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Synopsis

In this paper, a dissipative particle dynamicssDPDd based approach for modeling suspension
examined. A series of tests is applied comparing simulation results to well established the
predictions. The model recovers the dilute limit intrinsic viscosity prediction of Einstein
provides reasonable estimates of the Huggins coefficient for semidilute suspensions. A
volume fractions, it was necessary to explicitly include lubrication forces into the algorith
the usual DPD interactions are too weak to prevent overlaps of the rigid bodies and acco
other related effects due to lubrication forces. Results were then compared with previous st
dense hard sphere suspensions using the Stokesian dynamics method and experime
Comparison of relative viscosity values determined from strain controlled shearing versu
controlled shearing simulations are also given. The flow of spheroidal objects is studie
rotation of a single spheroid under shear is consistent with the predictions of Jeffery. Simu
of sheared spheroids at higher volume fractions produce an apparent nematic phase. An ex
given of the application of DPD to model flow in another geometry, gravitational driven
between parallel cylinders, which is of practical interest. ©2005 The Society of Rheolo
Inc.. fDOI: 10.1122/1.1849187g

I. INTRODUCTION

The flow properties of suspensionsse.g., colloids, ceramic slurries, and concreted are
of fundamental interest and play an important role in a wide variety of technolo
processes crucial to industryfLarsons1999dg. There have been many theoretical adva
in understanding the rheological properties of simple suspensionsse.g., very dilute an
semidilute suspensions, suspensions composed of spheroidal objectsd, however, under
standing the flow of more complex suspensionsse.g., dense suspensions, random sh
particles, suspensions composed of particles that interactd remains a great challeng
Here, computational modeling can play an important role in investigating the prop
of such systems. One possible approach is to apply standard computational fluid
ics methods. This involves considerable effort in carrying out the difficult task of tra
boundaries between different fluid and solid phases, usually involving various me
moving grid, and interpolation schemes to account for motion of the rigid bodi
second approach, based on the lattice Boltzmann methodfLadd s1997d; Nguyen and
Ladds2002dg, involves calculation of the momentum transfer which results from par
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402 NICOS S. MARTYS
that “bounce” off the rigid body. The kinetics of the momentum transfer has
carefully evaluated as the rigid body’s surface can be located at any point and w
orientation between the lattice nodes from which the particles “propagate.” A third
perhaps best known approach, is called Stokesian dynamicssSDd fBrady and Bossi
s1988d; Phung and Bradys1996d; Sierou and Bradys2001dg. In many respects, Stokesi
dynamics serves as a standard benchmark as it was the first computational me
properly incorporate long range hydrodynamic interactions, Brownian forces, and
cation forces for modeling suspensions composed of hard spheres. Some of its su
include the demonstration of shear induced ordering and shear thickening in den
sphere systemsfFoss and Bradys2000dg. Recently, a new computational method, ca
dissipative particle dynamicssDPDd fHoogerbrugge and Koelmans1992d; Koelman and
Hoogerbrugges1993dg has shown promise for modeling a variety of complex fluid
tems. Further, DPD may potentially have some advantages over some compu
fluids dynamics based approaches in that DPD can naturally accommodate many
ary conditions while not requiring meshingsor remeshingd of the computational domai
On the surface, DPD looks very much like a molecular dynamics algorithm where,
case, particles subject to interatomic forces move according to Newton’s laws. Ho
the particles in DPD are not atomistic but, more so, a mesoscopic representation
fluid.

One can take several “philosophical” views of DPD. Ideally, one would like to t
of DPD as a consequence of the systematic coarse graining of atomistic or micro
domains. Indeed, there has been much effort in this directionfFlekkøy et al. s2000dg.
While this view provides a general framework for understanding the structure of the
equations, there are still several gaps in bridging the microscopic and macrosco
mains. For example, it is necessary to impose constitutive relationsse.g., stress-strain ra
relationsd at some point. Hence, further work is needed to make such scale-up proc
clearer. A second view is that DPD belongs to a class of Lagrangian formulations
Navier–Stokes equationshe.g., smooth particle hydrodynamicsfMonaghans1992dgj. Re-
lated but more sophisticated modelsfSerrano and Españols2001d; Espñols1998dg utilize
Voronoi cells to establish a grid that fills space or associate a time dependent v
parameterfEspañol and Serranos1999dg to each DPD particle. From this perspect
DPD does not conserve volume in a proper sense, making the implementation of a
equations of state difficultfEspañol and Serranos1999d; Español and Revengas2003dg. In
this respect, one can think of DPD as a “poor man’s” Lagrangian formulation o
Navier–Stokes equations having sacrificed some rigor for computational expedien
a third view, and what was probably the original intent, one can think of DPD
somewhat abstract cellular-automata-based construct that, in certain regimes,
hydrodynamics consistent with the Navier–Stokes equationshsimilar, in a way to how
lattice gas and lattice Boltzmann methods were originally thought offRothman an
Zaleskis1994dgj. Indeed, it has been shown, by mapping the DPD equations to an e
lent stochastic differential equationsthe Fokker Planck equationd fEspañol and Warre
s1995dg and applying a Chapman–Enskog analysisfMarshet al. s1996, 1997dg, DPD does
produce hydrodynamic behavior consistent with the Navier–Stokes equations to
order in the Chapman–Enskog expansion. Thus, the challenge is to carefully c
solutions obtained from DPD to physical regimes of interesthcf. fGroot and Warre
s1997d; Dzwinel and Yuens2000, 2002dgj. Hopefully, universal features of both t
cellular automata approach and the “real” physical system can be exploited to he
insight into the system of interest. Regardless of what computational approach or
sophical view one takes, it is extremely important to validate the computational m

especially if it is going to be used as a predictive computational tool.
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403DISSIPATIVE PARTICLE DYNAMICS
Previous papersfKoelman and Hoogerbrugges1993d; Boek et al. s1997dg have dem
onstrated the potential of DPD to model colloidal suspensions including hard sphe
spheroidal objectsfBoek et al. s1997dg. However, comparisons with experiments
theory have been more qualitative rather than quantitative and there were no comp
with other approaches. In this paper, a DPD based approach for modeling suspen
examined with an emphasis on comparing simulation results to well known theo
predictions concerning simple flow scenarios and the rheology of dilute to sem
suspensions. Tests include comparisons with the intrinsic viscosity prediction of E
and the Huggins coefficient for dilute and semidilute suspensions, respectively. At
volume fractions, the DPD algorithm had to be modified to include lubrication forc
the usual DPD interactions are too weak to prevent overlap of the rigid bodies. R
are compared with previous studies concerning the flow of dense suspensions b
the Stokesian dynamics method and experimental data. As an alternative to th
monly used Lees–Edwards boundary conditionfAllen and Tildesleys1987dg, which can
roughly be thought of as a constant applied strain rate, simulations were also carr
using a constant applied stress. It was found that use of a constant stress to d
system helped mitigate large temporal fluctuations in the derived viscosity whic
curred in the constant strain rate case. Interestingly, rheological measurements a
volume fractions are often carried out using a constant applied stress. Spheroid
bodies are also considered. The rotation period of a single prolate spheroid under
consistent the predictions of Jefferys1922d; Eirich s1967d. Studies of the flow of sphe
roids at higher volume fractions produce an apparent nematic phasefLarsons1999dg. An
example of application of the DPD algorithm to model flow in other geometries like
encountered in the flow and placement of concrete is given. To contrast this wor
previous DPD based simulations of suspensionsfBoek et al. s1997dg, it should be note
that in this paper lubrication forces are explicitly included in the simulations of d
sphere suspensions. In addition, size polydispersivity, Jeffery’s orbits and the onse
apparent nematic phase were studied. Finally, flow in alternate geometries and
applied stress instead of applied strain were examined.

II. BASIC DPD EQUATIONS

I start by briefly reviewing the basic equations of DPD. In DPD, as in mole
dynamics, the evolution of the position,r i, and momentum,pi =m vi, of particle i with
mass,m, and velocityv are described by

ṙ i = vi , s1d

ṗi = o
jÞi

N

Fi j , s2d

whereFi j is the force on particlei due to particlej and the dot indicates a time derivati
Interparticle forces are typically represented as three types: conservativeFi j

C, dissipative
Fi j

D, and randomFi j
R so that

Fi j = Fi j
C + Fi j

D + Fi j
R. s3d

The conservative force is simply a central force, derivable from some effective po
fi j . The dissipative force is proportional to the difference of velocity,vi j =vi −v j, between
particles and acts to slow down their relative motion, producing a viscous effec
random forcesusually based on a Gaussian random noised helps maintain the temperatu

of the system and provides an additional viscous effect. The three forces are given below
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404 NICOS S. MARTYS
Fi j
C = −

]fi j

]r i
, s4d

Fi j
D = − gwDsr i jdfêi j · vi jgêi j , s5d

Fi j
R = swRsr i jdêi jxi j . s6d

The distance between the DPD particlesi and j is given byr ij , êi j is a unit vector pointin
from particlej to particlei, wRsr ijd andwDsr ijd are weight functions andxi j is a randomly
fluctuating variable described by Gaussian statistics. It can be shown that, in o
maintain a well defined temperature by way of consistency with the fluctua
dissipation theoremfEspañol and Warrens1995dg, coefficients describing the strength
the dissipativesgd and randomssd forces must be coupled, that is

kbT =
s2

2g
, s7d

wherekb is the Boltzmann constant andT is the temperature. Further, so that the D
fluid system possess a Gibbs–Boltzmann equilibrium state, the following relation
hold sdetailed balance for an infinitesimal time stepd fEspañol and Warrens1995dg:

wD = wR
2 . s8d

In this study, the choice of parameters and weight functions closely follow that des
in Groot and Warrens1997d. Here,wRsr ijd=1−r ij for sr ij ,1d andwRsr ijd=0 for r ij ù1.
All lengths described in this paper are defined in units of the cutoff radius,rc=1, of the
DPD interaction. The conservative force is taken to beFi j

C=Fms1−r ijdêij . For all the
simulations in this paper,sù40 andFm=75kbT/r wherer is the global density of DP
particles. Units ofkbT are chosen such thatkbT=1 andFm was chosen so that the DP
fluid has the same compressibility of waterfsee the discussion in Groot and War
s1997dg.

An important parameter that characterizes suspensions under shear is the Pec
ber, Pe. Peclet number is a dimensionless number describing the competition b
viscous and Brownian forces and, for spheres, is given by Pe=6pma3ġ /kbT. Here,m is
the viscosity,a is the sphere radius, andġ is the shear rate. Also, for spheres under sh
the Reynolds number is given by Re=ra2ġ /m. In general Re<Os1d or smaller in this
study. Depending on the simulation, system sizes were 153, 453, and 903 in our units.
Finally, because the DPD interactions are short range the code parallelized in a
efficient manner. For example, a spatial decomposition version of our code scaled
linearly up to about 16 processors on a Linux cluster. For more information o
parallelization of this code see Sims and Martyss2004d.

A. Integration of the equations of motion

The original DPD algorithmfKoelman and Hoogerbrugges1993d; Boeket al. s1997dg
used a simple Euler algorithm for time integration. It has been noted, in Groo
Warrens1997d, that use of a modified velocity-Verlet algorithm leads to improvemen
numerical accuracy as well as a better characterization of thermal equilibrium pro
for the DPD simulationffor a discussion of various integration schemes see Vattul
et al. s2002dg. The original velocity Verlet algorithmfVerlet s1967dg is widely used in
simulations and is an example of a second order symplectic integrator that has m

computational memory requirements. It has the form
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405DISSIPATIVE PARTICLE DYNAMICS
xsdtd = xs0d + vs0ddt +
sdt2d

2
as0d, s9d

vsdtd = vs0d +
dt

2
fas0d + asdtdg, s10d

whereas0d=Ffxs0dg /m is the acceleration term evaluated usingxs0d and an intermedia
velocity ṽs0d. The velocity Verlet algorithm does not provide a prescription for inclu
velocity dependent forces as found in DPD. To extend the velocity Verlet algorith
include velocity dependent forces we follow Groot and Warrens1997d, where as0d
=Ffxs0d , ṽs0dg /m and defineṽ to be

ṽsdtd = vs0d + 1
2dtas0d. s11d

To model rigid body motion in a fluid, a subset of the DPD particles are ini
assigned a location in space such that they approximate the shape of the obje
motion of these particles is then constrained such that their relative positions
change. The total force and torque are determined from the DPD interparticle inter
and the rigid body moves according to the Euler equations for rigid bodies. The
equations were solved using a quaternion based computational approach prop
Omelyans1998d. The details of this algorithm and its adoption for DPD are give
Martys and Mountains1999d.

B. Initialization

Groot and Warrens1997d found that choosing a number density of three DPD part
per unit volumeswhere as defined earlier, the unit of length isrcd was a practical choic
for modeling the fluid phase. The equilibrium properties of the fluid are reasonabl
defined here and going to higher densities quickly becomes expensive computat
The rigid bodies were introduced by randomly placing their center of mass positi
the simulation cell. This sphere packing process, of course, leads to overlaps of th
bodies. A repulsive force was introduced that pushed the overlapping rigid bodies
Once the spheres were separated, the final configuration was used as an input fo
ning the simulations.

For most of the results presented, a Lees–Edwards boundary conditionfAllen and
Tildesley s1987dg was used. It effectively produces a shearing effect akin to an ap
constant strain rate at the boundaries. Applications of other boundary conditions
described later in the paper.

C. Determination of kinematic viscosity

The stress tensor has contributions from the propagation of momentum and in
ticle forces

sab =
1

Vm
o

i

p̃ia8 p̃ib8 +
1

2V
o
i j

Fij
asr i − r jdb, s12d

wherei, j refers to different particles,a andb refer to Cartesian coordinate axes andp̃i8
is the momentum of particlei relative to the macroscopic velocity field midway betw
its trajectory during a time step. Then, for a constant applied shear rate, the kin

viscosityn is obtained from



tween
and

o the
com-

e the
sition
pping
t
otion
osition
noring

etric
y incor-
locity
der of

differ-
-
ass force

or short
s found
bly close

le flow
for the

being
1 on a
ld will
he fluid
using

ll in
ws the
to its
ation
e cell
cosity
calcu-
owing
lation

406 NICOS S. MARTYS
n = − s12/ġ, s13d

where the shear is applied in thex1 direction.

D. Accounting for constraint forces

The velocity Verlet algorithm is broken up into two parts where one alternates be
updating the positions and velocities of particles. As pointed out by Koelman
Hoogerbrugges1993d, there is an additional contribution to the stress tensor due t
constraint forces that maintain the relative positions of particles the rigid body are
posed of. Clearly, we are using an algorithm that does not explicitly determin
constraint forces on each particle of the rigid body. However, since we know the po
and velocity of each particle, we can effectively backout the constraint forces by ma
the individual particle’sscontained on the rigid bodyd trajectory to the velocity Verle
algorithm and then solve for the constraint forces that would be required for such m
of the particles to take place. Note that the constraint forces used to update the p
and then the velocities are not the same. The difference is actually small and ig
either contribution alone results in an error of orderdt3 in the stress tensorswhich should
be symmetric up to that orderd. Although this agreement seems reasonable, a symm
stress tensor is required to demonstrate that angular momentum is conserved. B
porating the contributions of the constraint forces from the two steps of the ve
Verlet algorithm, it was found that the stress tensor was symmetric up to the or
precision of the computersi.e., 16 figures for double precisiond.

We also compared our approach to determining the stress tensor to an entirely
ent but commonly used method described in Allen and Tildesleys1987d. Here the con
straint forces are not used to determine the stress tensor. Instead, the center of m
each rigid body has on the other is utilizedfcf. Allen and Tildesleys1987dg. This ap-
proach has the undesirable feature that it does not produce a symmetric tensor f
times but when averaged over long times approaches the correct symmetry. It wa
that the time average stress tensor determined by both approaches were reasona
in value and that they asymptotically approached each other over time.

III. COUETTE AND POISEUILLE FLOW

As a first test of the code, it was examined whether simple Couette and Poiseuil
could be recovered. Figure 1 shows a spatially and temporally averaged flow field
system undergoing Couette flow where the Lees–Edwards boundary condition is
imposed. The spatial averaging was done over a cubic array of bins with length
side. Due to the stochastic term in the DPD equations the instantaneous flow fie
appear noisy, hence, the flow field was averaged over 100 separate time steps. T
viscosity was determined from the simulation by calculation of the stress tensor
Eqs.s12d ands13d. Next, Poiseuille flow was obtained by dividing the simulation ce
half and applying a body force in opposite directions in each cell half. Figure 2 sho
spatially and temporally averaged velocity profile in one cell after it had relaxed
equilibrium profile. The solid line is a fit to the analytical solution of the Stokes equ
with a similarly applied body force and a no slip boundary condition imposed at th
boundaries. The only adjustable parameter in the fit was the fluid viscosity. The vis
obtained from fitting these data was within a percent of that obtained from direct
lation of the stress tensor for the previously described Couette flow simulation, sh
that the hydrodynamics was self consistent. As a corollary, this Poiseuille flow simu

demonstrates that a noslip boundary condition can be approximated, at a fluid-wall inter-
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407DISSIPATIVE PARTICLE DYNAMICS
face, by embedding a cell in the wall that is a mirror image of the adjacent fluid pa
but with the velocities in the opposite direction. Although not exact, this is some
akin to the bounceback boundary condition used in lattice Boltzmann simulationsfRoth-
man and Zaleskis1994dg.

IV. APPROXIMATE HARD SPHERE SUSPENSIONS

A. Dilute suspensions: Recovery of Einstein intrinsic viscosity

For very dilute to semidilute suspensions, the relative viscosity is described by

hr = h/hs < 1 + hof + KHf2 + . . . , s14d

wherehr is the relative viscosity,h is the viscosity of the suspension,hs is the viscosity
of the fluid solventsor embedding fluidd, ho is the intrinsic viscositysequal to 2.5 fo
suspensions composed of spheresd, f is the volume fraction of rigid bodies, andKH is the
Huggins coefficient. As a simple test, a single sphere with radiusa=5.511 was introduce
into a well characterized fluid system where the viscosity was known to about one
a thousand. The simulation cell was 453 so that adding a single sphere madef=7.692
310−3. At this small solid fraction, only the lowest order term in Eq.s14d is important
Herehr <1+2.5f=1.0192. After shearing this system over 40 times the system siz
DPD simulation obtainedhr =1.019±0.002 implying the intrinsic viscosity is 2.46±0
which is in good agreement with theory. The uncertainty is based on a standard de

FIG. 1. Couette flow obtained by utilization of the Lees–Edwards boundary condition. The solid line
theoretical prediction,X is the positionsperpendicular to the vorticity and flow directiond in the simulation ce
and the circles are data representing local flow field from the simulation, averaged over 100 time step
analysis of simulation data.
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408 NICOS S. MARTYS
B. Semidilute regime: Huggins coefficient

To determine the Huggins coefficient in Eq.s14d, a set of simulations were carried o
using 1, 3, 5, 10, 17, and 25 monosize spheres. In this case the highest solid fract
f<0.2. Figure 3 shows the simulation data and, for comparison, experimental data
on sheared suspensions of silica particlesfde Kruif et al. s1985dg is included. Clearly th
agreement with experiment appears quite good in the regime shown here. The i
viscosity, obtained from the intercept of the vertical axis is consistent with that ob
using a single sphere as described in the previous subsection. The Huggins coe
obtained from the slope, is in good agreement with predictions ofKH<6. Since the
Huggins coefficient results from an effective interaction between spheres, this is
tant confirmation that the code does account reasonably well for longer range hy
namic interactions in the fluid.

C. Dense suspensions: Lubrication forces

At higher volume fractionssf.0.4d, it became increasingly difficult to carry o
simulations without having sphere overlaps occurring. This problem worsened
Peclet number increased. One reason for overlaps is that the interactions betwe
vidual DPD particles are “soft” allowing for some penetration. A simple fix to the
was attempted by including a very steep repulsive interaction between spheres

FIG. 2. Poiseuille flow obtained by applying a body force to the DPD fluid. An effective no-slip bou
condition is imposed at the walls.X is the position relative to the center of the cell. The circles are
representing the average local flow field from the simulation. The value of viscosity determined from
retical fit ssolid lined for Poiseuille flow was consistent with direct calculation of the stress tensor fro
Couette flow simulation in Fig. 1.
such forces greatly suppress the overlaps, it was found that the relative viscosities were,
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409DISSIPATIVE PARTICLE DYNAMICS
at high Pe<10 000, low by a factor of 2 or more when compared to SD or experim
data sFig. 4d. Indeed, these simulation results are roughly akin to the extrapolati
relative viscosity data, from the low to high Pe number limit, without consideratio
lubrication forces. From lubrication theoryfKim and Karrila s1991dg, it is well known
that the force between approaching spheres, to lowest order, scales assVA−VBd /sAB

whereVA and VB are the velocities of spheres labeledA and B and sAB is the distanc
between the nearest points of the respective two sphere surfaceshthe reader is referred
the literature for further details on lubrication forcesfKim and Karrilas1991dgj. Clearly,
as smaller and smaller distances between spheres are probed, lubrication forces
properly accounted for by the usual DPD interactions, in part because the spatial
tion required is impractical. Hence, it was necessary to directly incorporate the lu
tion forces into the DPD code. Here, analytical expressions for the lubrication
were kept up to first order,sincluding terms that scale as 1/sAB, ln sAB, andsAB ln sABd.
Unfortunately, lubrication theory makes the assumption that the distance between
is much smaller than the radiusa, so it is not precisely clear when to turn off the D
interactions between spheres and when to turn on the lubrication forces. For sim
results presented in this paper, only spheres wheresAB,a were evaluated for lubricatio
forces. Also, the velocity dependent DPD interparticle interactions between sphere
turned off and an empirical functionSf was introduced to smoothly incorporate
lubrication forces into the algorithm. For this study, the lubrication forces were mult

FIG. 3. Determination of the intrinsic viscositysy interceptd and Huggins coefficientssloped for a semidilute
suspension. The solid circles represent simulation data and the1’s are derived from experiment. The lin
correspond to a Huggins coefficient of 7ssolidd and 5sdashedd. Statistical uncertainties in the simulation d
were approximately 10% or smaller.
by the following function
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410 NICOS S. MARTYS
Sf = 2/f1 + ssAB/ad2g − 1. s15d

While a “best” choice of smoothing function still needs further study, the form ch
was fairly simple and allows for a close approach to the “true” lubrication force
sAB!a. Indeed, some other forms of smoothing functions were tested, but there w
significant difference in the results. For such dense systems, all neighboring s
nearly touch and, as a result, the force between them is dominated by its singular

Even with the introduction of the lubrication forces it was difficult, at values o
<1000 and greater to avoid some overlap. This was a result of using a constant tim
that was not sufficiently small to account for forces when the spheres were in very
proximity to each other. This issue has been noted elsewhere in the literaturefBall and
Melrose s1995a, 1995bdg. It is interesting that earlier simulations using SDfFoss and
Brady s2000dg, with a constant time, allowed for overlaps of about 1% of the sp
radius. When this occurred, a very small separation was assumedsof order 10−8 the
sphere radiusd and the simulation was allowed to progress. This approximation
probably not unreasonable because, at the length scales probed, the forces bet
spheres cannot be described by lubrication theory alone. Also, as the spheres a
each other, a slip velocity may become apparent since the mean free path of th
atoms will be of order the spacing between sphere surfaces. Consequently, an ass

FIG. 4. Comparison of simulation predictions and experimental data for high volume fraction effectiv
sphere systems. Heref=0.49. The open circles are results from Stokesian dynamics simulationsfFoss and
Brady s2000dg, open triangles are from DPD simulations without lubrication forces and open squares a
DPD simulations with lubrication forces. The open diamonds are results from the DPD simulation w
constant stress was applied instead of the Lees–Edwards boundary condition. The solid and dashed
experimental data from sheared suspensions of silica particlesfBender and Wagners1996dg.
underlying the derivation of lubrication forces, no slip at fluid/surface boundary, would
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411DISSIPATIVE PARTICLE DYNAMICS
need to be modified and there may no longer be a singularity in the force as the s
touch for actual physical systems. Further research is needed on this issue.

An attempt was made to avoid overlaps by including a dispersive short range in
tion potential with an adjustable decay width,l. Here the hope was that introducing
repulsive force would disperse the spheres enough to avoid overlaps from taking
Then, by decreasing the decay width, we could probe smaller and smaller dis
between spheres to see the effect of the lubrication forces. The following form
repulsive force, similar to the construction used by Foss and Bradys2000d, was chosen

FAB =

Z expS−
sAB

l
D

1 − expS−
sAB

l
D r̂AB, s16d

whereZ is a constant,l is the decay width, andr̂AB is a unit vector pointing from th
center of sphereA to sphereB. Not unexpectedly, it was found that the viscosity w
sensitive tol and increased with decreasingl. For one set of simulations, 27 sphe
were used withf=0.477 and Pe<1000. Here the suspension was sheared with a s
equivalent to over ten simulation cells for cases ofl /a<8.0310−5, 2.0310−5, and
4.0310−6. The relative viscosity was 8.58, 10.1, and 11.1, respectively. In this ca
overlaps occurred as the spheres managed to squeeze by each other, although

FIG. 5. Calculated values of relative viscosity as a function of integrated strain rate. The dashed lin
sponds to data from a constant stress driven system. The solid line is from a simulation with constant s
sLees–Edwards boundary conditiond. Note the large temporal fluctuations in relative viscosity for the con
strain rate case as spheres must respond to an unyielding motion resulting from such boundary cond
quite close, with the ratio of the distance between sphere centers to diameter equal to
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1.000 000 01 and smaller. However a second set of simulations was carried out w
sphere radius about 1% larger, makingf=0.49. The same set ofl /a was used. This time
despite the relatively small increase in sphere radius, the time step needed for th
lation to proceed without overlaps, was too small to be practical.

Instead of relying on a dispersive force to help separate the spheres, it wa
decided that the best route would be to incorporate a variable time step into the c
simple modification was made to the algorithm such that, as the spheres approach
other, the time step was reduced by a factor of 5 if the sphere’s projected tra
appeared close to creating an overlap. A suspension of 663 spheres was simula
volume fraction 0.49. It was found that at Pe=1000 the system evolved in a rela
smooth fashion but at higher Pe<10 000 large fluctuations were found in the stress
the viscosity is related to stressfsee Eq.s13dg it would also appear as if the viscosity w
dramatically fluctuatingssee Fig. 5d. Recently, in experimental studies of constant st
rate driven dense suspensionsfLootenset al. s2003dg, large fluctuations in the stress ha
been observed. The large fluctuations have been related to the onset of a jammi
sition. What was not clear from the simulations was whether the onset of the
fluctuations in the measured viscosity was a consequence of the constant str
boundary condition when employing the Lees–Edwards boundary condition. As an
native to the Lees–Edwards boundary condition, a simulation was set up so t
applied stress was used to drive the system. Here two narrow bands of spher
constrained to move in parallel planes having a spacing of about four sphere dia

FIG. 6. Constant stress driven shear. The velocity difference of the two parallel regions where the
applied is given byDV. To set the velocity scale,DV=40 corresponds to Pe<10 000. For this systemf
<0.49. There were moderate fluctuations inDV as the simulation progressed.
between each other. A force was applied on the spheres, in opposite directions in each
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separate plane, so that a shearing motion was established. The simulation cell co
340 spheres. Figure 6 shows the average velocity differenceDV between the top an
bottom bands of spheres as a function of integrated strain. In this case, the resultin
rate is no longer constant with the average velocity varying about 5%–10%. C
temporal fluctuations in the measured viscosity were greatly reduced for the co
stress casessee Fig. 5d. On the other hand, the average viscosity determined from
stress controlled simulation was about 10%–30% higher than the strain controlled
lation in this high Pe regime. Since the gap between plates was about four spher
eters, finite size effects could have made the relative viscosity appear higher. A
observation was made by Boek and van der Schoots1998d concerning finite size an
resolution effects. Here it was found that, at low Pe, estimates of the relative vis
improvedswhen compared to experimental valuesd when the colloidal spheres were ma
sufficiently small. Unfortunately, it was not clear if this was a consequence of h
smaller spheres relative to the simulation box size alonesa finite size effectd, or, in part,
the result of a repulsive force between particles helping better disperse the sphe
reduce overlapssa resolution effectd. Such finite size effects will be the subject of fut
research.

For Pe=10 000 the relative viscosity was, for the constant strain rate case, abo
higher than that of previous Stokesian dynamics simulationsssee Fig. 4d. Although within
the statistical uncertainty, it is possible that the correction for the overlaps in th
simulations was in part the cause of the discrepancy as can be seen from the abo
of dispersed spheres. Allowing for the smaller distances between spheressi.e., asl /a is

FIG. 7. Suspension of polydisperse spheres withf=0.55 ands=0.2.
decreasedd would have probably increased the viscosity in the high Pe case. Finally, using
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a variable time step does not guarantee, for some unique configuration of sphe
flow history, that the time step may again become too small to be practical. Howev
problem is not necessarily the same as jamming, where the system cannot move
overlaps, but more a case of developing a reasonable strategy for updating the
positions.

Figure 4 contains experimental data from a stress controlled measurement of a
silica suspension due to Bender and Wagners1996d. The agreement with our stre
controlled simulation is good in regards to capturing trends. However, one needs
great care when comparing simulations of such an idealized system to experimensand
vice versad. Interestingly, the silica particles were slightly polydisperse so that one
think the experimental measurements of viscosity would be a bit low, perhaps up t
or so at this volume fraction, relative to a monosize sphere casessee section on polydi
persivityd. Unfortunately, such corrections for polydispersivity would make agree
worse. Second, the data shown and other comparable experimental datahe.g., spherica
silica particles fBender and Wagners1996dg and polysmethylmethanylated sPMMAd
fD’Haneet al. s1993d; Phanet al. s1996dgj are based on measurements of suspension
particles approximately 100–1000 nm in diameter. Again, consider the earlier
simulations where a dispersive force was introduced. As the width of the potentil /a
ranged from 0.0001 to 0.000 004 the viscosity was not quite at its asymptotic limisalso
note Pe<1000d. Probing the experimental particles at similarl /a sand at higher Ped
would put one at atomic scales and smaller. Clearly at such length scales the sil

FIG. 8. Suspension of polydisperse spheres withf=0.55 ands=0.8.
PMMA particles are not exactly hard spheres and the embedding fluid can no longer be
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represented as a continuum. So it is not clear if the experiments in the high Pe.1000 can
be modeled as hard sphere fluids without consideration of these features. A rela
servation was made by Ball and Melroses1995bd who described their simulation resu
as unphysical with respect to modeling colloidal systems when such small distance
probed.

D. Polydispersivity

The role of size distribution of spherical shaped aggregates on relative viscosi
examined. An approximate log normal distribution was used and sphere size distri
were characterized by the mean squared deviation of sphere radii, normalized
average sphere radius,srms, that is given by

srms
2 =

1

kal2 o
i=1,N

sai − kald2f i , s17d

wheref i is the volume fraction of spheres with radiusai snormalized by the total volum
of spheresd and kal is a similarly weighted average sphere radius. We allowedsrms to
range from 0 to 1sFigs. 7 and 8d. Forsrms=0, the spheres are monosize and whensrms=1
the spheres size varied by a factor of about 30. In this study, the focus was more
role of size variation and it was decided to not include lubrication forces in the simu
as very small times steps would be needed, making the simulation too time cons

FIG. 9. Relative viscosity of polydisperse suspensions. Shown are simulation data forsrms=0, 0.2, 0.4, 0.6, 0.8
and 1.0. Solid lines are fits of data to Krieger–Doughtery equation. Curves offset to the right corres
increasingsrms. Statistical uncertainties in the simulation data were approximately 10% or smaller.
Hence, only a moderate Pe<10 was considered.
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In these simulations the suspension was sheared using the Lees–Edwards b
condition. The stresses in the system were then calculated and the viscosity det
using Eqs.s12d and s13d. Figure 9 shows the relative viscosity as a function of s
fraction for different values ofs. Note that at low solid fractions the data did not app
very sensitive to the value ofsrms. This is, in part, an artifact of plotting our data on a
scale, although it was not expected that there would be a large difference in this r
However, as the solid fraction increases the relative viscosity, at the samef, clearly
decreased with increasingsrms. This can be understood as a consequence of the
mum packingfc of the sphere system increasing as the particle size distribution be
wider.

One of the most well known equations for fitting relative viscosity data, for a b
range off, is the Krieger–DoughertysKDd equationfKrieger and Doughertys1959dg.
The KD equation equation is based on effective medium theory arguments. Here
mental changes to the solid volume fraction of a suspension increases the viscos
small particles were being added to the suspension, which is treated as a homo
viscous medium. In addition, a correction is needed to allow the viscosity to dive
fc. The KD equation has the following form:

h/hs = S1 −
f

fc
D−hofc

. s18d

Fits to the KD equation were reasonable and are shown in Fig. 9. Consider the exp

FIG. 10. Fit of same data in Fig. 8 to Eq.s21d with n=2 and terms up toK2 retained. Statistical uncertainti
in the simulation data were approximately 10% or smaller.
of the KD equation in terms off:
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h/hs = 1 +hof +
fo

2

hofc + 1

fc
f2 + . . . . s19d

By construction, the KD equation obtains the correct intrinsic viscosity. For polydis
sphere systems, the KD equation would predict that the Huggins coefficient varie
approximately 5.08 to 4.375 asfc increases from 0.64 to 1. Theoretical workfWagner
and Woutersens1994dg showsKH weakly depends on the polydispersivity of spheres
suspension. For example, it was found thatKH was reduced by about 13% for susp
sions where the ratio of maximum to minimum radii was about 10. One migh
troubling the increase of the exponent, 1.6øhofcø2.5, describing the divergence
viscosity asfc is approached from below. Some experimental results point to a
gence of viscosity with a critical exponent of 2fde Kruif et al. s1985dg. Regardless, th
KD equation captures the main trends correctly although the value ofKH and the critica
exponent are not exact.

Biceranoet al. s1999d suggested the following equation, which was intended to
scribe a suspension with uniform sized spheres and a maximum random packing
fc=0.64:

h/hs = S1 −
f

fc
D−2F1 − 0.4

f

fc
+ 0.34S f

fc
D2G . s20d

FIG. 11. Comparison of DPD simulationsdashed lined to predictions from theoryssolid lined for rotation of
prolate spheroid under shear. Here,fe is the angle of orientation,t is the time, andT is the period of rotatio
fEq. s23dg.
By construction, it recovers the Einstein intrinsic viscosity and a Huggins coefficient of
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KH=6.2 while fixing the critical exponent to the value 2. Equations20d can be genera
ized for suspensions composed of particles with arbitrary shape and size distribu

h/hs = S1 −
f

fc
D−nF1 + K1

f

fc
+ K2S f

fc
D2

+ ¯ G , s21d

wheren is the critical exponent describing the divergence of the viscosity as the c
packing is approached andK1=fcho−n andK2=fc

2KH−nfcho+nsn−1/2d are chosen t
match the intrinsic viscosity and Huggins coefficient for that suspension, respe
fnote, the generalization of Eq.s20d was done in collaboration with Flattg. In principle,
such terms can also be generalized to account for a shear dependence and inte
interactions. The intrinsic viscosity is known for many shapesfDouglas and Garboc
s1995dg andKH is predicted as a function of polydispersivity of sphere systemsfWagner
and Woutersens1994dg. For arbitrarily shaped objects, one could determineho andKH by
simulations in the regime where 0,f,0.15. Higher order terms proportional tof3 and
so forth may become important as the volume fraction is increased although a
point the singular term should dominate. Also, it is not clear if the critical exponenn is
truly universal. The value of 2 used in Eq.s20d is based on a formal hydrodynam
electrostatic analogy of suspensions. In this analogy,n is equal to the percolation theo
insulator exponent, which has a value close to 2 in three dimensions. Off lattice m

FIG. 12. Relative viscosity for spheroid systems. Shown are data for oblatesdashed lined, sphericalsfilled
circlesd, and prolatessolid lined spheroids. Note that atf<0.1 of rate of increase of relative viscosity withf
for the oblate spheroid decreases, indicative of the onset of an apparent nematic phase. A nematic pha
prolate spheroids occurs at somewhat higherf. Statistical uncertainties in the simulation data were app
mately 10% or smaller.
can give rise to different values ofn so that the universality of this exponent may only be
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approximatefFenget al. s1987dg. Regardless, precise determination of a critical expo
from simulation would require a finite size scaling study that is beyond our cu
computational capabilities. Figure 10 shows the same data as in Fig. 9 but fit w
s21d with the constraint that the critical exponentn=2.

V. JEFFERY’S ORBIT FOR SPHEROIDAL SYSTEMS

Jeffery showed that ellipsoids of revolution rotate in a linear shear field with a p

T = 2psre + 1/red/ġ, s22d

wherere is the ratio between the major and minor axis of an ellipsoid of revolution.
prediction has been validated by experimentfcf. Zia et al. s1967dg. To determine whethe
a DPD based code could recover this result, an ellipsoid of revolution was approx
by creating a template of DPD particles that fall within the boundaries of an p
ellipsoid of revolution withre=2.4. The simulation had Reynolds number Re,1 and the
value of Pesof order 1000d high so that inertial and diffusive effects could be minimiz
It was found that the simulation obtained a period with less than 2% error when
pared to that predicted by Jeffery’s theory. Figure 11 shows a comparison of sim
results and the prediction of Jeffery, for the rotational orientation of the spheroid
function of time. Here, the rotational orientation of the ellipsoid of revolution is give
fLarsons1999d; Eirich s1967dg:

tanfe = re tans2pt/Td. s23d

The relative viscosity as a function off was then determined for three spheroid syste

FIG. 13. Evidence of an apparent nematic phase for the oblate spheroid system withre=1/3.28. The particle
initial orientation was such that the axis of symmetry was in the vorticity directionsperpendicular to the paged.
Here, the Jeffery’s orbits were suppressed.
monosize spheres, oblatesre=1/3.28d ellipsoids of revolution, and prolatesre=2.4d
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ellipsoids of revolutionsFig. 12d. For each shape particle, simulations were carried
for 1, 3, 5, 10, 17, and 25 rigid bodies. In all the simulations, the volume of the indiv
rigid bodies were nearly equal. As the system was sheared, Jeffery orbits were
seen at the lowest volume fractionssa few spheroidsd. However, for the case of obla
spheroids, betweenf=0.10 and 0.15 the Jeffery orbits became suppressed and an
ent nematic phasefLarsons1999dg or orientational ordersFig. 13d was observed. At thes
solid fractions some prolate spheroids were still undergoing Jeffery orbits. It was no
the higher solid fractions were reached that the the prolate spheroids becam
aligned. It is likely that the oblate spheroids ordered at the lower volume fraction be
they are somewhat flatter, with a relatively large and round cross section, than the
spheroids, making it more difficult to “squeeze” out the fluid between them as they
undergo Jeffery orbits near each other. Accompanying the nematic phase was an a
reduction in the rate of increase of the relative viscosity. Indeed, as can be seen in
the relative viscosity for the oblate spheroids was lower then the relative viscosity
spheres whenf*0.015. It should be pointed out that in these simulations, lubric
forces were not included and, because of the periodicity of the system, the orderin
have been enhanced. So, further study is needed to see whether these results

FIG. 14. Flow through rebars: Case A. A suspension of spheres was subject to a body force downw
sphere’s diameter was about1

2 the gap spacing between the rebarssthe four smaller radii objects repres
cylindersd. The volume fraction wasf<50%. After a short period, the flow came to a stop as the sp
became jammed between the rebars.
larger systems and to fully understand the effect of lubrications forces.
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VI. FLOW IN OTHER GEOMETRIES

A nice aspect of DPD is its flexibility in modeling flow in other complicatedsnon-
Couette-liked geometries of interest. Such simulations can help provide insight int
important physical mechanisms controlling flow and are useful for the interpretat
measurements. As a simple illustration, consider the flow of a suspension, drive
body force, between parallel cylinders. This flow scenario is actually quite com
when, for example, fresh concrete is poured such that it flows between rebars, wh
cylindrical steel bars that are often oriented in a parallel fashion. Figures 14 and 15
two cases where in case A the sphere diameter was about1

2 the gap spacing between t
rebars. For case B, the sphere diameters were about1

5 the gap spacing. A body force w
applied so that the flow was downward. As the simulations progressed, for case
flow stopped as the spheres became jammed between the rebars. In case B, the s
showed no indication of jamming. It should be pointed out that, as a practice
concrete industry, the size of coarse aggregates should be less than a third of
spacing between rebars to avoid this very phenomenon. Practice is clearly ah

FIG. 15. Flow through rebars: Case B. Here the sphere diameters were about1
5 the gap spacing. The volum

fraction was<50%. The spheres continued to flow throughout the simulation, which ran several times
in time than in case A. There was no indication of jammingsnote, lubrication forces were not included in t
simulationd.
theory on this issue.
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VII. CONCLUSION

In this paper, results from a study testing a DPD based simulation techniq
modeling suspensions were presented. It is concluded that DPD can be used as
native computational tool for modeling a fairly wide variety of suspensions. Wi
significant modification, the method recovers well established predictions concern
flow of a suspension for volume fractions in the dilute to semidilute systems regim
higher volume fractions and Pe, modifications, such as a variable time step and
inclusion of lubrication forces are necessary to account for important phenomen
must be resolved at small time and length scales. This should also be true fo
approaches like numerical solution of the Navier–Stokes equations at a similar res
Indeed, similar modifications have been employed for a lattice BoltzmannfNguyen and
Ladd s2002dg based model of suspensions. Further validation would be useful, e.g
ing how well the model describes sedimentation.
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