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Synopsis

In this paper, a dissipative particle dynami@PD) based approach for modeling suspensions is
examined. A series of tests is applied comparing simulation results to well established theoretical
predictions. The model recovers the dilute limit intrinsic viscosity prediction of Einstein and
provides reasonable estimates of the Huggins coefficient for semidilute suspensions. At higher
volume fractions, it was necessary to explicitly include lubrication forces into the algorithm as
the usual DPD interactions are too weak to prevent overlaps of the rigid bodies and account for
other related effects due to lubrication forces. Results were then compared with previous studies of
dense hard sphere suspensions using the Stokesian dynamics method and experimental data.
Comparison of relative viscosity values determined from strain controlled shearing versus stress
controlled shearing simulations are also given. The flow of spheroidal objects is studied. The
rotation of a single spheroid under shear is consistent with the predictions of Jeffery. Simulations
of sheared spheroids at higher volume fractions produce an apparent nematic phase. An example is
given of the application of DPD to model flow in another geometry, gravitational driven flow
between parallel cylinders, which is of practical interest.2805 The Society of Rheology,

Inc.. [DOI: 10.1122/1.1849187

I. INTRODUCTION

The flow properties of suspensiofeg., colloids, ceramic slurries, and concyetee
of fundamental interest and play an important role in a wide variety of technological
processes crucial to industryarson(1999]. There have been many theoretical advances
in understanding the rheological properties of simple suspengegs very dilute and
semidilute suspensions, suspensions composed of spheroidal phjestever, under-
standing the flow of more complex suspensi¢ag., dense suspensions, random shaped
particles, suspensions composed of particles that injerantains a great challenge.
Here, computational modeling can play an important role in investigating the properties
of such systems. One possible approach is to apply standard computational fluid dynam-
ics methods. This involves considerable effort in carrying out the difficult task of tracking
boundaries between different fluid and solid phases, usually involving various meshing,
moving grid, and interpolation schemes to account for motion of the rigid bodies. A
second approach, based on the lattice Boltzmann médthadd (1997; Nguyen and
Ladd (2002], involves calculation of the momentum transfer which results from particles
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that “bounce” off the rigid body. The kinetics of the momentum transfer has to be
carefully evaluated as the rigid body’s surface can be located at any point and with any
orientation between the lattice nodes from which the particles “propagate.” A third, and
perhaps best known approach, is called Stokesian dyna(8ios [Brady and Bossis
(1988; Phung and Brady1996; Sierou and Brady2001)]. In many respects, Stokesian
dynamics serves as a standard benchmark as it was the first computational method to
properly incorporate long range hydrodynamic interactions, Brownian forces, and lubri-
cation forces for modeling suspensions composed of hard spheres. Some of its successes
include the demonstration of shear induced ordering and shear thickening in dense hard
sphere systemlg-oss and Brady2000]. Recently, a new computational method, called
dissipative particle dynamid®PD) [Hoogerbrugge and Koelmai992; Koelman and
Hoogerbruggg1993] has shown promise for modeling a variety of complex fluid sys-
tems. Further, DPD may potentially have some advantages over some computational
fluids dynamics based approaches in that DPD can naturally accommodate many bound-
ary conditions while not requiring meshirigr remeshingof the computational domain.
On the surface, DPD looks very much like a molecular dynamics algorithm where, in that
case, particles subject to interatomic forces move according to Newton’s laws. However,
the particles in DPD are not atomistic but, more so, a mesoscopic representation of the
fluid.

One can take several “philosophical” views of DPD. Ideally, one would like to think
of DPD as a consequence of the systematic coarse graining of atomistic or microscopic
domains. Indeed, there has been much effort in this dire¢fibekkay et al. (2000].
While this view provides a general framework for understanding the structure of the DPD
equations, there are still several gaps in bridging the microscopic and macroscopic do-
mains. For example, it is necessary to impose constitutive rela#ogs stress-strain rate
relationg at some point. Hence, further work is needed to make such scale-up procedures
clearer. A second view is that DPD belongs to a class of Lagrangian formulations of the
Navier—Stokes equatiods.g., smooth particle hydrodynamiddonaghan(1992]}. Re-
lated but more sophisticated modgBerrano and Espafi®001); Espiiol(1998] utilize
Voronoi cells to establish a grid that fills space or associate a time dependent volume
parametef Espafiol and Serran@999] to each DPD particle. From this perspective,
DPD does not conserve volume in a proper sense, making the implementation of arbitrary
equations of state difficu[Espafiol and Serrar@999; Espafiol and Revenda003]. In
this respect, one can think of DPD as a “poor man’s” Lagrangian formulation of the
Navier—Stokes equations having sacrificed some rigor for computational expediency. For
a third view, and what was probably the original intent, one can think of DPD as a
somewhat abstract cellular-automata-based construct that, in certain regimes, recover
hydrodynamics consistent with the Navier—Stokes equat{simsilar, in a way to how
lattice gas and lattice Boltzmann methods were originally thoughfRafthman and
Zaleski(19941}. Indeed, it has been shown, by mapping the DPD equations to an equiva-
lent stochastic differential equatiqthe Fokker Planck equatipfiEspafiol and Warren
(1995] and applying a Chapman-Enskog analysarshet al. (1996, 1997], DPD does
produce hydrodynamic behavior consistent with the Navier—Stokes equations to second
order in the Chapman—Enskog expansion. Thus, the challenge is to carefully connect
solutions obtained from DPD to physical regimes of intede$t [Groot and Warren
(1997; Dzwinel and Yuen(2000, 2002]}. Hopefully, universal features of both the
cellular automata approach and the “real” physical system can be exploited to help gain
insight into the system of interest. Regardless of what computational approach or philo-
sophical view one takes, it is extremely important to validate the computational method,
especially if it is going to be used as a predictive computational tool.
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Previous paperfKoelman and Hoogerbruggé993; Boeket al. (1997] have dem-
onstrated the potential of DPD to model colloidal suspensions including hard sphere and
spheroidal object§Boek et al. (1997)]. However, comparisons with experiments and
theory have been more qualitative rather than quantitative and there were no comparisons
with other approaches. In this paper, a DPD based approach for modeling suspensions is
examined with an emphasis on comparing simulation results to well known theoretical
predictions concerning simple flow scenarios and the rheology of dilute to semidilute
suspensions. Tests include comparisons with the intrinsic viscosity prediction of Einstein
and the Huggins coefficient for dilute and semidilute suspensions, respectively. At higher
volume fractions, the DPD algorithm had to be modified to include lubrication forces as
the usual DPD interactions are too weak to prevent overlap of the rigid bodies. Results
are compared with previous studies concerning the flow of dense suspensions based on
the Stokesian dynamics method and experimental data. As an alternative to the com-
monly used Lees—Edwards boundary condifiélien and Tildesley(1987], which can,
roughly be thought of as a constant applied strain rate, simulations were also carried out
using a constant applied stress. It was found that use of a constant stress to drive the
system helped mitigate large temporal fluctuations in the derived viscosity which oc-
curred in the constant strain rate case. Interestingly, rheological measurements at higher
volume fractions are often carried out using a constant applied stress. Spheroidal rigid
bodies are also considered. The rotation period of a single prolate spheroid under shear is
consistent the predictions of Jeffef¥922; Eirich (1967. Studies of the flow of sphe-
roids at higher volume fractions produce an apparent nematic pbhasson(1999]. An
example of application of the DPD algorithm to model flow in other geometries like that
encountered in the flow and placement of concrete is given. To contrast this work with
previous DPD based simulations of suspensi@wek et al. (1997)], it should be noted
that in this paper lubrication forces are explicitly included in the simulations of dense
sphere suspensions. In addition, size polydispersivity, Jeffery’s orbits and the onset of an
apparent nematic phase were studied. Finally, flow in alternate geometries and under
applied stress instead of applied strain were examined.

II. BASIC DPD EQUATIONS

| start by briefly reviewing the basic equations of DPD. In DPD, as in molecular
dynamics, the evolution of the position, and momentump;=m v;, of particlei with
mass,m, and velocityv are described by

ri=Vvi, 1)

N
pi=> Fij, (2
j#i
whereF;; is the force on particledue to particlg and the dot indicates a time derivative.
Interparticle forces are typically represented as three types: conserﬁﬁti‘zﬁssipative
F, and randon} so that
Fij=F +Fp+F. (3)

The conservative force is simply a central force, derivable from some effective potential
¢;j- The dissipative force is proportional to the difference of velosify; v; -v;, between
particles and acts to slow down their relative motion, producing a viscous effect. The
random forcgusually based on a Gaussian random ndisdps maintain the temperature

of the system and provides an additional viscous effect. The three forces are given below
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Fi=- @
F:?:_'}’WD(rij)[Aelj AICH (5)
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The distance between the DPD partidlesd] is given byr;;, &; is a unit vector pointing

from particlej to particlei, wg(rjj) andwp(rj;) are weight functions ang; is a randomly
fluctuating variable described by Gaussian statistics. It can be shown that, in order to
maintain a well defined temperature by way of consistency with the fluctuation-
dissipation theoreriEspafiol and Warre(1.995], coefficients describing the strength of
the dissipativgy) and randonm{o) forces must be coupled, that is

0_2
ka - Z]v (7)

wherek,, is the Boltzmann constant aridis the temperature. Further, so that the DPD
fluid system possess a Gibbs—Boltzmann equilibrium state, the following relation must
hold (detailed balance for an infinitesimal time st¢gspafiol and Warre(1.995]:

Wp = W3, (8)

In this study, the choice of parameters and weight functions closely follow that described
in Groot and Warrer{1997). Here,wg(rj)=1-r;; for (rjj <1) andwg(rj)=0 for r;=1.

All lengths described in this paper are defined in units of the cutoff radiesl, of the

DPD interaction. The conservative force is taken toﬁfje:Fm(l—rij)“e,j. For all the
simulations in this paperr=40 andF,,,=75,T/p wherep is the global density of DPD
particles. Units ok, T are chosen such th&T=1 andF,, was chosen so that the DPD
fluid has the same compressibility of wafesee the discussion in Groot and Warren
(1997].

An important parameter that characterizes suspensions under shear is the Peclet num-
ber, Pe. Peclet number is a dimensionless number describing the competition between
viscous and Brownian forces and, for spheres, is given by Rembdy/k,T. Here, u is
the viscositya is the sphere radius, andis the shear rate. Also, for spheres under shear,
the Reynolds number is given by Rpa®y/ u. In general Re=O(1) or smaller in this
study. Depending on the simulation, system sizes wefe 4%, and 96 in our units.
Finally, because the DPD interactions are short range the code parallelized in a fairly
efficient manner. For example, a spatial decomposition version of our code scaled nearly
linearly up to about 16 processors on a Linux cluster. For more information on the
parallelization of this code see Sims and Mart2604).

A. Integration of the equations of motion

The original DPD algorithniKoelman and Hoogerbruggé993; Boeket al. (1997)]
used a simple Euler algorithm for time integration. It has been noted, in Groot and
Warren(1997), that use of a modified velocity-Verlet algorithm leads to improvements in
numerical accuracy as well as a better characterization of thermal equilibrium properties
for the DPD simulatiorffor a discussion of various integration schemes see Vattulainen
et al. (2002]. The original velocity Verlet algorithmiVerlet (1967)] is widely used in
simulations and is an example of a second order symplectic integrator that has minimal
computational memory requirements. It has the form
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2
K3 =x(0) +o( @+ 2 La(0) ©
ot
v(&)=v(0) + E[a(O) +a(at)], (10

wherea(0)=F[x(0)]/m is the acceleration term evaluated uski@) and an intermediate
velocityv(0). The velocity Verlet algorithm does not provide a prescription for including
velocity dependent forces as found in DPD. To extend the velocity Verlet algorithm to
include velocity dependent forces we follow Groot and War(@897, where a(0)
=F[x(0),7(0)]/m and definév to be

B(8) =v(0) + 38a(0). (11)

To model rigid body motion in a fluid, a subset of the DPD particles are initially
assigned a location in space such that they approximate the shape of the object. The
motion of these particles is then constrained such that their relative positions never
change. The total force and torque are determined from the DPD interparticle interactions
and the rigid body moves according to the Euler equations for rigid bodies. The Euler
equations were solved using a quaternion based computational approach proposed by
Omelyan(1998. The details of this algorithm and its adoption for DPD are given in
Martys and Mountair(1999.

B. Initialization

Groot and Warrer§1997 found that choosing a number density of three DPD particles
per unit volume(where as defined earlier, the unit of lengthr jswas a practical choice
for modeling the fluid phase. The equilibrium properties of the fluid are reasonably well
defined here and going to higher densities quickly becomes expensive computationally.
The rigid bodies were introduced by randomly placing their center of mass positions in
the simulation cell. This sphere packing process, of course, leads to overlaps of the rigid
bodies. A repulsive force was introduced that pushed the overlapping rigid bodies apart.
Once the spheres were separated, the final configuration was used as an input for begin-
ning the simulations.

For most of the results presented, a Lees—Edwards boundary condiien and
Tildesley (1987] was used. It effectively produces a shearing effect akin to an applied
constant strain rate at the boundaries. Applications of other boundary conditions will be
described later in the paper.

C. Determination of kinematic viscosity

The stress tensor has contributions from the propagation of momentum and interpar-
ticle forces

1
2R =) (12)

1 =7 =y
Oup= —> PicPig* ve

Vm~5
wherei, j refers to different particlesy and B refer to Cartesian coordinate axes &jd
is the momentum of particlerelative to the macroscopic velocity field midway between
its trajectory during a time step. Then, for a constant applied shear rate, the kinematic
viscosity v is obtained from
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v=-o01JY, (13

where the shear is applied in tlke direction.

D. Accounting for constraint forces

The velocity Verlet algorithm is broken up into two parts where one alternates between
updating the positions and velocities of particles. As pointed out by Koelman and
Hoogerbruggg1993, there is an additional contribution to the stress tensor due to the
constraint forces that maintain the relative positions of particles the rigid body are com-
posed of. Clearly, we are using an algorithm that does not explicitly determine the
constraint forces on each particle of the rigid body. However, since we know the position
and velocity of each particle, we can effectively backout the constraint forces by mapping
the individual particle’s(contained on the rigid bodytrajectory to the velocity Verlet
algorithm and then solve for the constraint forces that would be required for such motion
of the particles to take place. Note that the constraint forces used to update the position
and then the velocities are not the same. The difference is actually small and ignoring
either contribution alone results in an error of orderin the stress tens@which should
be symmetric up to that orderAlthough this agreement seems reasonable, a symmetric
stress tensor is required to demonstrate that angular momentum is conserved. By incor-
porating the contributions of the constraint forces from the two steps of the velocity
Verlet algorithm, it was found that the stress tensor was symmetric up to the order of
precision of the computedi.e., 16 figures for double precisipn

We also compared our approach to determining the stress tensor to an entirely differ-
ent but commonly used method described in Allen and Tilde&l®87. Here the con-
straint forces are not used to determine the stress tensor. Instead, the center of mass force
each rigid body has on the other is utilizgcf. Allen and Tildesley(1987)]. This ap-
proach has the undesirable feature that it does not produce a symmetric tensor for short
times but when averaged over long times approaches the correct symmetry. It was found
that the time average stress tensor determined by both approaches were reasonably close
in value and that they asymptotically approached each other over time.

IIl. COUETTE AND POISEUILLE FLOW

As a first test of the code, it was examined whether simple Couette and Poiseuille flow
could be recovered. Figure 1 shows a spatially and temporally averaged flow field for the
system undergoing Couette flow where the Lees—Edwards boundary condition is being
imposed. The spatial averaging was done over a cubic array of bins with length 1 on a
side. Due to the stochastic term in the DPD equations the instantaneous flow field will
appear noisy, hence, the flow field was averaged over 100 separate time steps. The fluid
viscosity was determined from the simulation by calculation of the stress tensor using
Egs.(12) and(13). Next, Poiseuille flow was obtained by dividing the simulation cell in
half and applying a body force in opposite directions in each cell half. Figure 2 shows the
spatially and temporally averaged velocity profile in one cell after it had relaxed to its
equilibrium profile. The solid line is a fit to the analytical solution of the Stokes equation
with a similarly applied body force and a no slip boundary condition imposed at the cell
boundaries. The only adjustable parameter in the fit was the fluid viscosity. The viscosity
obtained from fitting these data was within a percent of that obtained from direct calcu-
lation of the stress tensor for the previously described Couette flow simulation, showing
that the hydrodynamics was self consistent. As a corollary, this Poiseuille flow simulation
demonstrates that a noslip boundary condition can be approximated, at a fluid-wall inter-
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FIG. 1. Couette flow obtained by utilization of the Lees—Edwards boundary condition. The solid line is the
theoretical predictionX is the position(perpendicular to the vorticity and flow directipim the simulation cell
and the circles are data representing local flow field from the simulation, averaged over 100 time steps.

face, by embedding a cell in the wall that is a mirror image of the adjacent fluid particles
but with the velocities in the opposite direction. Although not exact, this is somewhat
akin to the bounceback boundary condition used in lattice Boltzmann simulfRatis-

man and Zaleski1994)].

IV. APPROXIMATE HARD SPHERE SUSPENSIONS
A. Dilute suspensions: Recovery of Einstein intrinsic viscosity
For very dilute to semidilute suspensions, the relative viscosity is described by

m=nlns=1+np+Kyd®+ ..., (14)

where 7, is the relative viscosityy is the viscosity of the suspensios is the viscosity

of the fluid solvent(or embedding fluig 7, is the intrinsic viscosity(equal to 2.5 for
suspensions composed of sphegreésis the volume fraction of rigid bodies, aid, is the
Huggins coefficient. As a simple test, a single sphere with raais511 was introduced

into a well characterized fluid system where the viscosity was known to about one part in
a thousand. The simulation cell was34% that adding a single sphere magle 7.692

X 1073, At this small solid fraction, only the lowest order term in Efj4) is important.

Here n,=~1+2.56=1.0192. After shearing this system over 40 times the system size, the
DPD simulation obtained), =1.019+0.002 implying the intrinsic viscosity is 2.46+0.26
which is in good agreement with theory. The uncertainty is based on a standard deviation
analysis of simulation data.
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FIG. 2. Poiseuille flow obtained by applying a body force to the DPD fluid. An effective no-slip boundary
condition is imposed at the wallX is the position relative to the center of the cell. The circles are data
representing the average local flow field from the simulation. The value of viscosity determined from a theo-
retical fit (solid line) for Poiseuille flow was consistent with direct calculation of the stress tensor from the
Couette flow simulation in Fig. 1.
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B. Semidilute regime: Huggins coefficient

To determine the Huggins coefficient in EG4), a set of simulations were carried out
using 1, 3, 5, 10, 17, and 25 monosize spheres. In this case the highest solid fraction was
¢=~0.2. Figure 3 shows the simulation data and, for comparison, experimental data based
on sheared suspensions of silica parti¢tss Kruif et al. (1985] is included. Clearly the
agreement with experiment appears quite good in the regime shown here. The intrinsic
viscosity, obtained from the intercept of the vertical axis is consistent with that obtained
using a single sphere as described in the previous subsection. The Huggins coefficient,
obtained from the slope, is in good agreement with prediction&,pf6. Since the
Huggins coefficient results from an effective interaction between spheres, this is impor-
tant confirmation that the code does account reasonably well for longer range hydrody-
namic interactions in the fluid.

C. Dense suspensions: Lubrication forces

At higher volume fractiong¢>0.4), it became increasingly difficult to carry out
simulations without having sphere overlaps occurring. This problem worsened as the
Peclet number increased. One reason for overlaps is that the interactions between indi-
vidual DPD particles are “soft” allowing for some penetration. A simple fix to the code
was attempted by including a very steep repulsive interaction between spheres. While
such forces greatly suppress the overlaps, it was found that the relative viscosities were,
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FIG. 3. Determination of the intrinsic viscositfy intercepy and Huggins coefficienslope for a semidilute
suspension. The solid circles represent simulation data ane-there derived from experiment. The lines
correspond to a Huggins coefficient of(Solid) and 5(dashegl Statistical uncertainties in the simulation data
were approximately 10% or smaller.

at high Pe=10 000, low by a factor of 2 or more when compared to SD or experimental
data(Fig. 4). Indeed, these simulation results are roughly akin to the extrapolation of
relative viscosity data, from the low to high Pe number limit, without consideration of
lubrication forces. From lubrication theofiKim and Karrila (1991)], it is well known

that the force between approaching spheres, to lowest order, scalds -a¥g)/sag
whereV, and Vg are the velocities of spheres labelddand B and s,g is the distance
between the nearest points of the respective two sphere suftheagader is referred to

the literature for further details on lubrication fordé&m and Karrila(1991)]}. Clearly,

as smaller and smaller distances between spheres are probed, lubrication forces are not
properly accounted for by the usual DPD interactions, in part because the spatial resolu-
tion required is impractical. Hence, it was necessary to directly incorporate the lubrica-
tion forces into the DPD code. Here, analytical expressions for the lubrication forces
were kept up to first ordefjncluding terms that scale as g4, In Spg, @andsagIn Sap).
Unfortunately, lubrication theory makes the assumption that the distance between spheres
is much smaller than the radias so it is not precisely clear when to turn off the DPD
interactions between spheres and when to turn on the lubrication forces. For simulation
results presented in this paper, only spheres whgy& a were evaluated for lubrication
forces. Also, the velocity dependent DPD interparticle interactions between spheres were
turned off and an empirical functio; was introduced to smoothly incorporate the
lubrication forces into the algorithm. For this study, the lubrication forces were multiplied
by the following function
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FIG. 4. Comparison of simulation predictions and experimental data for high volume fraction effective hard
sphere systems. Hei@=0.49. The open circles are results from Stokesian dynamics simuldffass and

Brady (2000], open triangles are from DPD simulations without lubrication forces and open squares are from
DPD simulations with lubrication forces. The open diamonds are results from the DPD simulation where a
constant stress was applied instead of the Lees—Edwards boundary condition. The solid and dashed lines are
experimental data from sheared suspensions of silica parfBsder and Wagne(1996].

S =201+ (spg/@)?] - 1. (15)

While a “best” choice of smoothing function still needs further study, the form chosen
was fairly simple and allows for a close approach to the “true” lubrication force when
sag<<a. Indeed, some other forms of smoothing functions were tested, but there was no
significant difference in the results. For such dense systems, all neighboring spheres
nearly touch and, as a result, the force between them is dominated by its singular nature.

Even with the introduction of the lubrication forces it was difficult, at values of Pe
~ 1000 and greater to avoid some overlap. This was a result of using a constant time step
that was not sufficiently small to account for forces when the spheres were in very close
proximity to each other. This issue has been noted elsewhere in the litefBalteand
Melrose (1995a, 19954. It is interesting that earlier simulations using $Poss and
Brady (2000], with a constant time, allowed for overlaps of about 1% of the sphere
radius. When this occurred, a very small separation was ass(ofieatder 108 the
sphere radiysand the simulation was allowed to progress. This approximation was
probably not unreasonable because, at the length scales probed, the forces between the
spheres cannot be described by lubrication theory alone. Also, as the spheres approach
each other, a slip velocity may become apparent since the mean free path of the fluid
atoms will be of order the spacing between sphere surfaces. Consequently, an assumption
underlying the derivation of lubrication forces, no slip at fluid/surface boundary, would
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FIG. 5. Calculated values of relative viscosity as a function of integrated strain rate. The dashed line corre-
sponds to data from a constant stress driven system. The solid line is from a simulation with constant strain rate
(Lees—Edwards boundary conditjoiNote the large temporal fluctuations in relative viscosity for the constant
strain rate case as spheres must respond to an unyielding motion resulting from such boundary condition.

need to be modified and there may no longer be a singularity in the force as the spheres
touch for actual physical systems. Further research is needed on this issue.

An attempt was made to avoid overlaps by including a dispersive short range interac-
tion potential with an adjustable decay width, Here the hope was that introducing a
repulsive force would disperse the spheres enough to avoid overlaps from taking place.
Then, by decreasing the decay width, we could probe smaller and smaller distances
between spheres to see the effect of the lubrication forces. The following form of a
repulsive force, similar to the construction used by Foss and Bf2@y0, was chosen:

S,
Zexp(— ﬁ)
N/

I:AB: —SrABa
1- ex;{— %‘)

(16)

whereZ is a constant) is the decay width, and,g is a unit vector pointing from the

center of spheré to sphereB. Not unexpectedly, it was found that the viscosity was
sensitive ton and increased with decreasing For one set of simulations, 27 spheres
were used withp=0.477 and Pe 1000. Here the suspension was sheared with a strain
equivalent to over ten simulation cells for cases\da~8.0x 107>, 2.0x 10>, and

4.0x 1078, The relative viscosity was 8.58, 10.1, and 11.1, respectively. In this case, no
overlaps occurred as the spheres managed to squeeze by each other, although coming
quite close, with the ratio of the distance between sphere centers to diameter equal to
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FIG. 6. Constant stress driven shear. The velocity difference of the two parallel regions where the force is
applied is given byAV. To set the velocity scaleAV=40 corresponds to Pel0000. For this systeng
~0.49. There were moderate fluctuationsAiX as the simulation progressed.

1.000 000 01 and smaller. However a second set of simulations was carried out with the
sphere radius about 1% larger, maki$ig 0.49. The same set affa was used. This time,
despite the relatively small increase in sphere radius, the time step needed for the simu-
lation to proceed without overlaps, was too small to be practical.

Instead of relying on a dispersive force to help separate the spheres, it was then
decided that the best route would be to incorporate a variable time step into the code. A
simple modification was made to the algorithm such that, as the spheres approached each
other, the time step was reduced by a factor of 5 if the sphere’s projected trajectory
appeared close to creating an overlap. A suspension of 663 spheres was simulated with
volume fraction 0.49. It was found that at Pe=1000 the system evolved in a relatively
smooth fashion but at higher Rel0 000 large fluctuations were found in the stress. As
the viscosity is related to strepsee Eq(13)] it would also appear as if the viscosity was
dramatically fluctuatingsee Fig. 5. Recently, in experimental studies of constant strain
rate driven dense suspensighsotenset al. (2003], large fluctuations in the stress have
been observed. The large fluctuations have been related to the onset of a jamming tran-
sition. What was not clear from the simulations was whether the onset of the larger
fluctuations in the measured viscosity was a consequence of the constant strain rate
boundary condition when employing the Lees—Edwards boundary condition. As an alter-
native to the Lees—Edwards boundary condition, a simulation was set up so that an
applied stress was used to drive the system. Here two narrow bands of spheres were
constrained to move in parallel planes having a spacing of about four sphere diameters
between each other. A force was applied on the spheres, in opposite directions in each
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FIG. 7. Suspension of polydisperse spheres whth0.55 ando=0.2.

separate plane, so that a shearing motion was established. The simulation cell contained
340 spheres. Figure 6 shows the average velocity differétdetween the top and
bottom bands of spheres as a function of integrated strain. In this case, the resulting strain
rate is no longer constant with the average velocity varying about 5%-10%. Clearly,
temporal fluctuations in the measured viscosity were greatly reduced for the constant
stress casésee Fig. 5. On the other hand, the average viscosity determined from the
stress controlled simulation was about 10%-30% higher than the strain controlled simu-
lation in this high Pe regime. Since the gap between plates was about four sphere diam-
eters, finite size effects could have made the relative viscosity appear higher. A related
observation was made by Boek and van der Schi®®98 concerning finite size and
resolution effects. Here it was found that, at low Pe, estimates of the relative viscosity
improved(when compared to experimental valuaden the colloidal spheres were made
sufficiently small. Unfortunately, it was not clear if this was a consequence of having
smaller spheres relative to the simulation box size alanknite size effedt or, in part,
the result of a repulsive force between particles helping better disperse the spheres and
reduce overlapga resolution effegt Such finite size effects will be the subject of future
research.

For Pe=10 000 the relative viscosity was, for the constant strain rate case, about 10%
higher than that of previous Stokesian dynamics simulatises Fig. 4. Although within
the statistical uncertainty, it is possible that the correction for the overlaps in the SD
simulations was in part the cause of the discrepancy as can be seen from the above study
of dispersed spheres. Allowing for the smaller distances between sghergas\/a is
decreasedwould have probably increased the viscosity in the high Pe case. Finally, using
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FIG. 8. Suspension of polydisperse spheres whth0.55 ando=0.8.

a variable time step does not guarantee, for some unique configuration of spheres and
flow history, that the time step may again become too small to be practical. However, this
problem is not necessarily the same as jamming, where the system cannot move without
overlaps, but more a case of developing a reasonable strategy for updating the sphere
positions.

Figure 4 contains experimental data from a stress controlled measurement of a sheared
silica suspension due to Bender and Wag(i396. The agreement with our stress
controlled simulation is good in regards to capturing trends. However, one needs to take
great care when comparing simulations of such an idealized system to experiarahts
vice versa. Interestingly, the silica particles were slightly polydisperse so that one might
think the experimental measurements of viscosity would be a bit low, perhaps up to 10%
or so at this volume fraction, relative to a monosize sphere (s&sesection on polydis-
persivity). Unfortunately, such corrections for polydispersivity would make agreement
worse. Second, the data shown and other comparable experimentéé dptapherical
silica particles[Bender and Wagnef1996] and poly¥methylmethanylate (PMMA)
[D'Haneet al.(1993; Phanet al. (1996 |} are based on measurements of suspension with
particles approximately 100—1000 nm in diameter. Again, consider the earlier set of
simulations where a dispersive force was introduced. As the width of the potehtial
ranged from 0.0001 to 0.000 004 the viscosity was not quite at its asymptotidditsit
note Pe=1000. Probing the experimental particles at similata (and at higher Pe
would put one at atomic scales and smaller. Clearly at such length scales the silica and
PMMA particles are not exactly hard spheres and the embedding fluid can no longer be
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FIG. 9. Relative viscosity of polydisperse suspensions. Shown are simulation datg,fe0, 0.2, 0.4, 0.6, 0.8,
and 1.0. Solid lines are fits of data to Krieger—Doughtery equation. Curves offset to the right correspond to
increasingo,,s Statistical uncertainties in the simulation data were approximately 10% or smaller.

represented as a continuum. So it is not clear if the experiments in the high@® can

be modeled as hard sphere fluids without consideration of these features. A related ob-
servation was made by Ball and Melrod®950h who described their simulation results

as unphysical with respect to modeling colloidal systems when such small distances were
probed.

D. Polydispersivity

The role of size distribution of spherical shaped aggregates on relative viscosity was
examined. An approximate log normal distribution was used and sphere size distributions
were characterized by the mean squared deviation of sphere radii, normalized to the
average sphere radius,,, that is given by

= 3 S (- (@), (17)
(@%iIN

wheref; is the volume fraction of spheres with radias(normalized by the total volume
of spheresand(a) is a similarly weighted average sphere radius. We allowgd to
range from 0 to 1Figs. 7 and 8 Foro,,,s=0, the spheres are monosize and whgp=1
the spheres size varied by a factor of about 30. In this study, the focus was more on the
role of size variation and it was decided to not include lubrication forces in the simulation
as very small times steps would be needed, making the simulation too time consuming.
Hence, only a moderate Rel0 was considered.
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FIG. 10. Fit of same data in Fig. 8 to E¢21) with n=2 and terms up td&, retained. Statistical uncertainties
in the simulation data were approximately 10% or smaller.

In these simulations the suspension was sheared using the Lees—Edwards boundary
condition. The stresses in the system were then calculated and the viscosity determined
using Egs.(12) and (13). Figure 9 shows the relative viscosity as a function of solid
fraction for different values ofr. Note that at low solid fractions the data did not appear
very sensitive to the value @f,,s This is, in part, an artifact of plotting our data on a log
scale, although it was not expected that there would be a large difference in this regime.
However, as the solid fraction increases the relative viscosity, at the gamkearly
decreased with increasing,,c This can be understood as a consequence of the maxi-
mum packinge, of the sphere system increasing as the particle size distribution becomes
wider.

One of the most well known equations for fitting relative viscosity data, for a broad
range of¢, is the Krieger-DoughertyKD) equation[Krieger and Dougherty1959].

The KD equation equation is based on effective medium theory arguments. Here, incre-
mental changes to the solid volume fraction of a suspension increases the viscosity as if
small particles were being added to the suspension, which is treated as a homogeneous
viscous medium. In addition, a correction is needed to allow the viscosity to diverge at
¢.. The KD equation has the following form:

_770¢c
77/775=(1—£:> : (18

Fits to the KD equation were reasonable and are shown in Fig. 9. Consider the expansion
of the KD equation in terms o:
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FIG. 11. Comparison of DPD simulatiofdashed lingto predictions from theorysolid line) for rotation of
prolate spheroid under shear. Hege,is the angle of orientatiort,is the time, andr is the period of rotation
[Eq. (23)].
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By construction, the KD equation obtains the correct intrinsic viscosity. For polydisperse
sphere systems, the KD equation would predict that the Huggins coefficient varies from
approximately 5.08 to 4.375 af, increases from 0.64 to 1. Theoretical wdkkagner
and Wouterse(1994)] showsK, weakly depends on the polydispersivity of spheres in a
suspension. For example, it was found tKat was reduced by about 13% for suspen-
sions where the ratio of maximum to minimum radii was about 10. One might find
troubling the increase of the exponent, £.6,¢.<2.5, describing the divergence of
viscosity as¢, is approached from below. Some experimental results point to a diver-
gence of viscosity with a critical exponent off@e Kruif et al. (1985]. Regardless, the
KD equation captures the main trends correctly although the vallg, @nd the critical
exponent are not exact.

Biceranoet al. (1999 suggested the following equation, which was intended to de-
scribe a suspension with uniform sized spheres and a maximum random packing fraction

¢.=0.64:
im=(1-2) | 1-042 LAk
nlns= & A +0.3 4 . (20)

By construction, it recovers the Einstein intrinsic viscosity and a Huggins coefficient of

P+ (19)
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FIG. 12. Relative viscosity for spheroid systems. Shown are data for olgtiEehed ling spherical(filled

circles, and prolatg(solid line) spheroids. Note that at~ 0.1 of rate of increase of relative viscosity wigh

for the oblate spheroid decreases, indicative of the onset of an apparent nematic phase. A nematic phase for the
prolate spheroids occurs at somewhat higéeiStatistical uncertainties in the simulation data were approxi-
mately 10% or smaller.

Ky =6.2 while fixing the critical exponent to the value 2. Equati{@f) can be general-
ized for suspensions composed of particles with arbitrary shape and size distributions

-n 2
n/ns:(l—§> [1+K1$+K2<$> +] (21)

wheren is the critical exponent describing the divergence of the viscosity as the critical
packing is approached atd = ¢.7,—n and K2:¢§KH—n¢>C7;O+ n(n—-1/2) are chosen to
match the intrinsic viscosity and Huggins coefficient for that suspension, respectively
[note, the generalization of ER0O) was done in collaboration with Flattin principle,

such terms can also be generalized to account for a shear dependence and interparticle
interactions. The intrinsic viscosity is known for many shaf@suglas and Garboczi
(1995] andKy, is predicted as a function of polydispersivity of sphere systeiegner

and Woutersei1994]. For arbitrarily shaped objects, one could determjgeandK,, by
simulations in the regime where<0¢< 0.15. Higher order terms proportional #¥ and

so forth may become important as the volume fraction is increased although at some
point the singular term should dominate. Also, it is not clear if the critical expomént

truly universal. The value of 2 used in E(O) is based on a formal hydrodynamic-
electrostatic analogy of suspensions. In this analagg,equal to the percolation theory
insulator exponent, which has a value close to 2 in three dimensions. Off lattice models
can give rise to different values afso that the universality of this exponent may only be
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FIG. 13. Evidence of an apparent nematic phase for the oblate spheroid systemwitf3.28. The particles
initial orientation was such that the axis of symmetry was in the vorticity dire¢penpendicular to the paye
Here, the Jeffery’s orbits were suppressed.

approximatd Fenget al. (1987)]. Regardless, precise determination of a critical exponent
from simulation would require a finite size scaling study that is beyond our current
computational capabilities. Figure 10 shows the same data as in Fig. 9 but fit with Eq.
(21) with the constraint that the critical exponemt 2.

V. JEFFERY’S ORBIT FOR SPHEROIDAL SYSTEMS

Jeffery showed that ellipsoids of revolution rotate in a linear shear field with a period
T=27(rg+ 1l !y, (22

wherer, is the ratio between the major and minor axis of an ellipsoid of revolution. This
prediction has been validated by experimlarfit Zia et al. (1967]. To determine whether

a DPD based code could recover this result, an ellipsoid of revolution was approximated
by creating a template of DPD particles that fall within the boundaries of an prolate
ellipsoid of revolution withr,=2.4. The simulation had Reynolds number<Re and the
value of Pg(of order 1000 high so that inertial and diffusive effects could be minimized.

It was found that the simulation obtained a period with less than 2% error when com-
pared to that predicted by Jeffery’s theory. Figure 11 shows a comparison of simulation
results and the prediction of Jeffery, for the rotational orientation of the spheroid, as a
function of time. Here, the rotational orientation of the ellipsoid of revolution is given by
[Larson(1999; Eirich (1967)]:

tan ¢ = ro tan2#t/T). (23

The relative viscosity as a function gfwas then determined for three spheroid systems:
monosize spheres, oblate,=1/3.289 ellipsoids of revolution, and prolatér.=2.4)
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FIG. 14. Flow through rebars: Case A. A suspension of spheres was subject to a body force downward. The
sphere’s diameter was aboéitthe gap spacing between the rebétse four smaller radii objects represent
cylinderg. The volume fraction wagh~50%. After a short period, the flow came to a stop as the spheres
became jammed between the rebars.

ellipsoids of revolution(Fig. 12. For each shape particle, simulations were carried out
for1, 3,5, 10, 17, and 25 rigid bodies. In all the simulations, the volume of the individual
rigid bodies were nearly equal. As the system was sheared, Jeffery orbits were clearly
seen at the lowest volume fractiofes few spheroids However, for the case of oblate
spheroids, betweep=0.10 and 0.15 the Jeffery orbits became suppressed and an appar-
ent nematic phadé.arson(1999] or orientational orde(Fig. 13 was observed. At these

solid fractions some prolate spheroids were still undergoing Jeffery orbits. It was not until
the higher solid fractions were reached that the the prolate spheroids became more
aligned. It is likely that the oblate spheroids ordered at the lower volume fraction because
they are somewhat flatter, with a relatively large and round cross section, than the prolate
spheroids, making it more difficult to “squeeze” out the fluid between them as they try to
undergo Jeffery orbits near each other. Accompanying the nematic phase was an apparent
reduction in the rate of increase of the relative viscosity. Indeed, as can be seen in Fig. 12
the relative viscosity for the oblate spheroids was lower then the relative viscosity of the
spheres wherp=0.015. It should be pointed out that in these simulations, lubrication
forces were not included and, because of the periodicity of the system, the ordering could
have been enhanced. So, further study is needed to see whether these results apply to
larger systems and to fully understand the effect of lubrications forces.
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FIG. 15. Flow through rebars: Case B. Here the sphere diameters were §Iﬂwtgap spacing. The volume
fraction was=50%. The spheres continued to flow throughout the simulation, which ran several times longer
in time than in case A. There was no indication of jammi{ngte, lubrication forces were not included in this
simulation).

VI. FLOW IN OTHER GEOMETRIES

A nice aspect of DPD is its flexibility in modeling flow in other complicat@ebn-
Couette-like geometries of interest. Such simulations can help provide insight into the
important physical mechanisms controlling flow and are useful for the interpretation of
measurements. As a simple illustration, consider the flow of a suspension, driven by a
body force, between parallel cylinders. This flow scenario is actually quite common
when, for example, fresh concrete is poured such that it flows between rebars, which are
cylindrical steel bars that are often oriented in a parallel fashion. Figures 14 and 15 shows
two cases where in case A the sphere diameter was émblﬂi gap spacing between the
rebars. For case B, the sphere diameters were %)mﬂ gap spacing. A body force was
applied so that the flow was downward. As the simulations progressed, for case A the
flow stopped as the spheres became jammed between the rebars. In case B, the simulation
showed no indication of jamming. It should be pointed out that, as a practice in the
concrete industry, the size of coarse aggregates should be less than a third of the gap
spacing between rebars to avoid this very phenomenon. Practice is clearly ahead of
theory on this issue.
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VII. CONCLUSION

In this paper, results from a study testing a DPD based simulation technique for
modeling suspensions were presented. It is concluded that DPD can be used as an alter-
native computational tool for modeling a fairly wide variety of suspensions. Without
significant modification, the method recovers well established predictions concerning the
flow of a suspension for volume fractions in the dilute to semidilute systems regime. At
higher volume fractions and Pe, modifications, such as a variable time step and explicit
inclusion of lubrication forces are necessary to account for important phenomena that
must be resolved at small time and length scales. This should also be true for other
approaches like numerical solution of the Navier—Stokes equations at a similar resolution.
Indeed, similar modifications have been employed for a lattice Boltzrildgnyen and
Ladd (2002] based model of suspensions. Further validation would be useful, e.g., test-
ing how well the model describes sedimentation.
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