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An approach to lattice Boltzmann simulation is described, which makes a direct con-
nection between classical kinetic theory and contemporary lattice Boltzmann modeling
methods. This approach can lead to greater accuracy, improved numerical stability and
significant reductions in computational needs, while giving & new philosophical peint of
view to lattice Boltzmann calculations for a large range of applications.
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The flow of complex fluids or fluid flow in complex geometries plays an important
role in a wide variety of technological and environmental processes such as in the
manufacturing and utilization of polymer blends,! the spread of hazardous wastes in
soils? and oil recovery.?® The study of complex fluids is also of fundamental interest
and has been the subject of intense research in recent years. Problems of fundamen-
tal interest include the characterization of critical properties of phase separating
binary mixtures,? the formation of a string morphology in polymer blends under
shear,® contact line motion over a heterogeneous surface,® and the role of disorder
in multiphase flow in porous media.>*»” While the numerical simulation of complex
fluid systems remains a great challenge, there have been many advances in cellular
automata-based methods for describing such complex flows over the last 15 years.
Early approaches include lattice-gas automata,® where a given number of particles
are allowed to move and collide under a set of rules that are designed such that the
time-averaged motion of the particles is consistent with the Navier—Stokes equation.
An outgrowth of the lattice-gas based models was the lattice Boltzmann method, °
where, instead of tracking each particle, the time evolution of the single-particle ve-
locity distribution function was determined. Later, lattice Boltzmann models!!+12
were formulated to remove certain unphysical features found in both lattice-gas and
earlier lattice Boltzmann models, including the lack of Galilean invariance and the
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velocity dependence of the pressure field.!")2 Newer versions of such algorithms
can model phase transitions and multicomponent fluid systems.913-15

Central to all of the above described methods is the proper construction of the
collision operator. For example, lattice-gas models depend on the construction of
collision tables, while most lattice Boltzmann (LB) based models use the BGK col-
lision operator!!"? due to its simplicity and ability to recover the Navier-Stokes
equation in certain limits. A serious problem with the lattice Boltzmann BGK model
is that it often does not satisfactorily account for many boundary conditions, espe-
cially when the viscosity of the fluid is large, and can be unstable when there is a
large density or viscosity mismatch in the fluid system.!® More importantly, there
is still considerable debate over the correct physical basis and formulation of the
collision operator when modeling a nonideal gas or a multicomponent fluid.%:13-15
In many cases, the LB method can be thought of as a “top down” approach, where
computational algorithms are constructed to model certain macroscopic phenom-
ena without necessarily being true to the underlying microscopic physics. As kinetic
theory is considered fundamental, it is crucial to make a strong connection between
kinetic theory and lattice Boltzmann computational methods. Until recently, a con-
siderable body of research concerning classical kinetic theoryl”~19 was seldom used
as a basis to develop LB theory. However, over the past few years, there has been
significant progress in making a connection between the continuum BGK equation
and lattice Boltzmann BGK methods.?? Also, a clear connection between BBGKY
theory and construction of a mean-field-theory LB model of multicomponent fluid
systems has been established.?

In this paper, I examine an approsach to solve for the time evolution of the single-
particle distribution function described by any of the usual kinetic equations!?:
BGK and Boltzmann equations, and other related versions such as the Enskog hard
sphere model, to any order of its associated Chapman-Enskog expansion.171# For
example, because physical information is retained with respect to the order of the
Chapman~-Enskog expansion, this approach naturally recovers the Euler equations
and Navier—Stokes equations.

The key idea is, once the form of the distribution function is known to a particu-
lar order, one can reformulate the collision operator to reflect this information. This
method can be implemented in traditional BGK based LB models, significantly im-
proving their accuracy with the added bonus of large reductions on computational
memory requirernents by restriction of the single particle velocity distribution func-
tion to the first order of Chapman-Enskog expansion. In addition, this approach
allows for the application of many computational fluid dynamics methods that can
significantly improve the accuracy of the solution over that of more traditional
lattice Boltzmann methods, including improved modeling of flow near solid bound-
aries and at a fluid/fluid interface. Finally, and perhaps most important, the lattice
Boltzmann method now becomes an ideal “mesoscopic” approach, which makes a
direct connection between microscopic and macroscopic phenomena.
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First consider the continuum Boltzmann equation
6¢f+v-Vf+a-V,,f=Q, (1)

where f is the single-particle velocity distribution function, v is the microscopic
velocity, §? is the collision operator and a = F/p is the acceleration due to a
body force F. The macroscopic variables density, velocity, and temperature, de-
noted by p, u, and T', respectively, are obtained from the following moments of
the single-particle distribution function: p = m [ fd®, pu = m [vfd®v, and
T = (m/3ks) [(u—v)2fd3v, where m is the mass and ky, is the Boltzmann constant.
In order to determine the time evolution of the above macroscopic variables as
well as to relate other macroscopic fluid properties, such as viscosity and thermal
conductivity, to the microscopic properties of the system, Chapman and Enskog
independently developed a procedure to create a hierarchy of approximate solu-
tions to the Boltzmann equation. They were then able to separate the physical
phenomena associated with different time and length scales. The main idea of the
Chapman-Enskog procedure!”® is to write the single-particle velocity distribution
as f = fO 4 fO) 4 £f@ ... where, f) = fOg1) £2) = FOH) Here, fO is
the equilibrium distribution function
2
o) )

n
(ZrmksT)o72 P ( 2ksT

with number density, n, and U = v —u. The function ¢ contains information about
spatial gradients in the fluid system. To isolate phenomena important at different
time scales, the time derivative is also expanded as follows:

7] d d

—= e o e, 3
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where the lowest-order terms vary most rapidly. One may now construct a PDE

associated with each order of the Chapman-Enskog expansion. To the zeroth order,
one obtains:

f(ﬂ) -
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The time derivatives of the macroscopic variables are obtained from the
Chapman-Enskog analysis!”1® and are:
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where
1 60;‘ O
A== =4+ 222
T2 (3:::; + 63:1-)
and the pressures tensor Plg'- = nkyTd;;. Clearly, this zeroth order form is consistent

with the Euler equations.
Next note, to first order, the single particle distribution evolves in time according

to:

(0) (1) (0}
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The t1 derivatives of the macroscopic variables, obtained from the Chapman—
Enskog analysis,'"1® are:

o =

Ju -
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with
Rgl)sz(l)yiujdu and Qf.“:ff(l)-’sz?U,-dU.

To complete the first order equation, ¢!, which depends on the collision operator,
is needed. For example, consider the BGK Boltzmann equation, where the collision
operator is represented by Q2 = (1/7)(f® — f) so that, to the first order in the
Chapman-Enskog expansion,

1 1
ae = F(1) 2 £(0) 4(1)
Q= S0 = 2§00,

Inserting 7 into the left hand side of Eq. (1), it is found that

T m 5
1= fO0 = —fO— [ (m U? - 5) (U-VkT)

3

1, oo

+m Z‘ Aij (U,—U,- Y )J ) (6)
3,7=1

At the first order approximation, the time evolution of f is consistent with the con-

tinuity, Navier—Stokes, and heat equation with viscosity and thermal conductivity

proportional to 7. The derivation of ¢{1) for other collision operators may be found

in the literature,17:18
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With the expansion procedure layed out, the next question is how can such in-
formation be incorporated into a numerical algorithm to solve for the time evolution
of the single particle distribution function. Several possible approaches are given
below. For example, once the PDE for the single-particle distribution function is
determined to the order needed [i.e., Egs. (4) or (5)], where all quantities are
represented in terms of the macroscopic variables of density, velocity, tempera-
ture and the microscopic velocity, the PDE may be discretized in a velocity phase
space?0 associated with the microscopic velocities. Therefore, f — fi, f® — f7, and
U = v —u — v; — u, where the index 7 corresponds to the discretized microscopic
velocity. In addition, the equilibrium distribution can be replaced by its represen-
tation as a truncated Hermite polynomial in discrete velocity space, as is typical in
lattice Boltzmann simulations.!®?° Because the microscopic velocities form a dis-
crete set, the integrals that define the macroscopic variables (or their respective time
derivatives) are now replaced by sums. Equations for the single-particle distribution
function can then be numerically integrated by a variety of computational schemes.

For illustrative purposes, the case of pressure-driven flow between parallel plates
is studied. While this is an extremely simple flow geometry, it also serves to illus-
trate a serious flaw with the physical interpretation of the usual lattice Boltzmann
method. We examine the isothermal limit and hence neglect terms with tempera-
ture gradients. For this example, a lattice Boltzmann model based on the D3Q19
lattice (three dimensional lattice with 19 microscopic velocities) will be utilized.}?
Results can be easily generalized to other lattice models. The microscopic velocities,
vy, equal all permutations of {+1,+1,0) for 1 <1 < 12, (+1,0,0) for 13 < i < 18,
and (0,0, 0) for i = 19. The units of v; are the lattice constant divided by the time
step. Macroscopic quantities such as the density and fluid velocity are obtained by
taking suitable moment sums of f;. Here, p = m Y ; fi and pu = m 3}, fivi. In
our units, the molecular mass m equals 1. The equilibrium distribution takes the
following form!:12:

4 ‘
fi(o) =Lpg|l+3vi-u+ 3 (3vivi: uu - uz)] ' (M)

with, t; =1/36 for 1 <17 <12,¢t; =1/18 for 13 < < 18 and t19 = 1/3. A second
order Runge-Kutta scheme is used to integrate the equations of motion [Eqgs. (4) or
(5)]. In the zeroth order limit of the Chapman-Enskog expansion, numerical solu-
tion of the PDE [Eq. (4)] results in a flat velocity profile between the parallel piates
(Fig. 1) because there are no viscous effects here, consistent with solution of the
Euler equations. At the next order of the Chapman-Enskog expansion [Eq. (5)], a
parabolic velocity profile is obtained as the viscous effects become important. Data
are also included for the case where the viscosity is increased by a factor of 40. Note
the good overlap as the data are scaled to account for the difference of viscosity.
It should be emphasized that this degree of agreement has not been obtained in
usual three-dimensional lattice Boltzmann methods (see Fig. 1 for comparison to a
standard LB method).!® This example illustrates that, when modeling a multicom-
ponent Huid with a large viscosity mismatch, the usual lattice Boltzmann method
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Fig. 1. Velocity field between parallel plates based on numerical simulation data for the case
of the zeroth order Chapman-Enskog expansion {squares) and the first order Chapman—Enskog
expansion where circles correspond to 7 = 1 and the 2’ correspond to T = 40. The velocity field
for the T = 40 case is multipled by a factor of 40. The dashed line is the solution of the Navier—
Stokes equation for the same boundary conditions. The triangles are from a lattice Boltzmann
simulation with r = 40. For this simulation, a second order accurate bounce-back algorithm was
implemented at the walls. Data (triangles) are shifted up slightly to more clearly see the exact
solution. Note the large slip velocity near the walls for the lattice Boltzmann case. Velocity umnits
are lattice spacing divided by the iattice Boltzmann time step.

can produce inconsistent results, where each fluid effectively has a different slip
velocity depending on its viscosity. Further, a Chapman—Enskog expansion applied
to the usual BGK lattice Boltzmann method shows a departure from Navier—Stokes
that goes as a power series in 7 so that the method becomes hopelessly inaccursate
as T or viscosity is increased.

Although the above example shows that a lattice Boltzmann based simulation
can be formulated to obtain a direct mapping to the Navier—-Stokes equations, its
implementation is rather cumbersome. Further, an important advantage of the more
traditional BGK lattice Boltzmann method is its natural formulation as an upwind
scheme so that it is not necessary to determine the flow direction to select the
form of spatial gradient operator. To circumvent some of the above described lim-
itations of lattice Boltzmann BGK while preserving the up-wind formulation, one
may simply make the replacement fr — fi(o) + f,-(l) in the usual lattice Boltzrmann
model. An important benefit is that once the distribution function is replaced with
its Chapman—-Enskog expansion, saving each f; in computer memory is no longer
necessary because its first order approximation can be entirely constructed from the
macroscopic variables (i.e., typically, 15 to 19 f; are needed for isothermal models
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and 34+ for thermal models) resulting in a significant computational memory re-
duction for many practical applications. It should be pointed out that, in contrast
to the usual lattice Boltzmann method, one must now calculate spatial derivatives
of velocity (and temperature in a thermal model). However, this was not found to
be an excessive burden when implementing the algorithm. Numerical tests were
performed on this algorithm and it was found to agree well with standard lat-
tice Boltzmann for 7 < 1. Unfortunately, it was found that this approach became
unstable for 7 ~ 2. ‘

An alternate approach is to formulate the algorithm, using the Chapman-
Enskog expansion of the single particle distribution function only, as a finite differ-
ence code as described in Ref. 16 and choose a small enough time step. As a check,
simulations of fluid flow around a periodic array of spheres were carried out and
it was found that, in the low Reynolds limits, the permeability, k, (as defined by
Darcy’s law (u) = —(k/u){(VP) with viscosity, 4 and {VP) the average pressure
gradient) was independent of 7 for 100 <7 < 1 and, indeed, consistent with solu-
tion of the Stokes equations. In contrast, a numerical determination of permeability
using a traditional lattice Boltzmann methods would show a strong dependence on
+ because of the slip phenomena indicated in Fig. 1. It should be mentioned that
previous studies have shown that improvements to the slip boundary condition can
also be obtained using a generalized lattice Boltzmann scheme having muitiple re-
laxation times,?2 however, the method used in this paper is based on a simpler
single time relaxation method. .

The approach described above in this paper is quite general. The functional form
of ¢(1) has been derived for other models including the usual Boltzmann and Enskog
hard sphere models and may also be extended to model multicomponent fluid sys-
tems as in the work of Lopez de Haro, Cohen and Kincaid.1? In the same spirit,
other non-Chapman-Enskog based representations of the single particle distribu-
tion function (i.e., Grad’s method of moments'”!8), which avoid explicit inclusion
of velocity gradients, can instead be utilized. For example, consider the D3Q19
lattice model described earlier. In this case, f; is replaced by i

1 - 7
F= £+ ot b (Bvevi= 1), ®)

where b; = 3 (Bvevi— T)g,- and gi(x,t) = f2{x — vi,t — 1) + Qx — vit — 1).
Again, there is a saving in computational memory because, for the isothermal case
in 3D, f7 depends on 10 quantities p, u, and E; (note E is symmetric). Indeed,
we have found that when adopting Grad’s method of moments, good agreement is
found with BGK lattice Boltzmann for 7 < 1 and that the solution for the flow
fields near a solid surface for 7 > 1 was improved. The 7 = 1 case is identical to
lattice Boltzmann.

Finally, the approach described in this paper can be extended to model lig-
uid/gas phase transitions or phase separation of multicomponent 8uid systems due
to long-range molecular forces. Here, the collision operator is divided into two parts
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0 = 15 + QL , where Q5 corresponds to collisions due to short range forces and Q£
describes the effects of longer range interactions. It can be shown, starting from the
BBGKY formalism and using a molecular chaos approximation, that long-range
molecular interactions can be represented as a mean field?® and thus incorporated
into the body force term in Eq. (1). For example, in the limit of small density gradi-
ents, the mean field potential, due to long-range interactions for a single-component
fluid is given by V = —2ap — £V 2p, where ¢ and & can be related to the molecular
potential.?? The local acceleration field to be used in Eq. (1) is a = F/m, where

= —VV. In addition, a hard sphere repulsion, based on the Enskog model may
be easily included as described in Ref. 24. Figure 2 shows the phase disgram for a
coexisting liquid /gas phases using the mean-field potential with hard-sphere repul-
sion. In this case, the modified BGK lattice Boltzmann method described earlier
(first order approximation) was utilized. Similar calculations using the standard LB
method was found to be unstable for T'/a < 0.71 indicating the new approach is far
more stable and allows for significantly larger density gradients or deeper quenches.

In conclusion, a framework for solution of the time evolution of the single-
particle distribution function, which unifies standard kinetic theory with lattice
Boltzmann methods was studied. In addition, the methods describe in this paper
provide a clear link between Navier—Stokes based computational Huid dynamics
approaches and Iattice Boltzmann methods. Indeed, these approaches can be made

0.72
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Fig. 2. Phase diagram for typical mean-field based model of fluid combining a long range at-
tractive interaction with a bhard sphere repulsion term. The fluid density is p and T/a is the ratio
of temperature to interaction strength. Results were obtained using the LB model modified to
only include terms up to first order as described in text. Standard LB methods could only model
regions near the critical point, T/ = 0.71, a5 the algorithm become unstable for the systems

studied.
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interchangeable if desired. These methods should be of benefit for computational
modeling of complex fluids in many areas of research.

Note Added in Review

It has been brought to my attention that an approach similar in spirit, to appoxi-
mate the Navier-Stokes equations, has been suggested by Junk and Rao,?® which
utilizes a Chapman-Enskog expansion of the single particle distribution function.
In their approach, the single partice distribution function is free streamed as if it
was in the post collision state of lattice Boltzmann. The difference between the ap-
proach of Junk and Rao and that described in this paper is that the BGK collision
operator form (or, indeed, all of the Boltzmann-BGK equation) is preserved, to
the order required, giving our approach a different physical interpretation. Also,
the method of Junk and Rao, in the regime of large viscosity, will suffer from the
same instabilities as described earlier. Again, this can be controlled by adapting a
finite difference form of the LB BGK equation as suggested in this paper. Another
minor point, in regards to computational memory, it was stated?® that duplicates
of p and u are needed to carry out calculations. We find that only a gingle copy is
needed, hence reducing memory needs in half of that suggested by Junk and Rao.
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