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Abstract 

The use of instrumented indentation to characterize the mechanical response of polymeric 
materials was studied.  A model based on contact between a rigid probe and a linear viscoelastic 
material was used to calculate values for creep compliance and stress relaxation modulus for two 
crosslinking polymeric materials, an epoxy and poly(dimethyl siloxane) or PDMS.  The use of a 
rounded conical tip and sharp pyramidal tips produced linear and nonlinear responses from these 
two polymers depending on tip shape and load level.  Results from bulk rheometry studies were 
used for comparison to the indentation creep and stress relaxation results. 

I. INTRODUCTION 

Instrumented indentation is increasingly being used to probe the mechanical response of 
polymeric and biological materials.  These types of materials behave in a viscoelastic fashion, 
i.e., they display mechanical properties between those of an elastic solid and a viscous fluid.  The 
mechanical behavior is thus dependent on the test conditions, including the amount of strain, the 
strain rate, and the temperature.  Often in instrumented indentation, however, properties are 
measured using loading histories developed for elastic and elasto-plastic materials, the properties 
of which are not particularly time dependent.  Further, analysis of the indentation response is 
typically based on elasticity theory.  In studies in which attempts have been made to characterize 
viscoelastic behavior [1, 2], limiting and sometimes invalid assumptions have been made, and 
linear viscoelasticity has been applied despite the intense strains local to the indenter tip that 
would appear to violate the linear viscoelasticity premise of infinitesimal strains [3]. 

For conical or pyramidal tip geometry, a nominal indentation strain is related to the characteristic 
included angle or angles of the tip.  For a paraboloidal tip, indentation strain is related to the ratio 
of the contact radius, r, to the tip radius, R, and r is related to the displacement, h [4-6].  For any 
tip geometry, the indentation strain rate can be calculated from the ratio h& /h, where h&  is the rate 
of change of h with time, t, or h&  = dh/dt.  The mean stress or hardness, H, is the ratio of load, P, 
to contact area, A, where A is in general related to displacement by the tip geometry.  Only in the 
case of a flat punch, where A is constant with h, is H a function of load only.  For Vickers and 
Berkovich pyramidal indenters, which ideally have the same area function, A(h), analyses 



attributed to Tabor [4] yield an estimated representative strain for these self-similar tips of 
approximately 8 %.  However, Chaudhri [7] estimated that representative strain ranges from 25 
% to 36 % for a Vickers indentation of polycrystalline copper using FET, and finite element 
analysis has been used to estimate strains local to a Berkovich indenter to be in excess of 100 % 
with a significant volume of material subjected to at least 15 % strain [8].  As discussed by Dao 
et al. [8], values for representative indentation strain will depend on the relationships between 
indentation parameters and mechanical properties upon which its definition is based.  Thus, for 
indentation of polymeric materials, representative strain maybe different from that defined 
previously in other studies, and it may even differ between quasi-static and dynamic indentation 
testing. 

To better assess the indentation response of polymeric materials, mathematical analyses of quasi-
static contact between a rigid indenter and a linear viscoelastic solid [9-14] can be used.  These 
analyses are based upon the development of an appropriate boundary-value problem that satisfies 
the equations of equilibrium: 
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In this equation, σij is stress and xij are Cartesian coordinates [10, 11], and the stress-strain 
relations for linear, isotropic viscoelasticity are given by [12]: 
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B(t) and K(t) are the dilatational creep and relaxation functions, respectively, relating the stress 
and strain invariants, σii and εii, and t is time.  J(t) and G(t) are the shear creep and relaxation 
functions, respectively, relating the deviatoric stress tensor, sij, and the deviatoric strain tensor eij, 
defined respectively as: 

ijkkijijs δσσ 3
1−=  ijkkijije δεε 3

1−=     (4) 

Here, δ is the Kronecker delta (δ = 1 for i = j, δ = 0 for i ≠ j).  Strain is given in terms of 
displacements, u, by: 
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The previous expressions relating stress and strain are formulated in terms of integral operators 
associated with the hereditary function, such that relaxation times are given by a continuous 
spectrum.  Alternatively, these expressions can be restated in terms of differential operators 
using a viscoelastic model of springs and dashpots, corresponding to a discrete spectrum of 



relaxation times, or using other equivalent ways of expressing linear viscoelastic behavior, 
including direct measurements [9, 10, 12].  One such formulation is the following linear 
viscoelastic stress-strain relation [11, 13]: 
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E(t) and G(t) are the relaxation moduli in extension and shear, respectively, and the lower limit 
of 0- is used in case of a jump in stresses and strains at t = 0.  For homogeneous, isotropic, elastic 
materials, E and G are related by: 
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The bulk modulus, K, is related to E by: 
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= EK       (8) 

In these equations, ν is the Poisson’s ratio.  These equations hold for a viscoelastic solid only at 
equilibrium.  Also, for viscoelastic materials, the shear, bulk, and extensional creep compliances, 
J(t), B(t), and D(t), respectively, are not simple inverse functions of their respective relaxation 
moduli, G(t), K(t), and E(t), as they are for elastic materials, and ν is, in general, a function of 
time [3], although it is often taken to be constant for simplicity. 

Viscoelastic solutions to boundary value problems can often be solved by applying the Laplace 
transform to remove the variable, t, from the system of equations.  This approach yields an 
elastic problem in the transformed variables.  Using the elastic solution to the transformed 
problem, a viscoelastic solution is achieved by replacing the elastic constants with the 
appropriate viscoelastic operators and then performing the inverse Laplace transform.  In the 
case of the given contact problem, however, the boundary conditions are normally given from 
compatibility between displacements and stresses with the prescribed surface displacements and 
surface tractions, respectively, and these conditions are a function of time [9-11].  Therefore, in 
general, the transform approach is not applicable, although a solution by Lee and Radok of this 
type for an incompressible material (ν = 0.5) has been shown to be valid for monotonically 
increasing contact radius [10].  A slightly different approach by Ting yields solutions for 
increasing and decreasing contact radius values that are applicable to compressible materials 
[11]. 

For the case of indentation creep, in which a constant load P0 is applied at t = 0 and held, both 
the Lee and Radok model and the Ting model give the same functional relationship between 
creep compliance, J(t), P0, contact area, A(t) = πr2(t) , and penetration depth, h(t), for a 
paraboloidal indenter of radius R: 
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In this equation, α is a constant of proportionality with a nominal value of ( )π38 .  Similarly, 
for relaxation under conditions in which a constant penetration depth h0 is applied at t = 0 and 
held using a spherical indenter of radius R, both models give the following relationship between 
the relaxation modulus, G(t), h0, the corresponding contact area, A0, and the load, P(t): 

 ( ) ( )
00 Ah

tPtG α ′=       (10) 

Again, α′ is a constant of proportionality with a nominal value of ( ) 83 π .    Additionally, the 
Ting model yields equations for constant-load indentation creep and constant-depth stress 
relaxation for conical tips: 
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In these equations, θ is the cone semi-apical angle, and β and β′ are constants of proportionality 
nominally equal to 1.0.  Relationships similar to Eq. (11) and Eq. (12) – only the constants of 
proportionality differ by a factor of 1 / [2•(1-ν2)] – were recently derived for pyramidal indenters 
[6] directly from Hook’s law by assuming that a representative stress was given by P / A and a 
representative strain is given by (tan θ)•(dh / h).  Note that an additional factor is sometimes 
applied to indentation analysis that is related to non-circular contact areas of pyramidal tips [8]. 

Because of the intense stresses and strains local to the tip-sample contact, whether or not linear 
viscoelasticity is obeyed during instrumented indentation measurements is difficult to ascertain.  
Further, because the mechanical behavior of polymeric and biological materials is dependent on 
the test conditions, including the amount of strain and the strain rate, understanding the 
viscoelastic behavior is important for analyzing indentation data for these types of materials.  
One test of linear viscoelasticity is the lack of dependence of the creep compliance (or stress 
relaxation modulus) on the magnitude of the stress (or strain).  Equation (9) through Equation 
(12) present an opportunity to determine for paraboloidal and conical (and presumably for 
pyramidal) indentation probes whether linear viscoelasticity is obeyed under particular test 
conditions.  Additionally, these equations provide a means for measuring viscoelastic behavior 
using instrumented indentation that can be compared to traditional solid rheological 
measurements. 

In this paper, analyses based on contact between a rigid indenter and a linear viscoelastic 
material are used to determine under what conditions, if any, can instrumented indentation be 
used to measure linear viscoelastic behavior. Three different polymers are characterized using 



traditional solid rheology and using constant-load indentation creep and constant-depth stress 
relaxation measurements with different indentation probe geometries.  For the indentation 
measurements, checks of linear viscoelasticity are performed by studying the dependence of 
creep compliance on indentation load.  The resulting measurements of creep compliance and 
relaxation modulus are compared to traditional solid rheology measurements.  In the following 
sections, the experimental details are presented, followed by results and discussion and then 
conclusions.  

II. EXPERIMENTAL1 

A. Materials 
Materials used in this study included an amine-cured epoxy and poly(dimethyl siloxane) 
(PDMS).  Epoxy films approximately 190 µm in thickness were cast onto silicon wafers in a 
CO2-free and H2O-free glove box using a drawdown technique.  Highly pure diglycidyl ether of 
bisphenol A with a mass per epoxy equivalent of 172 g and 1,3-bis(aminomethyl)-cyclohexane 
were mixed at the stoichiometric ratio. All samples were cured at room temperature for 48 h, 
followed by post-curing at 130 ºC for 2 h.  The films were then removed from the silicon 
substrates by immersion in warm water followed by peeling with tweezers.  The glass transition 
temperature, Tg, of the cured films were (123 ± 2) ºC, as estimated using dynamic mechanical 
analysis.  The Dow Corning Corporation generously provided PDMS samples, with an 
approximate thickness of 3.2 mm.  

B. Solid rheology measurements 
Stress relaxation measurements were made in torsion on PDMS samples using an Advanced 
Rheometric Expansion System or ARES (Rheometrics Scientific, Inc.) and in tension on both the 
PDMS and epoxy samples using a Rheological Solids Analyzer or RSA II (Rheometrics 
Scientific, Inc.).  Both instruments are displacement-controlled systems capable of performing 
stress relaxation tests.  The amount of strain is determined from the applied displacement or 
torsional angle and the sample geometry and a load transducer measures the resulting force.  
Instrumental capabilities limited the amount of strain applied on PDMS samples in the ARES to 
0.08 (8%) and in the RSA II to 0.01 (1%). 

For a traditional creep test, creep compliance, J(t), is defined as  
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Normally, a constant load is applied and the displacement is monitored with time and converted 
to constant stress, σ0, and strain, ε(t), respectively, using the original dimensions of the sample, 
which are measured prior to testing.  Similarly, the stress relaxation modulus, E(t), is defined as 

                                                 
1 Certain commercial instruments and materials are identified in this paper to adequately describe the experimental 
procedure. In no case does such identification imply recommendation or endorsement by the National Institute of 
Standards and Technology, nor does it imply that the instruments or materials are necessarily the best available for 
the purpose. 
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Stress, σ(t), in this case is a function of time during the application of a constant displacement, 
which is converted to a constant strain, ε0.  Creep compliance and stress relaxation modulus are 
related by the following two equivalent equations: 
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Additionally, (0) (0) 1E J =  and ( ) ( ) 1E J∞ ∞ = .  Equation (7) was used to convert measurements 
of stress relaxation modulus in shear, G(t), to that in tension, E(t), assuming values of ν of 0.3 for 
epoxy and 0.5 for PDMS. 

C. Instrumented indentation measurements 
Instrumented indentation was performed using a NanoIndenter XP and a NanoIndenter DCM 
(MTS Systems, Inc.).  The XP system, in general, was used for applied loads from 100 mN down 
to 0.2 mN, while the DCM system was used for applied loads from 10 mN down to 0.01 mN.  
For measurements made with the XP system, two different probe tip shapes were used, including 
a Berkovich pyramid and a rounded 90º cone with a tip radius of approximately 10 µm, 
respectively.  Only a Berkovich tip was available for testing with the DCM system.  Tip shape 
has been measured for these probes using indentation of reference samples and by directly 
imaging the probes with an atomic force microscope (AFM), as detailed elsewhere [15]. 

Indentation creep response was measured using step loading to a prescribed load, P0, which was 
then held for 100 s.  For a given test, P0 was reached in less than 0.5 s and was maintained within 
± 2 µN for the XP system and ± 1 µN for the DCM system.  After this near-step loading, 
however, the dynamic oscillation superposed over the constant load required time to stabilize 
before measurements of contact area were considered to be accurate.  This time laps was 
approximately (10 to 12) s for the XP system and (4 to 5) s for the DCM system.  The constant 
load was then held for approximately 100 s, at which point the creep rates for the two polymers 
became of the same order as the thermal drift of the system (approximately ± 0.2 nm/s), which 
was estimated by performing the same constant load tests on fused silica before and after each 
set of tests on a polymer sample.  Because the system thermal drift could be positive or negative, 
no attempt was made to remove the system drift from the creep measurements.  For a set of 5 
tests at the same nominal load, the difference between the lowest and highest values of P0 was 
less than 3 µN for both systems, regardless of the magnitude of the prescribed load.  Examples of 
system performance are shown in Fig. 1 for the XP system and Fig. 2 for the DCM system.  
Creep compliance was calculated using Eq. (9) or Eq. (11) depending on the tip geometry.  
Nominal values of the proportionality constants were used in all such calculations.  Poisson’s 
ratio was assumed to be constant for all calculations and equal to 0.3 for the epoxy and 0.5 for 
the PDMS. 



Indentation relaxation response was measured using a step displacement to a prescribed depth, 
h0.  This depth was then held for 100 s.  For a given test, h0 was reached in approximately 6 s, 
followed by a period of roughly (6 to 8) s during which the system feedback attempts to control 
the displacement at the prescribed constant value.  A slight overshoot of approximately (5 to 10) 
% of h0 was observed for the XP system and (1 to 3) % of h0 for the DCM system.  After the 
initial overshoot, displacement was maintained within ± (1-2) nm for both the XP and DCM 
systems, except for very large displacements with the XP system, for which displacement 
variations were as much as ± 5 nm for a nominal displacement of 4000 nm (see Fig. 3a).  For a 
set of 10 tests at the same nominal depth, the difference between the lowest and highest values of 
h0 was less than 5 nm for both systems for target depths of 1500 nm or less, and 10 nm for target 
depths greater than 1500 nm.  However, repeatability of the load values was much better for the 
DCM system compared to the XP system.  Examples of system performance are shown in Fig. 3 
for the XP system and Fig. 4 for the DCM system.  Again, the length of the relaxation tests was 
100 s to minimize uncertainty due to system thermal drift.  Relaxation modulus was calculated 
using Eq. (10) or Eq. (12) depending on the tip geometry.  Nominal values of the proportionality 
constants were used in all such calculations.  Poisson’s ratio was assumed to be constant for all 
calculations and equal to 0.3 for the epoxy and 0.5 for the PDMS. 

III. RESULTS AND DISCUSSION 

An example of indentation creep compliance determined for an epoxy sample using a rounded 
conical tip (manufacturer-determined tip radius of 10 µm) is shown in Fig. 5.  The creep 
compliance is clearly dependent on indentation loads between 0.2 mN and 20 mN, which is an 
indication of nonlinear behavior.  Creep compliance was also observed to be a function of load 
for the epoxy sample using Berkovich indentation tips for both the XP head (Fig. 6) and the 
DCM head (Fig. 7).  The compliance values for the two Berkovich tips were similar for similar 
applied load levels with differences likely due to slight differences in tip geometry, leading to 
differences in stresses and strains.  Qualitatively, the data appears to be consistent with behavior 
expected of a glassy epoxy polymer [16] – compliance values are on the order of 10-9 Pa and 
trend higher with increasing creep time and increasing load.  Additionally, the variation of 
compliance with time appears to have similar curvature for each of the load levels studied using 
the rounded cone and for the higher load levels using the Berkovich tips, suggesting separability 
of the time-dependent behavior from the stress-dependent behavior.  The differences in slope at 
the lower indentation creep loads for the Berkovich tips (Figs. 6 and 7) could have resulted from 
uncertainties in tip shape related to indentation depths less than 100 nm. 

Indentation creep compliance results for PDMS using a Berkovich tip and the DCM system are 
shown in Fig. 8.  Again, the data appears to be consistent with expected behavior [3] – 
compliance values are on the order of 10-6 Pa and trend slightly higher with increasing creep time 
but decrease with increasing load.  Additionally, although the data scatter was significant, the 
compliance values for an intermediate load range between 100 µN and 2 mN appear to be 
similar, potentially indicating a region of linear behavior.  This behavior will be discussed further 
with regard to the stress relaxation results.    

As detailed in the Experimental section, a dynamic oscillation was superposed over the creep 
load using a controlled displacement amplitude of approximately 5 nm and a frequency of 45 Hz 
for both the XP and DCM systems.  While the harmonic displacement was generally small 



relative to the quasi-static displacements, high frequency heating was a possibility that would 
potentially alter the measured response compared to an indentation creep test without this 
dynamic component.  In Fig. 9, displacement response to several creep loads are shown as a 
function of time for both epoxy and PDMS.  In both cases, the evolution of displacement with 
time was identical within experimental uncertainty for measurements made with and without the 
dynamic oscillation component. 

Results of stress relaxation testing are presented in Fig. 10 and Fig. 11 for epoxy and PDMS, 
respectively, including indentation and rheometry data.  For the data measured with the RSA II 
rheometer in tension on the epoxy material, the stress relaxation modulus values were similar for 
strain levels of 0.01 % and 0.1 %.  The application of a 1 % strain, however, resulted in 
significantly lower relaxation modulus values and perhaps a slight increase in curvature 
compared to the two lower strain levels, which is indicative of nonlinear behavior.  Similar 
behavior was observed for the stress relaxation modulus values measured using indentation with 
a Berkovich tip.  Increases in the constant displacement applied resulted in lower relaxation 
modulus values.  Although changes in curvature were difficult to observe due to the data scatter, 
the time-dependence, which is relatively small for this glassy epoxy at room temperature, 
measured with indentation is similar to that measured with rheometry. 

For the PDMS material, nonlinear behavior was observed in the rheometry measurements in both 
tension and torsion, as the stress relaxation modulus decreased with increasing strain levels.  
Additionally, the curvature decreases with increasing strain such that the PDMS exhibits little 
time dependence at higher strain levels.  The indentation relaxation modulus values, however, 
are independent of penetration depth for depths from 1000 nm up to 5000 nm within the data 
scatter.  For penetration depths of 10 µm and 15 µm, the relaxation modulus values are again 
similar but slight higher compared to those for the three smaller penetration depths.  However, 
the tip shape was not characterized for distances greater than 3000 nm from the tip apex, so 
uncertainty in the contact area at these depths could be quite large.  PDMS materials often 
behave in a nonlinear elastic fashion with little time dependence.  Further, at high strains, for 
example about 10 % strain, PDMS behavior becomes more linear.  Both the rheometry data and 
the indentation data appear to be consistent with these statements, showing similar but small 
amounts of time dependence with the presumably much larger strain indentation measurements 
showing essentially linear behavior. 

In Fig. 12, effective strains are calculated for the Berkovich and rounded conical tip shapes used 
with the XP system.  Calculations of effective strains were based on analyses due to Tabor [4] 
assuming ideal plastic behavior, and are thus for illustrative purposes only.  The following two 
equations were used for ideal paraboloidal and conical tip geometries, respectively: 

 Rr /2.0=ε      (16) 

θε tan03.0=      (17) 

For the Berkovich tip, an effective conical angle, θ, was determined to be approximately 70.45º.  
For the rounded cone, an effective radius, Reff, which was determined from tip shape analysis to 
be a function of the distance from the apex, was used [15].   In this plot, the relative effective 
strain is lower for the rounded conical tip compared to the Berkovich tip for all creep tests on 



epoxy except the two highest loads, 10 mN and 20 mN.  In Fig. 13, data from Fig. 5 and Fig. 6 
are combined to show that the corresponding relative creep compliance values are lower for the 
rounded conical tip, except for the two highest loads.  Thus, at these two loads, the effective 
strain levels and the creep compliance values for the rounded conical tip are similar to those for 
the Berkovich tip.  Also, larger variation in creep compliance for the rounded conical tip with 
load might reflect the larger expected changes in the associated effective strain compared to the 
Berkovich tip, for which a smaller variation in creep compliance with load was observed, 
possibly in response to a small variation in effective strain related to deviations in the actual tip 
geometry from the ideal case plotted in Fig. 12.  For the stress relaxation modulus data for epoxy 
and PDMS (Fig. 10 and Fig. 11, respectively), any potential vertical shifting of the curves as a 
function of strain level would tend to indicate much larger effective strains in the indentation 
measurements relative to the rheology measurements.  Because the calculations of indentation 
creep compliance and stress relaxation modulus are based on a linear viscoelastic model and the 
proportionality constants in Eq. (9) through Eq. (12) are not well known [11], the absolute 
magnitudes of the indentation data plotted in Figs. 5-8, 10, 11 and 13 are not without significant 
uncertainty.  However, the behavior exhibited appears to be consistent with rheometry 
measurements and with known bulk rheology of these polymers at the high stress and strain 
levels expected local to the indentation probe tip. 

IV. SUMMARY AND CONCLUSIONS 

The use of instrumented indentation to characterize the mechanical response of polymeric 
materials was studied.  A model based on contact between a rigid probe and a linear viscoelastic 
material was used to calculate values for creep compliance and stress relaxation modulus for 
epoxy and PDMS materials.  The use of sharp pyramidal tips produced nonlinear viscoelastic 
response from these polymers, while the use of a rounded conical tip produced both linear and 
nonlinear responses depending on the polymer and the load level.  Comparisons to bulk 
rheometry studies were used for comparison purposes.  Unfortunately, the magnitudes of the 
indentation and rheometric values of creep compliance or stress relaxation modulus are difficult 
to compare directly.  This deficiency is related to the following factors: 

1) The indentation values were calculated using an analytical model based on linear 
viscoelastic behavior.  However, the majority of the responses measured were nonlinear. 

2) While the indentation data appeared to reveal behavior with characteristic time-strain or 
time-stress separability, the data are too limited for any potential application of shift 
factors based on strain or stress levels, as might be done in a simplified non-linear 
analysis. 

3) Often in the analysis of instrumented indentation data, factors are applied to correct for 
differences in experimental contact conditions compared to model contact conditions.  
However, these correction factors have been determined for linear elastic and elasto-
plastic constitutive behavior, and the appropriateness of their use for viscoelastic 
behavior is unknown. 

However, the trends in the indentation data are similar to those in the rheometry data, suggesting 
that the measurements have sufficient physical similarity.  New analyses and measurement 



protocols are currently being explored for developing a more complete understanding of the 
relationships between instrumented indentation data and viscoelastic characterization. 
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Figure Captions 

FIG. 1: Examples of system performance for the indentation creep tests are shown for the XP 
system:  (a) 20 mN load, and (b) 200 µN load.  Both examples are for a Berkovich tip indenting 
epoxy. 

FIG. 2: Examples of system performance for the indentation creep tests are shown for the DCM 
system:  (a) 5 mN load, and (b) 10 µN load.  Both examples are for a Berkovich tip indenting 
epoxy. 

FIG. 3: Examples of system performance for the indentation stress relaxation tests are shown for 
the XP system:  (a) 4000 nm displacement, and (b) 500 nm displacement.  Both examples are for 
a Berkovich tip indenting epoxy 

FIG. 4: Examples of system performance for the indentation stress relaxation tests are shown for 
the DCM system:  (a) 1500 nm displacement, and (b) 100 nm displacement.  Both examples are 
for a Berkovich tip indenting epoxy 

FIG. 5: Log-log plot of creep compliance, J(t), as a function of time, t, for an indentation creep 
experiment on epoxy using a rounded conical tip (manufacturer-determined tip radius of 10 µm)  
and the XP system.  Each data point represents an average value from 10 experiments with the 
error bars representing an estimated standard deviation (k = 1).  In some cases, the error bars are 
smaller than the data point symbols. 

FIG. 6: Log-log plot of creep compliance, J(t), as a function of time, t, for an indentation creep 
experiment on epoxy using a Berkovich tip and the XP system.  Each data point represents an 
average value from 10 experiments with the error bars representing an estimated standard 
deviation (k = 1).   

FIG. 7: Log-log plot of creep compliance, J(t), as a function of time, t, for an indentation creep 
experiment on epoxy using a Berkovich tip and the DCM system.  Each data point represents an 
average value from 10 experiments with the error bars representing an estimated standard 
deviation (k = 1).   

FIG. 8: Log-log plot of creep compliance, J(t), as a function of time, t, for an indentation creep 
experiment on PDMS using a Berkovich tip and the DCM system.  Each data point represents an 
average value from 10 experiments with the error bars representing an estimated standard 
deviation (k = 1).  Superposed on the plot are rheometry results from both the torsional 
rheometer and the DMA system. 

FIG. 9:  Displacement plotted as a function of time for indentation creep tests with and without a 
superposed 5 nm amplitude dynamic oscillation at 45 Hz for several quasi-static creep load 
levels:  (a) epoxy and (b) PDMS.  All data is for the DCM system and a Berkovich tip. 

FIG. 10: Log-log plot of stress relaxation modulus, E(t), as a function of time, t, for an 
indentation relaxation experiment on epoxy using a Berkovich tip and both the XP and DCM 
systems.  Each data point represents an average value from 10 experiments.  Superposed on the 
plot are rheometry results from the RSA II system in tension, for which each data point 



represents an average of 3 experiments.  For all data shown, the error bars represent an estimated 
standard deviation (k = 1).  The percentages in the legend for the tensile rheometry data represent 
the percent strain applied to the samples. 

FIG. 11: Log-log plot of stress relaxation modulus, E(t), as a function of time, t, for an 
indentation relaxation experiment on epoxy using a Berkovich tip and the DCM system.  Each 
data point represents an average value from 10 experiments.  Superposed on the plot are 
rheometry results from both the ARES torsional rheometer and the RSA II system in tension, for 
which each data point represents an average of 3 experiments.  For all data shown, the error bars 
represent an estimated standard deviation (k = 1).  The percentages in the legend for the tensile 
and torsional rheometry data represent the percent strain applied to the samples. 

FIG. 12:  Plot of effective strain estimates (after Tabor [4])from various analytical and numerical 
modeling studies, including predictions of effective strain from tip shape information measured 
for the Berkovich and rounded conical tips used in this study. 

FIG. 13: Log-log plot of creep compliance, J(t), as a function of time, t, comparing the 
indentation creep data for epoxy from Fig. 5 (rounded conical tip and XP) and Fig. 6 (Berkovich 
tip and XP).  Error bars were removed for clarity. 
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FIG. 1          VanLandingham et al.
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FIG. 2          VanLandingham et al. 
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FIG. 3          VanLandingham et al. 
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FIG. 4          VanLandingham et al. 
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FIG. 5          VanLandingham et al. 
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FIG. 6          VanLandingham et al. 
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FIG. 7          VanLandingham et al. 
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FIG. 8          VanLandingham et al. 
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FIG. 9          VanLandingham et al. 
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FIG. 10         VanLandingham et al. 
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FIG. 11         VanLandingham et al. 
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FIG. 12         VanLandingham et al. 

 

0.00

0.02

0.04

0.06

0.08

0.10

0 500 1000 1500 2000 2500
Displacement, h (nm)

Ef
fe

ct
iv

e 
St

ra
in

Rounded Conical Tip
Berkovich Tip
Range for Creep Tests0.2 mN

0.5 mN
1 mN

2.5 mN
5 mN

10 mN

20 mN



 

FIG. 13         VanLandingham et al. 
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