residuals are the most commonly used measures-of-fit for approximation by an elevated 
surface.  They will be used in this work, too. 
 

2.4 THE INSERTION METHOD FOR DELAUNAY TINS 
 
The method implemented in this work for constructing TIN surfaces is based on the so-called 
 

“insertion method” 
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(Lawson [1977]) in that it sequentially inserts data points as vertices, constructing an  
intermediate TIN surface each time a new vertex has been added.  Thus each additional vertex 
triggers the update of a previously constructed TIN surface.  The process terminates when a 
specified number of vertices has been reached.  After terminating the insertion procedure, it will 
often be desired to further adjust the resulting TIN surface.  Such adjustments are described in 
Chapter 3. 
 
As a first step, all data footprints are enclosed in a rectangular 
 

“map” ( ){ }maxminmaxmin ,:, yyyxxxyx ≤≤≤≤ , 
 
and after including its four corners, the entire map will be covered by the triangulation.  If there 
are no data points at those corners, arbitrary “no data values” will be assigned. 
 
After specifying the map, and possibly cropping to it, the insertion method is applied in two 
phases.  The first phase of the procedure is to construct an 
 

“initial Delaunay triangulation”. 
 

The second phase terminates with the 
 

“specified Delaunay triangulation”,  
 

which now has the specified number of vertices.  This triangulation should not be confused with 
the full triangulation, which includes all possible vertices.  During that second phase, each vertex 
to be inserted next is selected according to an optimization criterion taking into account the 
current shape of the respective TIN surface. 
 
The simplest way of specifying an initial triangulation is to split the map into two triangles along 
one of its diagonals.  This triangulation is a Delaunay triangulation, which theoretically could 
serve as an initial triangulation for the second phase.  In practice, however, a richer triangulation 
is recommended for two reasons:  
 

 the NIST method for selecting the vertices to be inserted in phase two is slow if it 
starts with a small portion of the triangles 

 
 the quality of the vertex selection depends on how well the intermediate TIN surface 

approximates the point cloud  
 
The NIST meshing procedure uses the insertion method also for phase one, starting with splitting 
the map into two triangles.  Thus the insertion method is used in both phases, the only  difference 
being that during the second phase the vertices are selected for insertion using an adaptive 
optimization criterion (Section 2.4.1) based on the current surface, whereas during the first phase 
the insertion sequence is determined independently.  In particular, NIST uses the following 
procedure for constructing the initial Delaunay triangulation: 
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Initial Binning:  Divide the map into an almost square grid of bins.  In each bin 
of the grid select the data point  Pi  whose footprint  pi = (xi, yi)  lies closest to the 
center of the bin and interpolate this subset of data points by a Delaunay surface. 
 

Unless empty, each bin contributes a vertex to the initial Delaunay triangulation, and these 
vertices are inserted by column, first, and by row, second. When using the  TINvolume  routine, 
the bin size is set by specifying the number of bins per row.  The number of bins per column is 
then automatically chosen so as to make the individual bins as square as possible.  The choice of 
the bin size reflects a balance between two opposite effects:  a small bin size leads to a dense 
initial triangulation and reduces the role of the adaptive vertex selection during the second phase.  
On the other hand, a large bin size leads to a sparse initial triangulation, increases the role of the 
second phase, and also tends to increase the overall computational effort.  Of course, if a full 
triangulation is to be determined, the choice of the initial transformation will, in general, not 
matter. 
 

2.4.1 Vertex Selection for Approximation  
 
Phase two of the meshing process applies only to the task of approximation, since for 
interpolation all data points are considered, and selection of a sample of the data points as 
vertices of a TIN surface is, therefore, moot.  Vertex selection is typically connected with partial 
triangulation.  NIST routines offer two selection criteria.  As the next vertex to be inserted, select 
the data point whose 
 

• vertical distance from the current TIN surface (= size of “residual”) is maximum  
 

• product of the vertical distance with the area of the triangle in which its footprint is 
contained is maximum. 

 
The second option leads to triangulations with more homogeneous triangle size and appears 
better suited for volume computation.  It is, therefore, exclusively used in this work. 
 

2.4.2 Inserting a Vertex 
 
The basic procedure is the insertion of a vertex  Pi = (xi , yi , zi)  into a current TIN surface or, 
equivalently, the insertion of a footprint  pi = (xi , yi)  into the underlying triangulation, 
proceeding as follows.  A triangle  tk  containing  pi  is determined.  Exceptional cases aside,  pi  
lies in the interior of this triangle  tk ,  a new triangulation is then created by connecting  pi  to the 
corners of  tk , so that there are now three triangles where previously was just triangle  tk .  The 
new triangulation will, in general, no longer be Delaunay, and has to be adjusted.  Each 
adjustment step is an interchange of diagonals in a quadrangle composed of two triangles with a 
common edge (Fig. 2.4).  For details, consult [Witzgall et al., 2004]. 
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Figure  2.4.    Adjustment to achieve a Delaunay triangulation. 
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3. POST-PROCESSING PROCEDURES 
 
In general, once the insertion procedure has been completed, the resulting 
 

“complete triangulation” 
 
requires further editing and adjustment.  Such procedures, in particular, the adjustments of vertex 
elevations and changes in the triangulation are discussed in this chapter.  Note that these two 
adjustments apply only to partial triangulations since these adjustments rely on information 
provided also by data points which have not been included in the TIN.  Filtering and screening 
options, also described in the chapter, are generally based on full triangulations. 
 

3.1 RELEVANT TRIANGLES 
 
The complete triangulation covers the entire map, including “no data” areas of the point cloud such 
as occlusions or shadows cast by objects in the path of the scan.  Among its vertices, the complete 
triangulation will also contain artificial points such as map corners.  In many applications, triangles 
which contain such artificial vertices or which cover no data areas need to be identified, so that a 
meaningful 
 

“footprint  region” 
 

may be delineated.  The approach taken here is to distinguish 
 

“relevant triangles” 
 

among the footprint triangles  tk  of  the TIN.  All other triangles are then removed by marking 
them a irrelevant, leaving the set of relevant triangles as an instance of a footprint region.  
 
In general, triangles connected to map corners are not relevant.  Also, triangles which cover 
shadows are typically characterized by very long edges or, alternatively, by circumcircles of large 
diameters.  The following choices are therefore offered for designating relevant triangles or, 
equivalently, deleting irrelevant ones: 
 

• all triangles are relevant, including those with artificial vertices such as map corners 
• only triangles meeting map corners and other artificial points are removed 
• triangles meeting artificial points or with edges longer than a specified length are removed 
• triangles meeting artificial points or with circumcircles larger than a specified diameter are 

removed.  This option relates to the concept of “α -shapes” [Edelsbrunner, Kirkpatrick, and 
Seidel 1983].  

 
The relevant triangles determine an area of relevance for a given point cloud.  Typically, however, 
the boundary of such an area tends to be very irregular.  Options for boundary editing are described 
in [Witzgall et al. 2004]. 
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3.2 ELEVATION ADJUSTMENT 
 
Once a partial triangulation has been completed and its footprint region delineated, it may be 
desired to improve the RMS measure-of-fit of the approximation of the given point cloud by the 
corresponding TIN surface. This is done by adjusting vertex elevations while keeping the 
triangulation fixed.  This procedure -- which was examined in all experiments reported here -- is 
referred to as  
 

“RMS elevation adjustment.” 
 
(An ASD elevation adjustment is under development).  It is important to realize that it is the 
approximating TIN surface and not the underlying point cloud that is adjusted by changing the 
elevations at the vertices of the TIN surface. Any original data point, which was originally selected 
as a vertex of the TIN surface, remains a member of the point cloud with its given elevation 
unchanged, regardless of subsequent adjustments to the surface.  It thus contributes, like any other 
data point, to the calculation of the measure-of-fit upon which the approximation is based. 
 
The RMS adjustment amounts to solving a standard “least squares problem” for which many highly 
developed algorithms are available. The current implementation relies on the following simple 
iterative scheme.  Note that a change of elevation at a vertex  v  of the TIN surface affects the 
surface only above the area formed by the triangles adjacent to vertex  v .  This suggests adjusting 
the elevation at this vertex so that the resulting surface change minimizes the RMS above that area.  
Carrying out such adjustments in turn for every vertex constitutes an iteration step.  For infinitely 
many steps, the vertex elevations will converge to limits which define the unique “best” TIN 
surface over the given fixed triangulation and with respect to the RMS norm of vertical residuals. 
For practical purposes, the process is terminated after (i) a preset number of iterations have been 
reached, or (ii) all individual elevation adjustments during an iteration step have remained below a 
specified tolerance. 
 

3.3 TRIANGULATION ADJUSTMENT 
 
There are situations in which deviations from the Delaunay principle may be called for.  This 
occurs, for instance, if – in terrain parlance – an edge of a Delaunay triangle crosses a valley or 
tunnels through a ridge (Fig. 3.1).  Such situations can be detected if there are sufficiently many 
data points in the region of the affected triangles.  For such cases, the following 
 

“ASD triangulation adjustment” 
 
 procedure for adjusting the triangulation has been developed.  (The analogous RMS triangulation 
adjustment has not yet been considred.) 
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Whenever a strictly convex quadrangle consisting of two adjacent triangles is encountered, it can 
be checked, whether interchanging the diagonals (Fig. 3.1) improves the ASD measure-of-fit 
within the quadrangle.  The sequence in which the adjustments are carried out matters.  In the NIST 
implementation, the diagonal interchanges with the biggest improvements are carried out first. 
 
The triangle adjustment option was included in Experiment 2 reported below. 
 

 

 

 

 

 

 
      a.  Does not retain valley line            b.  Retains valley line 
 

Figure 3.1.  Adjusting triangles crossing valley. 
 

 

3.4  FILTERING AND SCREENING 
 
TIN methods are also useful for data editing such as removal of “outliers”, that is, data points 
whose elevations drastically exceed the elevation of neighboring data points.  In order to achieve 
such a removal, “filtering” and “screening” methods have been implemented at NIST.  In any such 
method, the elevation  zi  of a data point  Pi = (xi , yi , zi)  is compared to the median of the 
neighboring data elevations, that is, to the elevations of data points whose footprints are connected 
to the footprint  pi = (xi , yi)  of data point  Pi   by an edge in a TIN triangulation.  Typically, full 
triangulations are used for that purpose.  An outlier is then identified as a data point whose 
elevation differs from the median of the neighboring elevations by more than a specified tolerance. 
 
A screening method, as exemplified by the NIST routine,  TINscreen , simply deletes outliers from 
the point cloud.  The NIST routine, TINfilter, on the other hand, adjusts the elevation of the outlier 
by replacing it with the value of the median.  These routines represent  instances of what is usually 
referred to as a “median filter”. 
 
TINfilter  has been used as an option in Experiment 3 to be reported in Chapter 5. 
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4. CALCULATING VOLUMES 
 
Given the elevation level  z0 , consider the spatial region bounded below by  z0 , bounded above by 
an elevated surface, and bounded either laterally by vertical walls along the boundary of the 
footprint region or at the intersection of the surface with the elevation level (Fig. 4.1).  The volume 
of that spatial region is called the 
 

“cut volume”  Vcut (z0) 
 
for the elevation level  z0 .  The corresponding  
 

“fill volume”  Vfill (zi) 
 

is defined as the volume of the region bounded above by the elevation level  z0 , and bounded 
below by the surface.  Lateral cut-off is again vertically either along the boundary of the footprint 
region or at the intersection of surface and elevation level.  The projections of the cut and fill 
volumes ioto the  x,y-plane cover precisely the footprint area, and meet only along the projections 
of the lines along which the surface intersects the elevation level.  The following discussion is 
restricted to cut volumes since everything is analogous for fill volumes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 4.1  Schematic illustration of cut and fill volumes. 

a.  Original surface 

c.  Cut volume  =  volume bounded above by original surface and below by cut plane 
     Fill volume  =  volume bounded above by cut plane and below by original surface 

Cut 

Fill 

b.  Original surface and cut plane 

Cut plane 
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4.1 DECOMPOSITION INTO TRIANGULAR PRISMOIDS 

The cut volume  Vcut (z0 )  is readily computed if the bounding elevated surface is a TIN surface. 
For in this case, the enclosed space is the union of triangular prismoids.  As shown in Fig. 4.2, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2.  A triangular prismoid. 
 
 
such a “prismoid” is spanned by a usually tilted triangle on top and its footprint at elevation z0  on 
the bottom. It is bounded at three sides by trapezoids spanned by edges of the top triangle and their 
respective footprints below.  Let 
 

h1 , h2 , h3 , 
 
denote the lengths of the lateral edges of the trapezoids, that is, the elevations of the top vertices 
 

321
,, iii PPP  

 
above  z0 .  Let also 
 

Afoot  = area of the footprint triangle, 
 

Vprism = volume of the prism. 
 
Then the volume of the prismoid is given by  
 

Vprism = ×
++

3
321 hhh Afoot . 

 
The decomposition of the volume into triangular prismoids is readily identified.  The straight- 
forward case is that of a surface triangle 
 

Tk = ),,(
321 iii PPP  

h
2

h
1

h
3

a = area

z = z o

z 
y

x
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with vertices 
 

.),,(,),,(,),,(
333322221111 iiiiiiiiiiii zyxPzyxPzyxP ===  

 
fully above the stipulated elevation level  z0 .  In this case, the triangle  Tk  by itself, together with 
its footprint triangle 
 

),,,(
321 iiik pppt =  

 
with 
 

),(,),(,),(
333222111 iiiiiiiii yxpyxpyxp ===  

 
 defines one of those prismoids, where 
 

.0,0,0 030201 321
≥−=≥−=≥−= zzhzzhzzh iii  

 
Should a triangle  Tk  lie completely below the stipulated elevation level  z0 , then it does not 
contribute a prismoid. 
 
There are, however, two intermediate cases as shown in Fig. 4.3.  In the first case (Fig. 4.3a), two 
vertices of triangle  Tk  lie strictly above the elevation level  z0 , whereas the remaining vertex lies 
strictly below.  In the second case (Fig. 4.3 b), one vertex lies strictly above, another vertex lies 
strictly below, with the third one at or below the elevation level  z0 .   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3.  The triangular prismoid on the right has exactly one vertex above the plane. 
The one on the left has two. 

 
 
In both cases, two edges of the triangle  Tk  intersect the level plane at points 
 

b. a. 
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p′  and p ′′ , 
 
respectively. 
 
In the first case, only a portion forming a quadrangular prismoid over a quadrangular footprint, say 
 

),,,(
21

pppp ii ′′′  
 
contributes to the overall volume.  Once this footprint quadrangle has been determined, any of its 
two decompositions into triangles  kt′   and  kt ′′ , for instance, 
 

),,(
21

pppt iik ′=′   and  ),,(
1

pppt ik ′′′=′′ , 
 
will produce two triangular prismoids with the obvious height adjustments. 
 
In the second case, a reduced prismoid results, whose footprint is a triangular portion kt′  of the full 
footprint of the triangle  Tk , say 
 

),,(
1

pppt ik ′′′=′ . 
 
It is obvious that the level volume of a TIN surface depends critically on the definition of the 
footprint region as discussed in Section 3.1. 
 

4.2 FLOOR DETERMINATION 
 
In certain applications, the volume of an object situated on a flat floor is to be found.  In this case, it 
is crucial to determine the elevation of the floor.  More generally, there is a need to know when a 
varying elevation level first meets or leaves an object of interest. 
 
This task is not straightforward because of data noise.  The method developed in [Cheok et al., 
2000, Witzgall and Cheok, 2001] is to vary the elevation level  z0  in equal increments of, say, 1 cm 
or 0.5 cm, determine cut/fill volumes at these elevations, and then form the first and second 
differences.  As the level plane starts to intersect the portion of the point cloud representing the 
object, and similarly if the level plane leaves that region, these events are then signaled by a spike 
in the second differences. 
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5. EXPERIMENTAL VOLUME DETERMINATION 
 
In this chapter, volume determinations from LADAR scans taken inside an NIST building are 
reported.  These determinations are based on two series of LADAR scans of a plywood box, taken 
from the same instrument location and orientation.  The box was built to the following nominal 
specifications 
 

0.9144 m x 1.2192 m x 1.5240 m  (3 ft x 4 ft x 5 ft), 
 
and those dimensions were verified to within 
 

0.0016 m  (1/16 in ). 
 
Based on those specifications, a volume of 1.6990 m3 is inferred for the box.  It will be convenient, 
to refer to this value as the “true” volume of the box, realizing full well that this value is still 
subject to error.  Assuming the above error limit of 0.0016 m (1/16 in ) for the linear dimensions of 
the box, a worst case error estimate places the actual volume between the bounds: 
 

1.6990 m3 ± 0.0059 m3 or  1.6990 (1 ± 0.35 %) m3 . 
 
The LADAR instrument used for the experiment provided coordinate data at the millimeter level, 
that is, three significant digits after the period if the measurement is reported in meters.  A 
uncertainty of 2 cm or 20 mm is specified by the manufacturer.  However, this is the uncertainty for 
a single measurement which is not the intended function of a LADAR.  A LADAR collects 
millions of points from a scene and these points are then used to generate a surface.  This is akin to 
averaging when the measurements are used, for instance, for the calculations of volumes.  As a 
result, these calculations are more accurate than might be expected in view of the single 
measurement uncertainty.  It was also felt that the standard deviations of the volume results need to 
be determined without rounding the measurements based on the manufacturer’s specifications.  For 
these reasons, three digits after the period, when expressed in meters, were retained, and for the 
reports of the experiments, the calculated volumes, averages, and standard deviations were reported 
up to four digits after the period. 
 
In one series of the experimental scans, a free-standing screen of plywood sheets was placed 
against those two faces of the box that remained obscured when scanned from the instrument 
location.  In a parallel series, the box had been removed so that only the screen remained in its 
original position (Fig. 1.1).  Five different point density settings were used when generating the two 
series of scans. 
 
Using the same window for cropping the ten original data sets – five scans of the screen by itself 
and five scans of the screen with the box – the data sets of the following sizes were obtained (Table 
5.1). 
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Table 5.1.   Sizes of data files after cropping. 
 

Without Box With Box Density 
setting Filename No. of points  Filename No. of points 

1 PtC_no_bx_1a.dat  15 903 PtC_scr_1a.dat 15 912 
2 PtC_no_bx_2.dat 10 221 PtC_scr_2.dat  10 199 
3 PtC_no_bx_3.dat  7 104 PtC_scr_3.dat 7 116 
4 PtC_no_bx_4.dat 3 990 PtC_scr_4.dat  3 995 
5 PtC_no_bx_5.dat 2 548 PtC_scr_5a.dat  2 557 

 
 
An uncropped footprint triangulation of the point cloud from scanning the box with screen at the 
highest density setting is displayed in Fig. 5.1.  It displays strips of high density marking the 
location of the screen and two vertical walls of the box.  Indeed, the signal returns from vertical 
walls will generate data footprints that accumulate the “base” of those walls.  Because of the higher 
angle of incidence, data density is higher on the floor than on top of the box.  In Fig. 5.1,   the 
effects of beam spread can be observed at the bottom portion of the screen to the left.  Such 
“phantom points” and “mixed pixels” are a well recognized phenomenon capable of introducing 
errors in surface modeling.   
 
To exclude signal returns beyond the location of the screens, all ten point clouds were cropped 
along the left screen in Fig. 5.1 as indicated in Fig. 5.2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1.  Triangulation of uncropped data sets. 
 
 
 
 
 
 
 

Phantom points
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Figure 5.2.  Cropped data sets displayed as footprint triangulations. 
 
 

In each experiment, a pair of point clouds arising from corresponding scans with and without the 
box, respectively, was meshed as part of the volume calculation. Then the volumes above a 
common horizontal, below-the-floor, level were calculated for each of the two resulting TIN 
surfaces.  The difference between those two separate volume measurements should then account 
for the volume of the box. 
 
As described in Chapter 4, volume calculations are geared to specified elevation levels 
characterized by specified values of the coordinate z .  The cut volumes are, therefore, above the 
specified  z-level and below the given TIN surface, fill volumes are below the specified  z-level and 
above the given TIN surface.  The volume routine repeatedly prompts for specific z-levels for 
which it then provides both cut and fill volumes.  In the first three experiments described below, 
any two volumes, whose difference is taken as the volume of the box, are cut volumes with respect 
to the same  z-level, which is chosen sufficiently low to yield a fill volume of zero. 
 
Suppose two elevation levels  z1  and  z2 > z1  are such that the fill volume at these levels vanishes. 
Then the difference between the corresponding cut volumes  Vcut(z1) > Vcut(z2)  is given by the area 
of the footprint region of the TIN surface multiplied by the difference in those elevation levels: 
 

Vcut(z1) - Vcut(z2) .)( 12footprint zzarea −×=  
 

In the case of TIN surfaces representing the screen by itself and the screen with the box, the foot- 
print areas differ slightly.  There is therefore a slight dependence of the volume difference on the 
choice of a common  z-level with zero fill volume.  In view of this dependence, the common  z-
level was generally chosen as high as possible while the fill volume remained at zero.  In one of 
two methods used in Experiment 4, a different approach was taken.  Here the volume difference 
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was formed from fill volumes as the  z-levels were reduced, moving away from the instrument, as 
described below, slightly different  z-levels were determined  for the two fill volumes. 
 

5.1 EXPERIMENT 1 
 
In this experiment, only the pair of scans of the highest density setting has been considered.  As 
explained in the previous sections, the meshing process employed here offers various options and 
requires choices of several process parameters.  The first experiment to be described here aims to 
explore the sensitivity of the volume calculations with respect to two parameters, 
 

• bin size for pre-binning (Section 2.4),  
• number of vertices in the final triangulation, 

 
and to the option of choosing 
 

• RMS elevation adjustments (Section 3.2). 
 
The results of Experiment 1 are listed in Table 5.2 and graphically displayed in Fig. 5.3. 
 
The bin size chosen for the pre-binning mechanism determines the set of data points entering the 
initial triangulation and, therefore, its size and shape.  Since a data point is chosen from each non-
empty bin, small bin size or, equivalently, a large number of bins per row, leads to a dense initial 
triangulation.  In this case, a smaller percentage of the specified number of vertices is chosen 
adaptively, that is, based on the respective state of the surface.  Conversely, few bins per row result 
in a sparse initial triangulation, and a larger portion of the vertices chosen adaptively.  In the 
following Table 5.2, entries for large numbers of bins – resulting in small individual bin sizes – 
cannot be obtained if they exceed the specified number of vertices.  This is because selecting a 
vertex in each non-empty bin for an initial triangulation may already exceed the specified limit.  In 
this experiment, the volume computations do not appear very sensitive to variations in bin size and 
the resulting perturbations of the TIN triangulation. 
 
The number of data points to be selected as vertices of the TIN surface is a more significant 
parameter than the bin size.  The reader might be under the impression that not using a full 
triangulation would be tantamount to ignoring a part of the scan information.  It should be kept in 
mind, however, that to restrict the number of vertices of the TIN surface is not to restrict the 
number of data points considered.  In effect, the number of vertices specified for the TIN surface 
defines the resolution of the mesh which represents the point cloud.  During the adaptive vertex 
selection process every data point plays a role in that selection.  The full data information is 
therefore already reflected in the shape of any TIN surface which has been based on an adaptively 
selected vertex sample.  Finally, error statistics are based on the full data sets.  For these reasons, 
information from data points not included as vertices in the TIN is indeed utilized.   
 
An unexpected trend was observed:  as the specified number of vertices increases, the resulting 
volume estimates decrease.  It is not yet known whether this trend represents a general 
phenomenon.  The data set also provides an example where the highest surface resolution, as 
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defined by the number of vertices and, consequently, triangles, does not yield the most accurate 
result.  That result is achieved when the number of vertices is approximately 1/3 of the number of 
data points.  This may well be a general phenomenon, although much more evidence needs to be 
collected. 
 
The RMS elevation adjustment does not appear to improve the results significantly.  Since the 
adjustment is based mainly on those data points which have not been selected as vertices, its effect 
will be progressively diminished as there are fewer such data points. 
 
In subsequent experiments, volume calculations will be based on the vertex ratio of 1/3, although 
there is little evidence as whether this parameter choice is optimal.  Assuming this vertex ratio, this 
translates into specifying 5000 vertices for the TIN surfaces to be used for volume calculation for 
this experiment.  The volumes reported in Table 5.2 for the corresponding six bin size 
specifications range from 1.6974 m3 to 1.7021 m3 with mid point 1.69975 m3 with RMS 
adjustment, and from 1.7029 m3 to 1.6986 m3 with midpoint 1.70075 m3 without RMS adjustment.  
The following volume result may thus be associated with Experiment 1 and compared to the “true” 
value of 1.6990 m3 : 
 

1.6997 m3 ± 0.00235 m3  (with RMS adjustment) 
1.7007 m3 ± 0.00215 m3  (without RMS adjustment) 

 
The uncertainties based on the observed range of values for 5000 vertices are thus on the order of 
0.14 % and 0.13 % , respectively. 
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Table 5.2.  Results of Experiment 1. 
 

# Points %a of Volume (m3) % Error in Volume 

In Mesh 
Total 
Pts. 15 bin 20 bin 25 bin 30 bin 40 bin 100 bin 200 bin 15 bin 20 bin 25 bin 30 bin 40 bin 100 bin 200 bin 

  With RMS Adjustment With RMS Adjustment 
3K, rms 19 1.7044 1.7043 1.7055 1.7015 1.7035   0.3178 0.3119 0.3826 0.1471 0.2649   

4K, rms 25 1.7026 1.7007 1.7010 1.6988 1.7013   0.2119 0.1001 0.1177 -0.0118 0.1354   

5K, rms 31 1.7021 1.6998 1.7008 1.7002 1.6995 1.6974  0.1825 0.0471 0.1059 0.0706 0.0294 -0.0942  

6K, rms 37 1.7003 1.6982 1.6982 1.6980 1.6980 1.7002  0.0765 -0.0471 -0.0471 -0.0589 -0.0589 0.0706  

7K, rms 44 1.6975 1.6976 1.6967 1.6971 1.6966 1.6955  -0.0883 -0.0824 -0.1354 -0.1118 -0.1413 -0.2060  

8K, rms 50 1.6968 1.6973 1.6961 1.6964 1.6965 1.6961 1.6947 -0.1295 -0.1001 -0.1707 -0.1530 -0.1471 -0.1707 -0.2531 

9K, rms 56 1.6974 1.6977 1.6962 1.6974 1.6964 1.6952 1.6957 -0.0942 -0.0765 -0.1648 -0.0942 -0.1530 -0.2237 -0.1942 

10K, rms 62 1.6960 1.6964 1.6962 1.6971 1.6962 1.6954 1.6952 -0.1766 -0.1530 -0.1648 -0.1118 -0.1648 -0.2119 -0.2237 

13K, rms 81 1.6949 1.6949 1.6945 1.6949 1.6948 1.6950 1.6945 -0.2413 -0.2413 -0.2649 -0.2413 -0.2472 -0.2354 -0.2649 

16K, rms 100 1.6946 1.6947 1.6945 1.6946 1.6946 1.6946 1.6945 -0.2590 -0.2531 -0.2649 -0.2590 -0.2590 -0.2590 -0.2649 

  Without RMS Adjustment Without RMS Adjustment 
3K 19 1.7058 1.7059 1.7046 1.7021 1.7019   0.4002 0.4061 0.3296 0.1825 0.1707   

4K 25 1.7024 1.7022 1.7004 1.7023 1.6999   0.2001 0.1883 0.0824 0.1942 0.0530   

5K 31 1.7029 1.6986 1.7005 1.7015 1.6993 1.6988  0.2295 -0.0235 0.0883 0.1471 0.0177 -0.0118  

6K 37 1.7007 1.6973 1.6982 1.6980 1.6976 1.7007  0.1001 -0.1001 -0.0471 -0.0589 -0.0824 0.1001  

7K 44 1.6984 1.6977 1.6973 1.6975 1.6958 1.6970  -0.0353 -0.0765 -0.1001 -0.0883 -0.1883 -0.1177  

8K 50 1.6964 1.6956 1.6954 1.6958 1.6949 1.6953 1.6939 -0.1530 -0.2001 -0.2119 -0.1883 -0.2413 -0.2178 -0.3002 

9K 56 1.6971 1.6968 1.6961 1.6971 1.6955 1.6948 1.6954 -0.1118 -0.1295 -0.1707 -0.1118 -0.2060 -0.2472 -0.2119 

10K 62 1.6953 1.6953 1.6957 1.6967 1.6949 1.6948 1.6950 -0.2178 -0.2178 -0.1942 -0.1354 -0.2413 -0.2472 -0.2354 

13K 81 1.6944 1.6941 1.6941 1.6947 1.6935 1.6942 1.6936 -0.2707 -0.2884 -0.2884 -0.2531 -0.3237 -0.2825 -0.3178 

16K 100 1.6941 1.6939 1.6941 1.6944 1.6935 1.6939 1.6937 -0.2884 -0.3002 -0.2884 -0.2707 -0.3237 -0.3002 -0.3119 

a.  Rounded to nearest integer 
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b.  Without RMS Adjustment 
 

Figure 5.3.  Plot of volume vs. number of points in sub-sample and number of bins. 
(a)With and (b)Without RMS Adjustment. 
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5.2  EXPERIMENT 2 
 
In this experiment all five pairs of scans – each pair taken with different point densities – were 
analyzed.   TIN surfaces were constructed by adaptively selecting approximately 1/3 of the data 
points as vertices.  For each density, the volumes associated with these TIN surfaces are 
calculated in four different ways, depending on whether elevation adjustment (Section 3.2) and 
or triangulation adjustment (Section 3.3) are employed: 
 

• No adjustment 
• RMS elevation adjustment only 
• Triangulation adjustment 
• RMS elevation adjustment followed by triangulation adjustment 

 
A volume was also calculated using all points of the point cloud from the lowest density setting.  
For such full triangulations, adjustments are not applicable since there are essentially no data 
points available for adjustments as essentially all the points are incorporated as vertices into the 
respective surfaces.  The volume errors are plotted (Fig. 5.4) and tabulated (Table 5.3a).  It is not 
understood why the experimental volumes consistently underestimate the “true” value.  Even 
more puzzling is the fact that the errors don’t consistently increase with decreasing data density. 
 
 

 
Figure 5.4.  Experiment 2:  Error plot for volumes for scan sets 1 to 5. 

 
 
 
 

-5.0%

-4.5%

-4.0%

-3.5%

-3.0%

-2.5%

-2.0%

-1.5%

-1.0%

-0.5%

0.0%

1 2 3 4 5

Vo
lu

m
e 

Er
ro

r (
%

)

No Adjustments No RMS
No Adjustments RMS
Adjustments No RMS
Adjustments RMS



 27

 
Table 5.3a.  Experiment 2:  Volume Errors 

 
Volume Error (%) 

No Triangulation 
Adjustments 

Triangulation 
Adjustments Filename #pts in 

orig. file 
#pts.  used 

in mesh 
% of total 

points 
No RMS RMS No RMS RMS 

PtC_scr_1a.dat / 
PtC_no_bx_1a.dat 

15912 / 
15903 5000 / 5000 31 -0.11 -0.15 -0.14 -0.20 

PtC_scr_2.dat / 
PtC_no_bx_2.dat 

10199 / 
10221 3500 / 3500 34 -1.64 -1.52 -1.64 -1.53 

PtC_scr_3.dat / 
PtC_no_bx_3.dat 7116 / 7104 2500 / 2500 35 -0.25 -0.19 -0.16 -0.11 

PtC_scr_4.dat / 
PtC_no_bx_4.dat 3995 / 3990 1500 / 1500 38 -1.25 -1.28 -1.37 -1.34 

PtC_scr_5a.dat / 
PtC_no_bx_5.dat 2557 / 2548 800 / 800 31 -3.79 -4.17 -4.29 -3.91 

PtC_scr_5a.dat / 
PtC_no_bx_5.dat 2557 / 2548 2557 / 2548 100 -4.97 N/A N/A N/A 

 
 

Table 5.3b.  Experiment 2:  ASD and RMS Errors 
 

ASD Errors (cm) RMS Errors (cm) 
No Triangulation 

Adjustments 
Triangulation 
Adjustments 

No Triangulation 
Adjustments 

Triangulation 
Adjustments Filename 

No RMS RMS No RMS RMS No RMS RMS No RMS RMS 
PtC_scr_1a.dat 11.882 10.263 11.796 10.226 23.227 16.622 23.186 16.601 

PtC_no_bx_1a.dat 12.146 10.544 12.041 10.512 24.187 17.319 24.139 17.301 

PtC_scr_2.dat 10.891 9.802 10.726 9.742 21.961 16.104 21.844 16.067 

PtC_no_bx_2.dat 10.578 9.642 10.374 9.554 21.842 16.118 21.674 16.056 

PtC_scr_3.dat 10.645 9.797 10.460 9.713 21.620 16.136 21.473 16.076 

PtC_no_bx_3.dat 10.537 9.730 10.201 9.588 21.873 16.143 21.551 16.045 

PtC_scr_4.dat 10.194 9.413 9.783 9.289 20.955 15.663 20.528 15.574 

PtC_no_bx_4.dat 9.780 9.124 9.358 8.948 20.588 15.307 20.134 15.161 

PtC_scr_5a.dat 12.158 11.002 11.532 10.859 23.503 17.488 22.854 17.384 

PtC_no_bx_5.dat 11.297 10.374 10.495 10.171 22.418 16.978 21.334 16.799 

PtC_scr_5a.dat1 N/A N/A N/A N/A N/A N/A N/A N/A 

PtC_no_bx_5.dat1 N/A N/A N/A N/A N/A N/A N/A N/A 

1 These values are not meaningful when all the data points are used in the mesh. 
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In addition, RMS and ASD approximation errors are tabulated for each surface pair (Table 5.3b) 
except for the surface pair arising from a full triangulation.  These errors do not refer to the direct 
accuracy as based on deviations of the generated TIN surfaces from the known surface of the 
box, but rather to the accuracy based on residual deviations of the data points from the TIN 
surface derived from a subset of the data points.  Table 5.3b shows that increased accuracy of 
approximation, as measured by either RMS or ASD errors, does not necessarily correlate with 
increased accuracy of volume calculation, which represents a direct accuracy measurement. 
 
Again, representative values are derived for the five point clouds based on the approximate 
vertex to data ratio of 1/3.  For each density level, the four volume measurements are used to 
derive the range and the midpoint as shown in Table 5.4. 
 

Table 5.4.  Experiment 2: Volumes. 
 

Density 
Level Volume (m3) Mid-Range Volume (m3) 

1 1.697 1.696 1.697 1.696 1.6964 ± 0.00700 

2 1.671 1.673 1.671 1.673 1.6721 ± 0.00105 

3 1.695 1.696 1.696 1.697 1.6959 ± 0.00125 

4 1.678 1.677 1.676 1.676 1.6768 ± 0.00100 

5 1.635 1.628 1.626 1.633 1.6303 ± 0.00425 

5 - Full set 1.615 NA NA NA NA 

 
 
Note that the observed volume ranges do not include the “true” value 1.6990 m3.  As mentioned 
before, the reasons for this bias are unknown. 
 

5.3 EXPERIMENT 3 
 
This experiment aims at deriving statistical error measures for volume calculation.  From each of 
the two densest scans – screen with and without box – ten reduced files were created by 
randomly selecting 50 % of the data points, respectively.  For each of the ten pairs of data sets, 
volumes were calculated.  This procedure made it possible to determine an expected value and a 
standard deviation from the ten volumes obtained.  All surfaces were constructed with or without 
employing the median filter  TINfilter  in order to smooth the surface (Section 3.4). 
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Table 5.5.  Volume and statistics for Experiment 3. 
 

 Volume (m3) 

 No Filter Filter 

File Number w/ RMS 
adjustment 

w/o RMS 
adjustment 

w/ RMS 
adjustment 

w/o RMS 
adjustment 

1 1.691 1.693 1.686 1.677 

2 1.678 1.672 1.669 1.664 

3 1.686 1.687 1.669 1.669 

4 1.665 1.669 1.659 1.659 

5 1.674 1.674 1.662 1.653 

6 1.681 1.682 1.669 1.667 

7 1.673 1.689 1.674 1.676 

8 1.685 1.689 1.678 1.680 

9 1.664 1.668 1.661 1.658 

10 1.678 1.688 1.664 1.663 

Average Volume (m3) 1.678 1.681 1.669 1.667 

Std. dev. (m3) 0.0086 0.0094 0.0085 0.0089 

Volume Error (m3) -0.021 -0.018 -0.030 -0.032 

Vol. Error (%) -1.26 -1.05 -1.79 -1.91 

 
 
Note that the directly measured “true” volume of the box differs by more than two standard 
deviations from the expected value based on the ten volume measurements in Table 5.5.  The 
reasons for that apparent bias remain unclear.  As in Experiment 2, the “true” volume is 
consistently underestimated.  Unexpectedly, the underestimation is even larger when the point 
cloud has been pre-cleaned using the median filter. 
 

5.4 EXPERIMENT 4 
 
This experiment also uses the same ten random samples of 50 % of the data from the densest 
scans as Experiment 3, and calculates volumes for the resulting ten pairs of data sets as well as 
for the full data set.  However, meshing is now carried out in a different coordinate system, 
where the  z-axis points in the opposite direction of an estimated general scan direction.  The 
scan direction estimate was obtained from a graphic display of the footprint triangulation.  Note 
that increasing the  z-level for the volume calculation moves the floor towards the instrument.  
Cut volumes are oriented towards the instrument, fill volumes away from it. 
 
Two methods for calculating volumes were employed, based on comparing cut and fill volumes, 
respectively.  The first method, “Method 1”, determines floor levels that – when applied to the 
scans with the box – are close to the box but separate it from the instrument.  The volume of the 
box is then recovered as the difference of the fill volume without the box and the fill volume 
with the box.  Fig. 5.5a schematically illustrates this approach in 2D. 
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Figure 5.5.  Schematic illustration of two methods for determining the volume of a box. 
 
 
The second method, Method 2, uses floor levels which are located beyond the scanned objects as 
viewed from the instrument and indicated by zero fill volumes.  The difference of the cut 
volumes with and without the box is then considered to be the volume of the box.  A schematic 
illustration of this second approach is provided in Fig. 5.5b. 
 
All relevant triangles together define the footprint area of the meshed TIN surface. It was 
observed that the screen with the box occupies a slightly larger footprint area than the screen 
without the box (5.446 m2 vs. 5.442 m2).  Since the footprint area represents the silhouette of the 
screen as seen by the instrument, this area should be the same before and after the removal of the 
box.  The discrepancy in the footprint areas may thus suggest that a slight movement of the 
screen occurred after the box was removed.  Another indication is the existence of a shift in the 
sequence of cut volumes in the region between the box and the instrument.  In this region, only 
the screen contributes to cut volumes, and these cut volumes should therefore agree for identical 
floor levels unless the scene was perturbed.  Table 5.6 shows corresponding portions of the two 
sequences, where z-levels are varied in steps of 0.2 cm between -30 cm and -80 cm.  These two 
sequences will be used to determine an offset between them. 
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z-Level z-Level

Fill 
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Cut Cut 
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Table 5.6.  Cut volume comparison for data with and without box. 
 

 w/ Box w/o Box 

Floor Level (cm) Cut Volume (cm^3) Cut Volume (cm^3) 
-30 70 53 

-30.2 80 58 
-30.4 87 65 
-30.6 94 73 
-30.8 105 80 
-31 114 89 

-31.2 124 97 
-31.4 138 107 
-31.6 148 116 
-31.8 159 126 
-32 172 139 

-32.2 187 151 
-32.4 200 165 
-32.6 214 175 
-32.8 231 189 
-33 246 205 

   
-78.2 84954 81639 
-78.4 85906 82549 
-78.6 86872 83466 
-78.8 87845 84380 
-79 88825 85300 

-79.2 89808 86230 
-79.4 90818 87162 
-79.6 91813 88096 
-79.8 92823 89043 
-80 93844 89983 

Offset (cm) Sum of Squares of Differences (cm3) 

0.4 9652.648 

0.6 3336.779 

0.8 6552.811 

1.0 13630.473 

 
 
The two sequences of cut volumes shown in Table 5.6 appear to be offset by 0.6 cm.  To verify 
this, the square roots of the sum of squares of differences was calculated for the four offsets of 
0.4 cm, 0.6 cm, 0.8 cm, respectively, and are displayed at the bottom of Table 5.6.  They confirm 
that the offset of 0.6 cm provides a better match than the other three choices in the sense of least 
squares.  That offset needs to be taken into account when cut volumes of the screen with and 
without box are compared.  Thus, in both methods for volume determination as implemented in 
this work, floor levels that correspond to each other differ by 0.6 cm. 
 
Tables 5.7a and 5.7b present volume results for the full data set, with and without RMS 
adjustment, respectively.  6 000 points – roughly one third of the data points – were adaptively 
selected as vertices of the TIN surface.  Cut and fill volumes for both the scans with and without 
the box are listed.  These volumes are given for five pairs of corresponding floor levels – in steps 
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of 5.0 cm – that serve as reference for their computation.  Note that for Method 1, the floor level 
of -74.4 cm for the scan with the box corresponds to the floor level of -75.0 cm for the scan 
without.  These floor levels have been selected so as to be close to the box without intersecting it.  
Similarly, for Method 2, the floor level of -284.4 cm corresponds to the floor level of -285 cm 
for the other scan of the pair.  These floor levels have been chosen for zero fill volumes.  For 
both methods, the volumes are sensitive to the choice of the reference floor level: the relationship 
is not noisy, but exhibits a linear trend.  The reason for this is unclear.  The results of Method 2 
appear to be less accurate.  This might be due to the fact that the footprint area of the scan 
without the box is slightly smaller than the footprint area with the box:  the cut volume of the 
scan without the box is thus reduced and, as this value is subtracted to arrive at the volume, the 
volume is correspondingly increased. 
 
 

Table 5.7a.  Volume computation with RMS adjustments for the full data set. 
 

 
 

Table 5.7b.  Volume computation without RMS adjustments for the full data set. 
 

Box – unsampled 
6000 points meshed 

No Box – unsampled 
6000 points meshed Floor Level 

(cm) Cut Volume 
(cm3) 

Fill Volume 
(cm3) 

Floor Level 
(cm) Cut Volume 

(cm3) 
Fill Volume 

(cm3) 

Box Vol. 
(m3) 

Error  
(%) 

Method 1 
-54.4 N/A 4276612 -55 N/A 5981594 1.7050 0.35 
-59.4 N/A 4013304 -60 N/A 5718545 1.7052 0.37 
-64.4 N/A 3753258 -65 N/A 5458852 1.7056 0.39 
-69.4 N/A 3496743 -70 N/A 5202352 1.7056 0.39 
-74.4 N/A 3243454 -75 N/A 4949128 1.7057 0.39 

Box –unsampled 
6000 points meshed 

No Box – unsampled 
6000 points meshed Floor Level 

(cm) Cut Volume 
(cm3) 

Fill Volume 
(cm3) 

Floor Level 
(cm) Cut Volume 

(cm3) 
Fill Volume 

(cm3) 

Box Vol. 
(m3) 

Error 
(%) 

Method 1 

-54.4 N/A 4280545 -55 N/A 5981733 1.7012 0.13 

-59.4 N/A 4017048 -60 N/A 5718737 1.7017 0.16 

-64.4 N/A 3756907 -65 N/A 5459025 1.7021 0.18 

-69.4 N/A 3500145 -70 N/A 5202554 1.7024 0.20 

-74.4 N/A 3246716 -75 N/A 4949387 1.7027 0.22 

Method 2 

-284.4 8257297 N/A -285 6548046 N/A 1.7093 0.60 

-289.4 8529598 N/A -290 6820171 N/A 1.7094 0.61 

-294.4 8801899 N/A -295 7092297 N/A 1.7096 0.62 

-299.4 9074201 N/A -300 7364422 N/A 1.7098 0.63 



 33

Method 2 
-284.4 8252630 N/A -285 6548311 N/A 1.7043 0.31 
-289.4 8524744 N/A -290 6820436 N/A 1.7043 0.31 
-294.4 8796857 N/A -295 7092562 N/A 1.7043 0.31 
-299.4 9068971 N/A -300 7364687 N/A 1.7043 0.31 
-304.4 9341084 N/A -305 7636813 N/A 1.7043 0.31 

 
 

The analogous computations for the ten subsets of the full scan yield similar results as shown in 
Table 5.8a and 5.8b with and without RMS adjustments, respectively.  Here, 3 000 points were 
adaptively selected as vertices for the meshing.  The same offset of 0.6 cm is used to match floor 
levels.  The error trends for the five reference levels are again almost exactly linear, but with 
different slopes and signs, which was unexpected.  Another counterintuitive result is that for data 
set #3, Method 2 performs considerably better than Method 1, whereas the opposite is true in all 
other cases.  The results presented in Tables 5.7 and 5.8 are plotted in Fig. 5.6 and Fig. 5.7. 
 
 

Table 5.8a.  Processing samples with RMS adjustments for 10 subsets of data. 
 

Box 01 
3000 points meshed 

No Box – 01 
3000 points meshed Floor Level 

(cm) Cut Volume 
(cm3) 

Fill Volume 
(cm3) 

Floor Level 
(cm) Cut Volume 

(cm3) 
Fill Volume 

(cm3) 

Box Vol. 
(m3) 

Error 
 (%) 

Method 1 
-54.4 N/A 4261532 -55 N/A 5962846 1.7013 0.14 
-59.4 N/A 3999156 -60 N/A 5701305 1.7021 0.19 
-64.4 N/A 3740032 -65 N/A 5442911 1.7029 0.23 
-69.4 N/A 3484269 -70 N/A 5187829 1.7036 0.27 
-74.4 N/A 3231784 -75 N/A 4935985 1.7042 0.31 

Method 2  
-284.4 8220953 N/A -285 6497933 N/A 1.7230 1.41 
-289.4 8492063 N/A -290 6768563 N/A 1.7235 1.44 
-294.4 8763173 N/A -295 7039194 N/A 1.7240 1.47 
-299.4 9034283 N/A -300 7309825 N/A 1.7245 1.50 
-304.4 9305393 N/A -305 7580455 N/A 1.7249 1.53 

Box 02 
3000 points meshed 

No Box – 02 
3000 points meshed Floor Level 

(cm) Cut Volume 
(cm3) 

Fill Volume 
(cm3) 

Floor Level 
(cm) Cut Volume 

(cm3) 
Fill Volume 

(cm3) 

Box Vol. 
(m3) 

Error 
 (%) 

Method 1 
-54.4 N/A 4273449 -55 N/A 5968685 1.6952 -0.22 
-59.4 N/A 4010479 -60 N/A 5706515 1.6960 -0.17 
-64.4 N/A 3750721 -65 N/A 5447601 1.6969 -0.12 
-69.4 N/A 3494477 -70 N/A 5191963 1.6975 -0.09 
-74.4 N/A 3241553 -75 N/A 4939610 1.6981 -0.06 

Method 2  
-284.4 8240311 N/A -285 6521041 N/A 1.7193 1.19 
-289.4 8512090 N/A -290 6792302 N/A 1.7198 1.22 
-294.4 8783870 N/A -295 7063564 N/A 1.7203 1.25 
-299.4 9055649 N/A -300 7334825 N/A 1.7208 1.28 
-304.4 9327429 N/A -305 7606086 N/A 1.7213 1.32 

Box 03 
3000 points meshed 

No Box – 03 
3000 points meshed Floor Level 

(cm) Cut Volume 
(cm3) 

Fill Volume 
(cm3) 

Floor Level 
(cm) Cut Volume 

(cm3) 
Fill Volume\ 

(cm3) 

Box Vol. 
(m3) 

Error 
 (%) 

Method 1 
-54.4 N/A 4262099 -55 N/A 5971634 1.7095 0.62 
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-59.4 N/A 3999745 -60 N/A 5709339 1.7096 0.62 
-64.4 N/A 3740679 -65 N/A 5450296 1.7096 0.62 
-69.4 N/A 3484990 -70 N/A 5194479 1.7095 0.62 
-74.4 N/A 3232722 -75 N/A 4941982 1.7093 0.60 

Method 2 
-284.4 8221805 N/A -285 6525009 N/A 1.6968 -0.13 
-289.4 8492938 N/A -290 6796411 N/A 1.6965 -0.15 
-294.4 8764071 N/A -295 7067813 N/A 1.6963 -0.16 
-299.4 9035204 N/A -300 7339216 N/A 1.6960 -0.18 
-304.4 9306337 N/A -305 7610618 N/A 1.6957 -0.19 

Box 04 
3000 points meshed 

No Box – 04 
3000 points meshed Floor Level 

(cm) Cut Volume 
(cm3) 

Fill Volume 
(cm3) 

Floor Level 
(cm) Cut Volume 

(cm3) 
Fill Volume 

(cm3) 

Box Vol. 
(m3) 

Error  
(%) 

Method 1 
-54.4 N/A 4271003 -55 N/A 5962810 1.6918 -0.42 
-59.4 N/A 4008232 -60 N/A 5701292 1.6931 -0.35 
-64.4 N/A 3748770 -65 N/A 5442930 1.6942 -0.28 
-69.4 N/A 3492708 -70 N/A 5187886 1.6952 -0.22 
-74.4 N/A 3239950 -75 N/A 4936043 1.6961 -0.17 

Method 2 
-284.4 8231735 N/A -285 6499401 N/A 1.7323 1.96 
-289.4 8503279 N/A -290 6770059 N/A 1.7332 2.01 
-294.4 8774822 N/A -295 7040717 N/A 1.7341 2.07 
-299.4 9046365 N/A -300 7311375 N/A 1.7350 2.12 
-304.4 9317908 N/A -305 7582033 N/A 1.7359 2.17 

Box 05 
3000 points meshed 

No Box – 05 
3000 points meshed Floor Level 

(cm) Cut Volume 
(cm3) 

Fill Volume 
(cm3) 

Floor Level 
(cm) Cut Volume 

(cm3) 
Fill Volume 

(cm3) 

Box Vol. 
(m3) 

Error 
(%) 

Method 1 
-54.4 N/A 4262402 -55 N/A 5964827 1.7024 0.20 
-59.4 N/A 3999957 -60 N/A 5702856 1.7029 0.23 
-64.4 N/A 3740782 -65 N/A 5444052 1.7033 0.25 
-69.4 N/A 3484965 -70 N/A 5188648 1.7037 0.28 
-74.4 N/A 3232431 -75 N/A 4936540 1.7041 0.30 

Method 2 
-284.4 8226717 N/A -285 6513255 N/A 1.7135 0.85 
-289.4 8497966 N/A -290 6784261 N/A 1.7137 0.87 
-294.4 8769215 N/A -295 7055268 N/A 1.7139 0.88 
-299.4 9040464 N/A -300 7326275 N/A 1.7142 0.89 
-304.4 9311713 N/A -305 7597281 N/A 1.7144 0.91 

Box 06 
3000 points meshed 

No Box – 06 
3000 points meshed Floor Level 

(cm) Cut Volume 
(cm3) 

Fill Volume 
(cm3) 

Floor Level 
(cm) Cut Volume 

(cm3) 
Fill Volume 

(cm3) 

Box Vol. 
(m3) 

Error 
(%) 

Method 1 
-54.4 N/A 4260361 -55 N/A 5961267 1.7009 0.11 
-59.4 N/A 3998168 -60 N/A 5699518 1.7013 0.14 
-64.4 N/A 3739259 -65 N/A 5441135 1.7019 0.17 
-69.4 N/A 3483790 -70 N/A 5186043 1.7023 0.19 
-74.4 N/A 3231740 -75 N/A 4934184 1.7024 0.20 

Method 2 
-284.4 8215414 N/A -285 6505609 N/A 1.7098 0.64 
-289.4 8486372 N/A -290 6776368 N/A 1.7100 0.65 
-294.4 8757330 N/A -295 7047127 N/A 1.7102 0.66 
-299.4 9028289 N/A -300 7317886 N/A 1.7104 0.67 
-304.4 9299247 N/A -305 7588644 N/A 1.7106 0.68 
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Box 07 
3000 points meshed 

No Box – 07 
3000 points meshed Floor Level 

(cm) Cut Volume 
(cm3) 

Fill Volume 
(cm3) 

Floor Level 
(cm) Cut Volume 

(cm3) 
Fill Volume 

(cm3) 

Box Vol. 
(m3) 

Error 
(%) 

Method 1 
-54.4 N/A 4271016 -55 N/A 5965571 1.6946 -0.26 
-59.4 N/A 4008232 -60 N/A 5703799 1.6956 -0.20 
-64.4 N/A 3748786 -65 N/A 5445413 1.6966 -0.14 
-69.4 N/A 3492744 -70 N/A 5190335 1.6976 -0.08 
-74.4 N/A 3239954 -75 N/A 4938413 1.6985 -0.03 

Method 2 
-284.4 8227652 N/A -285 6500777 N/A 1.7269 1.64 
-289.4 8499110 N/A -290 6771523 N/A 1.7276 1.68 
-294.4 8770568 N/A -295 7042268 N/A 1.7283 1.72 
-299.4 9042025 N/A -300 7313014 N/A 1.7290 1.77 
-304.4 9313483 N/A -305 7583759 N/A 1.7297 1.81 

        
Box 08 

3000 points meshed 
No Box – 08 

3000 points meshed Floor Level 
(cm) Cut Volume 

(cm3) 
Fill Volume 

(cm3) 

Floor Level 
(cm) Cut Volume 

(cm3) 
Fill Volume 

(cm3) 

Box Vol. 
(m3) 

Error 
(%) 

Method 1 
-54.4 N/A 4267298 -55 N/A 5960378 1.6931 -0.35 
-59.4 N/A 4004670 -60 N/A 5698832 1.6942 -0.28 
-64.4 N/A 3745263 -65 N/A 5440587 1.6953 -0.22 
-69.4 N/A 3489318 -70 N/A 5185529 1.6962 -0.16 
-74.4 N/A 3236614 -75 N/A 4933681 1.6971 -0.11 

Method 2 
-284.4 8228771 N/A -285 6501552 N/A 1.7272 1.66 
-289.4 8500168 N/A -290 6772204 N/A 1.7280 1.70 
-294.4 8771564 N/A -295 7042855 N/A 1.7287 1.75 
-299.4 9042961 N/A -300 7313506 N/A 1.7295 1.79 
-304.4 9314357 N/A -305 7584157 N/A 1.7302 1.84 

Box 09 
3000 points meshed 

No Box – 09 
3000 points meshed Floor Level 

(cm) Cut Volume 
(cm3) 

Fill Volume 
(cm3) 

Floor Level 
(cm) Cut Volume 

(cm3) 
Fill Volume 

(cm3) 

Box Vol. 
(m3) 

Error 
(%) 

Method 1 
-54.4 N/A 4267094 -55 N/A 5960493 1.6934 -0.33 
-59.4 N/A 4004413 -60 N/A 5699025 1.6946 -0.26 
-64.4 N/A 3745021 -65 N/A 5440726 1.6957 -0.19 
-69.4 N/A 3489039 -70 N/A 5185678 1.6966 -0.14 
-74.4 N/A 3236376 -75 N/A 4933842 1.6975 -0.09 

Method 2 
-284.4 8230516 N/A -285 6498934 N/A 1.7316 1.92 
-289.4 8501946 N/A -290 6769537 N/A 1.7324 1.97 
-294.4 8773375 N/A -295 7040141 N/A 1.7332 2.01 
-299.4 9044805 N/A -300 7310745 N/A 1.7341 2.06 
-304.4 9316235 N/A -305 7581348 N/A 1.7349 2.11 

Box 10 
3000 points meshed 

No Box – 10 
3000 points meshed Floor Level 

(cm) Cut Volume 
(cm3) 

Fill Volume 
(cm3) 

Floor Level 
(cm) Cut Volume 

(cm3) 
Fill Volume 

(cm3) 

Box Vol. 
(m3) 

Error 
(%) 

Method 1 
-54.4 N/A 4262054 -55 N/A 5966361 1.7043 0.31 
-59.4 N/A 3999659 -60 N/A 5704390 1.7047 0.34 
-64.4 N/A 3740525 -65 N/A 5445632 1.7051 0.36 
-69.4 N/A 3484706 -70 N/A 5190226 1.7055 0.38 
-74.4 N/A 3232200 -75 N/A 4938112 1.7059 0.41 

Method 2 
-284.4 8227650 N/A -285 6513124 N/A 1.7145 0.91 



 36

-289.4 8498909 N/A -290 6784156 N/A 1.7148 0.93 
-294.4 8770168 N/A -295 7055189 N/A 1.7150 0.94 
-299.4 9041427 N/A -300 7326221 N/A 1.7152 0.95 
-304.4 9312687 N/A -305 7597253 N/A 1.7154 0.97 

 
 
 
 

Table 5.8b.  Processing samples without RMS adjustments for 10 subsets of data. 
 

Box – 01 
3000 points meshed 

No Box – 01 
3000 points meshed Floor Level 

(cm) Cut Volume 
(cm3) 

Fill Volume 
(cm3) 

Floor Level 
(cm) Cut Volume 

(cm3) 
Fill Volume 

(cm3) 

Box Vol. 
(m3) 

Error 
(%) 

Method 1 
-54.4 N/A 4261449 -55 N/A 5962442 1.7010 0.12 
-59.4 N/A 3999093 -60 N/A 5701024 1.7019 0.17 
-64.4 N/A 3739939 -65 N/A 5442765 1.7028 0.23 
-69.4 N/A 3484207 -70 N/A 5187792 1.7036 0.27 
-74.4 N/A 3231730 -75 N/A 4936000 1.7043 0.31 

Method 2 
-284.4 8221086 N/A -285 6498465 N/A 1.7226 1.39 
-289.4 8492196 N/A -290 6769096 N/A 1.7231 1.42 
-294.4 8763306 N/A -295 7039727 N/A 1.7236 1.45 
-299.4 9034416 N/A -300 7310357 N/A 1.7241 1.47 
-304.4 9305526 N/A -305 7580988 N/A 1.7245 1.50 

Box – 02 
3000 points meshed 

No Box – 02 
3000 points meshed Floor Level 

(cm) Cut Volume 
(cm3) 

Fill Volume 
(cm3) 

Floor Level 
(cm) Cut Volume 

(cm3) 
Fill Volume 

(cm3) 

Box Vol. 
(m3) 

Error 
(%) 

Method 1 
-54.4 N/A 4272766 -55 N/A 5968602 1.6958 -0.19 
-59.4 N/A 4009853 -60 N/A 5706461 1.6966 -0.14 
-64.4 N/A 3750145 -65 N/A 5447641 1.6975 -0.09 
-69.4 N/A 3493943 -70 N/A 5192063 1.6981 -0.05 
-74.4 N/A 3241044 -75 N/A 4939805 1.6988 -0.01 

Method 2 
-284.4 8241248 N/A -285 6521232 N/A 1.7200 1.24 
-289.4 8513028 N/A -290 6792494 N/A 1.7205 1.27 
-294.4 8784807 N/A -295 7063755 N/A 1.7211 1.30 
-299.4 9056587 N/A -300 7335016 N/A 1.7216 1.33 
-304.4 9328366 N/A -305 7606277 N/A 1.7221 1.36 

Box – 03 
3000 points meshed 

No Box – 03 
3000 points meshed Floor Level 

(cm) Cut Volume 
(cm3) 

Fill Volume 
(cm3) 

Floor Level 
(cm) Cut Volume 

(cm3) 
Fill Volume 

(cm3) 

Box Vol. 
(m3) 

Error 
(%) 

Method 1 
-54.4 N/A 4260361 -55 N/A 5970773 1.7104 0.67 
-59.4 N/A 3997963 -60 N/A 5708439 1.7105 0.68 
-64.4 N/A 3738837 -65 N/A 5449374 1.7105 0.68 
-69.4 N/A 3483089 -70 N/A 5193539 1.7105 0.67 
-74.4 N/A 3230873 -75 N/A 4941089 1.7102 0.66 

Method 2 
-284.4 8223780 N/A -285 6526010 N/A 1.6978 -0.07 
-289.4 8494913 N/A -290 6797412 N/A 1.6975 -0.09 
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-294.4 8766045 N/A -295 7068814 N/A 1.6972 -0.10 
-299.4 9037178 N/A -300 7340217 N/A 1.6970 -0.12 
-304.4 9308311 N/A -305 7611619 N/A 1.6967 -0.14 

Box – 04 
3000 points meshed 

No Box – 04 
3000 points meshed Floor Level 

(cm) Cut Volume 
(cm3) 

Fill Volume 
(cm3) 

Floor Level 
(cm) Cut Volume 

(cm3) 
Fill Volume 

(cm3) 

Box Vol. 
(m3) 

Error 
(%) 

Method 1 
-54.4 N/A 4269038 -55 N/A 5961613 1.6926 -0.38 
-59.4 N/A 4006325 -60 N/A 5700140 1.6938 -0.31 
-64.4 N/A 3746882 -65 N/A 5441815 1.6949 -0.24 
-69.4 N/A 3490847 -70 N/A 5186813 1.6960 -0.18 
-74.4 N/A 3238087 -75 N/A 4934977 1.6970 -0.12 

Method 2 
-284.4 8233785 N/A -285 6500719 N/A 1.7331 2.01 
-289.4 8505328 N/A -290 6771377 N/A 1.7340 2.06 
-294.4 8776871 N/A -295 7042035 N/A 1.7348 2.11 
-299.4 9048414 N/A -300 7312693 N/A 1.7357 2.16 
-304.4 9319957 N/A -305 7583351 N/A 1.7366 2.21 

Box – 05 
3000 points meshed 

No Box – 05 
3000 points meshed Floor Level 

(cm) Cut Volume 
(cm3) 

Fill Volume 
(cm3) 

Floor Level 
(cm) Cut Volume 

(cm3) 
Fill Volume 

(cm3) 

Box Vol. 
(m3) 

Error 
(%) 

Method 1 
-54.4 N/A 4260880 -55 N/A 5965368 1.7045 0.32 
-59.4 N/A 3998463 -60 N/A 5703432 1.7050 0.35 
-64.4 N/A 3739316 -65 N/A 5444635 1.7053 0.37 
-69.4 N/A 3483545 -70 N/A 5189291 1.7057 0.40 
-74.4 N/A 3231086 -75 N/A 4937214 1.7061 0.42 

Method 2 
-284.4 8228148 N/A -285 6512812 N/A 1.7153 0.96 
-289.4 8499397 N/A -290 6783818 N/A 1.7156 0.98 
-294.4 8770646 N/A -295 7054825 N/A 1.7158 0.99 
-299.4 9041894 N/A -300 7325832 N/A 1.7161 1.00 
-304.4 9313143 N/A -305 7596838 N/A 1.7163 1.02 

Box – 06 
3000 points meshed 

No Box – 06 
3000 points meshed Floor Level 

(cm) Cut Volume 
(cm3) 

Fill Volume 
(cm3) 

Floor Level 
(cm) Cut Volume 

(cm3) 
Fill Volume 

(cm3) 

Box Vol. 
(m3) 

Error 
(%) 

Method 1 
-54.4 N/A 4259753 -55 N/A 5960251 1.7005 0.09 
-59.4 N/A 3997557 -60 N/A 5698502 1.7009 0.11 
-64.4 N/A 3738646 -65 N/A 5440078 1.7014 0.14 
-69.4 N/A 3483114 -70 N/A 5184958 1.7018 0.17 
-74.4 N/A 3231027 -75 N/A 4933064 1.7020 0.18 

Method 2 
-284.4 8216055 N/A -285 6506632 N/A 1.7094 0.61 
-289.4 8487013 N/A -290 6777390 N/A 1.7096 0.63 
-294.4 8757971 N/A -295 7048149 N/A 1.7098 0.64 
-299.4 9028929 N/A -300 7318908 N/A 1.7100 0.65 
-304.4 9299887 N/A -305 7589667 N/A 1.7102 0.66 
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Box – 07 
3000 points meshed 

No Box – 07 
3000 points meshed Floor Level 

(cm) Cut Volume 
(cm3) 

Fill Volume 
(cm3) 

Floor Level 
(cm) Cut Volume 

(cm3) 
Fill Volume 

(cm3) 

Box Vol. 
(m^3) 

Error 
(%) 

Method 1 
-54.4 N/A 4270027 -55 N/A 5967066 1.6970 -0.12 
-59.4 N/A 4007149 -60 N/A 5705331 1.6982 -0.05 
-64.4 N/A 3747619 -65 N/A 5446837 1.6992 0.01 
-69.4 N/A 3491559 -70 N/A 5191587 1.7000 0.06 
-74.4 N/A 3238763 -75 N/A 4939506 1.7007 0.10 

Method 2 
-284.4 8228700 N/A -285 6499495 N/A 1.7292 1.78 
-289.4 8500158 N/A -290 6770240 N/A 1.7299 1.82 
-294.4 8771616 N/A -295 7040986 N/A 1.7306 1.86 
-299.4 9043074 N/A -300 7311731 N/A 1.7313 1.90 
-304.4 9314531 N/A -305 7582476 N/A 1.7321 1.95 

Box – 08 
3000 points meshed 

No Box – 08 
3000 points meshed Floor Level 

(cm) Cut Volume 
(cm3) 

Fill Volume 
(cm3) 

Floor Level 
(cm) Cut Volume 

(cm3) 
Fill Volume 

(cm3) 

Box Vol. 
(m3) 

Error 
(%) 

Method 1 
-54.4 N/A 4266799 -55 N/A 5960564 1.6938 -0.31 
-59.4 N/A 4004200 -60 N/A 5699036 1.6948 -0.25 
-64.4 N/A 3744766 -65 N/A 5440759 1.6960 -0.18 
-69.4 N/A 3488822 -70 N/A 5185617 1.6968 -0.13 
-74.4 N/A 3236154 -75 N/A 4933635 1.6975 -0.09 

Method 2 
-284.4 8229390 N/A -285 6501323 N/A 1.7281 1.71 
-289.4 8500787 N/A -290 6771974 N/A 1.7288 1.75 
-294.4 8772183 N/A -295 7042625 N/A 1.7296 1.80 
-299.4 9043580 N/A -300 7313276 N/A 1.7303 1.84 
-304.4 9314976 N/A -305 7583927 N/A 1.7310 1.89 

Box – 09 
3000 points meshed 

No Box – 09 
3000 points meshed Floor Level 

(cm) Cut Volume 
(cm3) 

Fill Volume 
(cm3) 

Floor Level 
(cm) Cut Volume 

(cm3) 
Fill Volume 

(cm3) 

Box Vol. 
(m3) 

Error 
(%) 

Method 1 
-54.4 N/A 4266962 -55 N/A 5960031 1.6931 -0.35 
-59.4 N/A 4004213 -60 N/A 5698588 1.6944 -0.27 
-64.4 N/A 3744720 -65 N/A 5440279 1.6956 -0.20 
-69.4 N/A 3488715 -70 N/A 5185259 1.6965 -0.14 
-74.4 N/A 3236064 -75 N/A 4933476 1.6974 -0.09 

Method 2 
-284.4 8230733 N/A -285 6499629 N/A 1.7311 1.89 
-289.4 8502163 N/A -290 6770233 N/A 1.7319 1.94 
-294.4 8773593 N/A -295 7040837 N/A 1.7328 1.99 
-299.4 9045023 N/A -300 7311440 N/A 1.7336 2.04 
-304.4 9316452 N/A -305 7582044 N/A 1.7344 2.08 
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Box – 10 
3000 points meshed 

No Box – 10 
3000 points meshed Floor Level 

(cm) Cut Volume 
(cm3) 

Fill Volume 
(cm3) 

Floor Level 
(cm) Cut Volume 

(cm3) 
Fill Volume 

(cm3) 

Box Vol. 
(m3) 

Error 
(%) 

Method 1 
-54.4 N/A 4261363 -55 N/A 5965047 1.7037 0.28 
-59.4 N/A 3999034 -60 N/A 5703179 1.7041 0.30 
-64.4 N/A 3739911 -65 N/A 5444506 1.7046 0.33 
-69.4 N/A 3484071 -70 N/A 5189127 1.7051 0.36 
-74.4 N/A 3231613 -75 N/A 4936995 1.7054 0.38 

Method 2 
-284.4 8228488 N/A -285 6514594 N/A 1.7139 0.88 
-289.4 8499748 N/A -290 6785626 N/A 1.7141 0.89 
-294.4 8771007 N/A -295 7056658 N/A 1.7143 0.90 
-299.4 9042266 N/A -300 7327690 N/A 1.7146 0.92 
-304.4 9313525 N/A -305 7598723 N/A 1.7148 0.93 

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       a.  Method 1     b.  Method 2 
 

Figure 5.6.  Experiment 4 without RMS adjustments:  Volume error for full data set and 10 
subsets. 
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        a.  Method 1     b.  Method 2 
 
Figure 5.7.  Experiment 4 with RMS adjustments:  Volume error for full data set and 10 subsets. 
 
 
A summary of the results for Experiment 4 is given in Table 5.9.  In this table, the mean and the 
standard deviation for volume computations were associated with reference level pair -74.4 cm, 
75.0 cm  is selected as the result of Method 1, and the volume associated with the floor pair 
-284.4 cm, 285.0 cm as the result of Method 2.  In conjunction with either method, the RMS 
adjustment did not result in a significant improvement.  In fact, for the full data set, the RMS 
adjustment increased the volume error for all floor levels chosen for Method 1, while yielding 
improvements for all levels for Method 2.  With and without RMS adjustments, the volume error 
using Method 1 remained below the standard deviation.  For Method 2, the volume error is about 
double the standard deviation.  In nine out of ten instances, the values provided by Method 2 
overestimate the “true” volume of 1.6990 m3, indicating an unresolved bias error.   
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Table 5.9.  Summary of Experiment 4 results. 
 

Volume (m3) 
No RMS RMS Data Sub-Set 

Method 1 Method 2 Method 1 Method 2 
1 1.704 1.723 1.704 1.723 
2 1.699 1.720 1.698 1.719 
3 1.710 1.698 1.709 1.697 
4 1.697 1.733 1.696 1.732 
5 1.706 1.715 1.704 1.713 
6 1.702 1.709 1.702 1.710 
7 1.701 1.729 1.698 1.727 
8 1.697 1.728 1.697 1.727 
9 1.697 1.731 1.697 1.732 
10 1.705 1.714 1.706 1.715 

Average (m3) 1.702 1.720 1.701 1.719 

Std. Dev. (m3) 0.0045 0.011 0.0045 0.011 

Volume Error (m3) 0.003 0.021 0.002 0.020 

Vol. Error (%) 0.17 1.24 0.14 1.21 
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6. SUMMARY AND CONCLUSIONS 
 
This report describes experiments conducted to examine the performance and accuracy of TIN 
techniques for volume determination.  The TIN technique is a technique for meshing 3D point 
clouds in order to represent them by surfaces.   
 
Five pairs of LADAR scans were taken at five specified data densities.  For each such density 
setting, a plywood screen (Fig. 1.1) was scanned with and without a plywood box of known 
dimensions.  The volume of the box was then derived by several alternate procedures as the 
difference of volumes associated with each pair of scans, respectively.  Four experimental 
procedures for volume determination were examined.  Within each such experiment, alternate 
options and parameter settings were explored. 
 
Experiment 1 was based on the two scans of highest density only.  The key parameter to be 
varied was the number of data points specified to be automatically selected as vertices of the TIN 
surfaces representing the two point clouds, respectively. This parameter determines the 
coarseness or resolution of the resulting TIN surface.  Varying the number of bins used for 
constructing an initial triangulation provided a means for examining alternate TIN surfaces.  
Experiment 1 produced an unexpected result in the volume calculations: for small numbers of 
vertices and, therefore, coarser TIN surfaces, volumes tend to be overestimated.  As the number 
of vertices increases, the volumes decrease in a regular fashion.  The most accurate volumes 
were thus found when only about 1/3 of the data points were incorporated as vertices.  There is 
yet no evidence whether this observation holds true in general.  Nevertheless, for the subsequent 
experiments, the vertex ratio has been fixed at 1/3. 
  
In Experiment 2, volume calculations for different densities were compared.  As expected, the 
volumes calculated for the highest density setting were the most accurate, and the ones based on 
the lowest density setting the least accurate.  Inexplicably, however, the third highest density 
setting performed better than the second highest density setting.  This phenomenon persisted 
after triangulation adjustments were used to improve the RMS and ASD measures-of-fit of the 
point clouds by the respective surfaces. 
 
Experiment 3 was designed to estimate standard errors.  The “true” box volume of 1.6990 m3 
was reproduced roughly within three standard deviations with volume errors less than 2 %.  In all 
cases, the true volume was underestimated, suggesting bias inherent in the experimental set-up.  
The underestimation was increased rather than mitigated by the application of a median filter. 
 
Experiment 4 was also designed to estimate standard errors.  The objective of Experiment 4 was 
to examine the effect of defining TIN surfaces in the direction of the scan rather than with 
reference to a horizontal footprint plane – the procedure used in the previous experiments.  In 
addition, a difference scheme was employed to determine reference elevation levels.  Two 
methods, Method 1 and Method 2, were implemented; the first based on determining fill 
volumes, the second on cut volumes.  Method 1 provided the most exact volume measurements, 
with errors below 0.2 % and within the standard deviation of 0.004 m3.  Method 2 overestimated 
the “true” volume for all but one of the ten data subsets.  The reason for this apparent bias is not 
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understood.  The most meaningful comparison is with Experiment 3, in which the same 
procedure for estimating standard errors was followed.  For Method 1, a definite improvement of 
volume accuracy was observed, while the results of Method 2 were comparable. 
   
Several procedures for post-processing the TIN surfaces were explored.  Minimizing the RMS 
error of the surface representations – the “elevation adjustment” – was used as an option in all 
experiments.  The option described as “triangulation adjustment” was examined in Experiment 2. 
Both of these post-processing adjustments improved the accuracy of representation as gauged by 
specified measures-of-fit; however, these improvements only sporadically translated into 
improvements of volume accuracy. 
  
The noise level of the scans is estimated to correspond to a standard deviation of roughly 2 cm.  
A statistical analysis of what accuracy can be realistically expected given this level of noise is 
planned. 
 
To provide an idea as to the kind of accuracies and uncertainties to expect for volume 
determinations from LADAR scans, representative volume figures are shown in Table 6.1.  They 
reflect an arbitrary decision to choose approximately 1/3 of the data points as vertices of TIN 
surfaces for which cut/fill volumes are determined, from which a box volume is subsequently 
derived.  The values and “uncertainties” listed for Experiments 1 and 2 are simply the values 
over which the available measurements were ranging, expressed by their respective midpoints 
and maximum deviations.  The latter have no statistical meaning.  In Experiments 3 and 4, 
expected values and standard deviations have been calculated for random subsets of the data. 
 
 

Table 6.1.  Summary of Volumes and Uncertainties. 
 

Volume (m3) Experiment Description 
Definition w/ RMS w/o RMS 

1 Density 1 (Highest) Mid. range val. ± range limit 1.6997 ± 0.0023 1.701 ± 0.00215 
Density 1 (Highest) Mid. range val. ± range limit 1.69640 ± 0.0070 NA 
Density 2 Mid. range val. ± range limit 1.67215 ± 0.00105 NA 
Density 3 Mid. range val. ± range limit 1.69595 ± 0.00125 NA 
Density 4 Mid. range val. ± range limit 1.67680 ± 0.0010 NA 

2 

Density 5 (Lowest) Mid. range val. ± range limit 1.63035 ± 0.00425 NA 
3 Density 1, no filter Avg. val. ± std. dev. 1.678 ± 0.0086 1.681 ± 0.0094 
4 Density 1, Method 1 Avg. val. ± std. dev. 1.701 ± 0.0045 1.702 ± 0.0045 
     
  “True” Volume 1.6990  
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