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ABSTRACT 
 
 This paper presents a static output feedback H∞ algorithm for controlling 

hysteretic structures subjected to seismic motion.  For control design, hysteretic 
structures present a challenge due to changes in the structural parameters during 
large seismic events.  The conventional approach is to linearize the structure at the 
initial equilibrium state, thus ignoring the hysteretic characteristics of the structure 
when computing the gain matrices.  This study extends the static output feedback 
H∞ algorithm, which was developed previously for linear systems, to nonlinear 
structures using a newly developed procedure that uses stochastic equivalent 
linearization.  In this procedure, the hysteretic parameters are linearized assuming 
that the ground motion is a white noise filtered with the Kanai-Tajimi power 
spectral density, and the control algorithm is designed using the linearized system 
of equations.  The effectiveness of this procedure is demonstrated by simulation 
results of a hysteretic single-degree-of-freedom structure subjected to earthquake 
ground motion.  The results of this study show the effectiveness of using static 
output feedback for controlling hysteretic structures.  For this case, the control 
effectiveness is not lost when the measurement of the hysteretic (Bouc-Wen) 
variable, which cannot be measured, is ignored. 

 
 

Introduction 
 

Robust control is important for civil engineering structures, since the stiffness, damping, 
and environmental excitations involve considerable uncertainties.  A controlled system is said to 
possess robust stability if the system remains stable when its parameters vary within certain 
expected limits.  A controlled system is said to possess robust performance if it can satisfy 
performance requirements, such as steady state tracking and a certain level of disturbance 
attenuation.  The problem of designing controllers that satisfy both robust stability and 
performance requirements is called robust control.  Robust control of structures for seismic 
applications using H∞ algorithms has received wide attention in recent years (Schmitendorf et al., 
1994, Kose et al., 1996, and Chase and Smith, 1996a,b). 
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Under strong earthquakes, many structural members and connections will yield, and the 

response will become hysteretic.  When deformations enter into the inelastic range, the structure 
is in a critical stage and the control system is most needed.  Also, for hybrid control systems that 
incorporate passive dampers or isolation devices with active or semi-active controllers, the 
passive devices often exhibit a nonlinear hysteretic behavior.  Consequently, active and semi-
active control systems must be able to deal with hysteretic structures and operate effectively in 
the nonlinear range of the response.  Since the stiffness of the structure and consequently the 
system matrix change during hysteretic response, it is not always possible to find the optimum 
controller that will satisfy the control criteria.  The procedure that has been suggested in the past 
is to linearize the structure at the initial equilibrium state.  This procedure, however, ignores the 
hysteretic characteristics of the structure, the extent of nonlinear deformations, and the intensity 
of the expected ground motion. 

 
Robust H∞ algorithms with static output feedback, which have been developed previously 

for linear structures, are extended in this study to nonlinear structures.  Static output feedback 
uses the measured output from a limited number of sensors installed at strategic locations about 
the structure so as to minimize the number of sensors.  This method can be very effective for 
controlling hysteretic structures since it allows ignoring the measurement of the evolutionary 
Bouc-Wen hysteretic variable, which cannot be measured.  The objectives of this study are to 
extend the H∞ control algorithms to hysteretic structures, and to present and investigate the 
effectiveness of a newly developed procedure that uses stochastic equivalent linearization to 
compute the control gain matrix.  In this procedure, the hysteretic parameters are linearized by 
assuming the ground motion as a filtered white noise using the Kanai-Tajimi power spectral 
density. 

 
The next section presents a brief description of the static output feedback H∞ algorithm 

that is used in this study.  The algorithm, which was developed for linear structures (Kose et al., 
1996), is then extended to hysteretic structures.  Next, the method of stochastic equivalent 
linearization is presented to deal with the hysteretic behavior of the structure.  Finally, simulation 
results for a single-degree-of-freedom structure under earthquake ground motion are presented to 
show the effectiveness of the suggested procedure. 

 
H∞∞∞∞ Algorithm for Linear Structures 

 
Using the state space representation, the equation of motion of a linear n-degree of 

freedom structure subjected to a disturbance or ground motion, gxW &&= , and controlled with m 
controllers using a static output feedback strategy is given by: 
 

 GWBUAXX ++=&  (1) 
 UHXHZ 21 +=  (2) 
 XY Θ=  (3) 
 XKKYU Θ==  (4) 
 
where X  is the 2n-dimensional state vector which includes displacements and velocities, U is 
the m-dimensional control input vector, Z is the r-dimensional controlled output vector 



( mnr +≤ 2 ), and Y is the p-dimensional measured output vector ( np 2≤ ).  A is the system 
matrix; B and G are the influence matrices for the control input and disturbance, respectively; 

1H  and 2H  are weighting matrices selected to impose different penalties on certain states and/or 
controls; K is the control gain matrix, and Θ  is a mapping matrix that determines the locations of 
sensors for static output feedback control.  When I=Θ , where I is the identity matrix, a full-
state feedback control is achieved. 

 
The objective of the H∞ control algorithm is to determine the m x p gain matrix, K, such 

that: 1) the closed loop system defined by Eqs. 1 through 4 remains stable (robust stability) and 
2) the H∞ norm of the transfer function, wzT , from the disturbance input, gxW &&= , to the 
controlled output, Z, remains less than a certain level of disturbance attenuation, 0>γ  (robust 
performance).  For time invariant systems, the H∞  norm can be defined as the root mean square 
of the transfer function wzT : 
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in which ||.||2 denotes the energy L2 norm.  Thus, the H∞ norm gives a measure of the worst case 
response of the system over an entire class of unknown input disturbances. 

 
A possible algorithm for computing the static output control law was presented in Kose et 

al. (1996) where it was shown that the gain matrix, K, can be obtained if there exists a positive 
definite matrix, 0>P , and a scalar, 0>δ , that satisfy the following two inequalities (after 
excluding uncertainties): 
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 0 22 >+= IHHR T δ     and    21 HHPBS T+=  (8) 
 

2V  can be extracted from the singular value decomposition of Θ  and is equal to zero for 
full-state feedback.  Two methods exist for computing the gain matrix, K.  The first method uses 
an optimization technique to find a simultaneous solution for the two matrix inequalities.  It has 
been shown that this method is difficult to implement and convergence to a desirable solution is 
not guaranteed, since the optimization problem is not convex.  The second method consists of 
extracting a static output feedback law from a set of full-state feedback controllers that satisfy the 
same H∞ performance criteria as the full-state case.  This method, which has proven to be more 
effective, will be used in this study and can be summarized as follows (see Kose et al., 1996): 

 
1) To satisfy the first inequality in Eq. 6, solve the Riccati equation 01 =+ QN , where Q 

is a positive definite matrix, to estimate matrix P.  Compute the matrix Ψ  as: 
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where +Θ  is the pseudo inverse of Θ . 

 
2) Compute a full-state feedback control law, XKU full= , that keeps the H∞ norm of the 

closed loop system less than γ. 
 

 2/1
1

2/11 )( NRSRK T
full −Ψ+−= −−  (10) 

 
It was shown that if 1<Ψ , then the second inequality in Eq. 7 is satisfied and it is possible to 
extract a static output feedback controller that yields the same level of disturbance attenuation, γ , 
as the full-state feedback, such that: 

 
 +Θ= fullKK  (11) 
 

3) If the norm constraint on Ψ  is violated (i.e. 1>Ψ ), the technique may still generate 
a static output feedback law if it can be demonstrated that the H∞ norm of the closed loop system 
is less than γ , with the gain matrix, K, computed from Eq. 11. 

 
Extension of H∞∞∞∞ Algorithm to Hysteretic Structures 

 
For hysteretic structures, the motion is described by the following system of differential 

equations defined in the physical coordinate system: 
 

 ginel xmDUKxKxCxM &&&&& −=+++ ν  (12) 
 

where M , C , elK , and inK  are the mass, damping, elastic stiffness, and inelastic stiffness 
matrices, respectively; m is the mass vector, and D  defines the locations of the control forces.  x  
is the inter-story drift vector and ν  is the evolutionary hysteretic n-dimensional vector whose i-th 
component is represented by the Bouc-Wen model (Wen, 1976) as: 

 
 ]||||||[ 11 iiiiiiiiiiiyii xxxaD ηη νλννβν &&&& −−= −−      i = 1, 2,…., n (13) 

 
This model permits the simulation of a large number of hysteretic shapes by varying the 

four parameters iη , ia , iβ , and iλ .  These parameters define the scale, shape, and smoothness 
of the hysteresis loop.  yiD  is the yield deformation. 

 
The state space representation of Eqs. 12 and 13 is given by: 
 



 gxGUBXgX &&& 1111 )( ++=  (14) 
 

where [ ]TxxX }{}{}{1 ν&=  is the augmented 3n-dimensional state vector, 1B  and 1G  are 

influence matrices, and [ ]Tinel KxKxCMxXg }{)(}{)( 1
1 νν &&& ++−= −  is a 3n-dimensional 

vector that is a nonlinear function of the elements of 1X . 
 
For hysteretic structures, the control forces will be computed as 1KYU = , where 1Y  is the 

p-dimensional measured output vector ( np 3≤ ).  As for the case of linear systems, 111 XY Θ=  
where 1Θ  is the (p x 3n) mapping matrix.  The use of static output feedback control for hysteretic 
structures is very practical, since it not only requires a smaller number of sensors, but it permits 
ignoring the measurement of the non-measurable evolutionary variable, ν .  The measurement of 
this variable can be ignored by assigning zeros to the corresponding elements in the 1Θ  matrix.  
The effectiveness of this strategy will be demonstrated using numerical simulations. 

 
Since the stiffness of the structure and, consequently, the system matrix change during 

hysteretic response, it is not always possible to find the optimum gain matrix that will satisfy the 
control criteria.  The procedure that has been suggested in the past is to linearize the structure at 
the initial equilibrium state.  This procedure has been used extensively for hysteretic structures 
with a variety of algorithms such as the linear quadratic regulator and the sliding mode control 
algorithms.  The linearization of Eq. 14 for hysteretic structures at the initial equilibrium stage 
( 01 =X ) leads to the linear state space equation, Eq. 1.  Hence, the same H∞ algorithm described 
earlier for linear structures is used for the linearized model.  The resulting algorithm is not 
optimal, since the evolution of the hysteretic variable and the ranges of inelastic excursions the 
structure will experience are not taken into account in the computation of the gain matrix. 

 
The next section presents a stochastic equivalent linearization procedure to deal with 

structural nonlinearities in the development of the control gain matrix.  While this procedure is 
presented here for the development of the H∞ algorithm, it can be easily implemented in a variety 
of linear control algorithms, such as the linear quadratic regulator. 

 
Stochastic Equivalent Linearization 

 
This procedure is based on the work of Wen (1980) who presented the method of 

stochastic equivalent linearization for hysteretic structures under random excitation.  The 
theoretical formulation in Wen (1980) for this approach was performed on a single-degree-of-
freedom (SDOF) hysteretic structure, and is presented herein for multi-degree-of-freedom 
(MDOF) structures.  Formulation of the linearization technique for uncontrolled structures (open 
loop) is first summarized and then the technique is extended in this study for controlled hysteretic 
structures (closed loop). 

 
Open Loop Case (No Control) 

 
Consider an uncontrolled MDOF hysteretic structure governed by the following system of 



differential equations of motion: 
 

 ginel xmKxKxCxM &&&&& −=+++ ν  (15) 
 

where ν  is governed by Eq. 13.  The stochastic linearization procedure consists of replacing Eq. 
13 with the following equivalent linear equation: 

 
 xCK ee && −−= νν  (16) 

 
where eK  and eC  are diagonal matrices containing the linearization coefficients iek  and iec .  

iek  and iec  are numerical coefficients describing the normalized hysteretic characteristics of the 
structure undergoing nonlinear motion and do not represent physical stiffness or damping.  They 
are determined by minimizing the expected value of the mean square error between Eqs. 13 and 
16.  Wen (1980), assuming that the excitation is a zero-mean stationary Gaussian process, 
showed that for 1=η , iek  and iec  can be expressed as: 
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where σ  denotes the standard deviation, and E[ ] is the expected value.  For 1≠η , the 
coefficients iek  and iec  can be found in Chang et al. (1986). 

 
In this study, the ground motion is considered to be a stationary excitation that can be 

modeled as a white noise with constant spectral density, 0S , filtered through the Kanai-Tajimi 
filter such that the power spectral density is given by: 
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where the Kanai-Tajimi parameters gξ  and gω  represent ground damping and frequency, 

respectively.  In this case, the ground motion, gx&& , in Eq. 15 is given by: 
 

 ϕωζϕω &&& ggggx 22 +=  (19) 

 )(2 2 tnggg =++ ϕωϕωζϕ &&&  (20) 
 

where n(t) is the white noise excitation.  Eqs. 19 and 20 can be combined with Eqs. 15 and 16 to 
give the following state space representation of size 3n+2: 

 



 FL +Φ=Φ&  (21) 
 

where the state vector [ ]Txx φφν && }{}{}{=Φ , 0=iF  except )(23 tnF n =+ , mMH 1−−= , 

and the square matrix 
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The covariance matrix of Φ  is V ( ][ kjjk EV ΦΦ= ), from which all the standard 

deviations and expected values required for computing the linearized coefficients, iek  and iec  
(see Eq. 17) can be extracted.  It has been shown (Wen, 1980) that V satisfies the following 
Lyapunov matrix equation: 

 
  FVLLV T 0=++  (22) 

 
where F  is the matrix of the expected values of the products of the forcing functions and the 
response vectors such that  Fij 0=  except 0)23(),23( 2 SF nn π=++ . 

 
Since eK  and eC  in matrix L  depend on the elements of V, an iterative procedure is 

required to solve Eq. 22.  To start the iteration, one can use 0=iek  and iyie Dc /1=  (linear 
case).  Several analyses showed that the final solution does not depend on the initial values of 

eK  and eC  and that convergence was achieved after a few iterations. 
 

Closed Loop Case (Controlled) 
 

Since the algorithm will be developed for a hysteretic variable governed by Eq. 16, the 
term being controlled is the estimator of the hysteretic variable, ν̂ , rather than ν  itself.  Hence, it 
is mathematically more convenient to introduce the linearization error, νν ˆ−=e , through the 
linear equivalent differential equation: 

 
 xCK ee && −−= νν ˆˆ  (23) 

 
Thus, the equation of motion of the controlled structure takes the form: 
 

 eKxmDUKxKxCxM inginel −−=+++ &&&&& ν  (24) 
 

which has the following state space representation: 
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Thus, the linearization error, e(t), is included in the disturbance vector, W(t).  Eq. 25, which is 
similar in form to Eq. 1, will be used to compute the gain matrix for the linearized structure. 

 
For the closed loop case, Eq. 21 must be modified to account for the effect of the applied 

control force ( 111 XKKYU Θ== ), so: 
 

 FTKBL +ΦΘ+=Φ )( 1&  (26) 
 

where the 3n+2 x m matrix [ ]xmxmnxmnxmnxm DMB 11
1 }0{}0{]0[][]0[ −=  and the 3n x 

3n+2 matrix ]0[ )23()33( nxnnxIT = .  In this case, the Lyapunov matrix equation takes the form: 
 

  FTKBLVVTKBL T 0)()( 11 =+Θ++Θ+  (27) 
 
Since K depends on the selection of the coefficients eK  and eC  for the closed loop case, 

an iterative procedure is required.  This procedure may be summarized as follows: (1) Assume 
eK  and eC  as recommended for the open loop case.  (2) Compute the H∞ static output feedback 

gain matrix, K, as illustrated earlier for the linearized structure and using the form given in Eq. 
25 with the assumed eK  and eC .  (3) Solve the Lyapunov equation, Eq. 27, to compute V.  
Compute new values for eK  and eC  based on the computed V.  (4) Iterate on steps 2 and 3 until 
convergence is achieved.  Using this procedure, a few iterations are always enough to reach 
convergence. 

 
Numerical Example 

 
In this example, a hysteretic SDOF structure with a mass of 103 kg, pre-yield stiffness of 

157.9 x 103 N/m, and damping coefficient of 1256.6 Ns/m is considered.  Prior to yielding, the 
period of the structure is 0.5 s and the damping ratio is 5 %.  The hysteretic parameters are: 

yD =0.0005 m, a =1, λβ = =0.5, α =0.1, and η =1.  The input excitation is the S69E 
component of the Taft Lincoln School Tunnel, Kern County earthquake, 1952; scaled to a peak 
ground acceleration of 0.2g.  This ground motion can be modeled as a filtered white noise with a 
Kanai-Tajimi power spectral density whose gξ  and gω  parameters are 0.32 and 18.46 rad/s, 

respectively.  For the selected peak ground acceleration, 0S =55 x 10-4 m2 / s3. 
 
The structure was analyzed using different control algorithms and strategies, and the 

results are presented in Table 1.  The peak relative displacement and absolute acceleration 
responses are presented in column 1 of the table for the uncontrolled structure.  The structure was 



analyzed using the H∞ algorithm with the conventional approach (linearization at the initial 
equilibrium state) and with a full-state control strategy (the displacement, velocity, and the 
hysteretic variable are available for measurement).  For this case, the following parameters were 
selected: I=Θ1 , IQ 410−= , 0=δ , and 5.0=γ .  The matrices 1H  and 2H  were selected 

such that T)u*.x(Z 51086100 −= .  The peak responses are shown in column 2 of Table 
1.  The results show a substantial reduction in the displacement response with the cost of 
somewhat higher acceleration due to the application of the control forces. 

 
Table 1.  Response of the structure with and without control (control force = 650 N) 

Control algorithm (1) 
Uncontrolled 

(2) 
H∞, 

conventional 

(3) 
H∞, stochastic 
linearization 

(4) 
H∞, stochastic 
linearization 

Control strategy  Full-state Full-state Static output 
Peak control force (N) 0 650 650 642 

maxx  (cm) 4.35 2.43 2.23 2.24 

axmax&&  (m/s2) 0.81 1.15 1.04 1.03 

 
The structure was then analyzed using the H∞ algorithm with the stochastic equivalent 

linearization procedure described in this paper and with a full-state control strategy.  For this 
case, the following parameters were selected: I=Θ1 , IQ 410−= , 0=δ , and 73.2=γ .  1H  

and 2H  were selected such that T)u*.x(Z 310220 −ν= .  The linearization coefficients 
obtained using the iterative procedure illustrated before were 09.89=ek  s-1 and 4.1005−=ec  
m-1.  The results of this analysis are presented in column 3 of Table 1.  Comparing columns 2 and 
3, the effectiveness of the method of stochastic equivalent linearization is demonstrated.  This 
procedure resulted in better reductions in both the displacement and acceleration responses when 
compared with the conventional approach. 

 
The fourth column of the table presents the response using the stochastic linearization 

procedure with static output feedback.  The control parameters are the same as the previous case 
(column 3) with the exception that the matrix 1Θ  is adjusted to ignore measuring the hysteretic 
variable, ν .  For this case, 43.104=ek  s-1 and 3.1003−=ec  m-1.  Comparing columns 4 and 3, 
it can be seen that with a slightly smaller control force (642 N versus 650 N), the static output 
feedback controller resulted in almost the same response as the full-state controller. 

 
Table 2 shows simulation results similar to those of Table 1 using a larger control force 

(850 N instead of 650 N).  The results indicate even better reductions in the response using the 
stochastic equivalent linearization approach as well as the static output feedback strategy. 

 
Conclusions 

 
This study shows that H∞ control algorithms can be applied to hysteretic structures and 



that the newly developed procedure using stochastic equivalent linearization in computing the 
control gain matrix is effective.  In this procedure, the hysteretic parameters are linearized by 
assuming the ground motion to be a filtered white noise using the Kanai-Tajimi power spectral 
density.  The effectiveness of the recommended stochastic equivalent linearization over the 
conventional approach for dealing with structural nonlinearities (linearization at the initial 
equilibrium state) was demonstrated using numerical simulations of a hysteretic single-degree-of-
freedom structure under earthquake ground motion.  The success of this new approach is due to 
the inclusion of the linearized differential equation form of the Bouc-Wen evolutionary variable 
in the state space representation of the structure used by the H∞ controller.  This paper also shows 
the effectiveness of using a static output feedback strategy for controlling hysteretic structures.  
Numerical simulations indicated that for this case, the control effectiveness is not lost when the 
measurement of the evolutionary hysteretic variable is ignored. 

 
Table 2.  Response of the structure with and without control (control force = 850 N) 

Control algorithm (1) 
Uncontrolled 

(2) 
H∞, 

conventional 

(3) 
H∞, stochastic 
linearization 

(4) 
H∞, stochastic 
linearization 

Control strategy  Full-state Full-state Static output 
Peak control force (N) 0 850 850 838 

maxx  (cm) 4.35 2.11 1.83 1.84 

axmax&&  (m/s2) 0.81 1.30 1.17 1.16 
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