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Abstract

The propenies of composites made by placing inclusions in a matrix are often controlled by the shape and size of the panicles used.
Mathematically, characterizing the shape of panicles in three dimensions is not a panicularly easy task, especially when the panicle, for
whatever reason, cannot be readily visualized. But, even when panicles can be visualized, as in the case of aggregates used in concrete, three-
dimensional (3-D) randomness of the panicles can make mathematical characterization difficult. This paper describes a mathematical
procedure using spherical harmonic functions that can completely characterize concrete aggregate panicles and other panicles of the same
nature. The original 3-D panicle images are acquired via X-ray tomography. Three main consequences of the availability of this procedure are
mathematical classification of the shape of aggregates from different sources, comparison of composite performance properties to precise
morphological aspects of panicles, and incorporation of random panicles into many-panicle computational models.
Published by Elsevier Science Ltd.
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1. Introduction same kind of shape-based calculations are also found in many
other areas of science and engineering, as the problem of
particle shape is ubiquitous [8]. These concepts provide a
powerful mathematical "too]-kit" with which to characterize
the shape of particles. However, applying these mathematical
techniques to rea], complex, random shapes is a nontrivial
task, and much Jess anention has been paid to this undertak-
ing than to analytical shapes like ellipsoids, torii, cubes, etc.
There has of course been a great deal of anention paid to
fractal particles [13]. But the kind of particles found in
concrete, random but relatively compact particles, seem to
have had less anention paid to them in current research.

In the context of aggregates used in concrete, why does
one want to mathematically characterize shape? There are at
least three reasons. The first is to simply be able to classify
different aggregates from different sources, so that their
shape differences can be quantified. The second is to be able
to quantitatively relate true 3-D aggregate shape character-
istics to performance properties. Anecdotal evidence that,
for example, "more angular aggregates" give different
concrete workability is not enough information on which

Characterizing the shape of particles mathematically is an
old and not completely satisfactory activity. Many empirical
and analytical classifications of shape, though often based
only on two-dimensional (2-D) properties, exist in the
literature [I -5]. The differential geometers have derived
many tools for characterizing surfaces, such as mean cur-
vature and Gaussian curvature, along with precise defini-
tions of usual quantities like volume and surface area [6].
Physicists have contributed the concept of the moment of
inertia tensor [7). There are also ways to indirectly character-
ize shape, via the effect of inclusion shape on composite
properties when there is a low volume fraction of inclusions
in a matrix [8 -12]. These effects are often used by polymer
scientists and composite material theorists under the name of
transport property virial coefficients or dilute limits. The
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harmonic expansion, which fully characterize the particle
shape at the resolution of the original image. Continuum
models using real aggregates can then be built almost as
readily as those involving shapes like spheres and ellipsoids,
once the problem of determining overlap for these random
particles is overcome.

The kind of spherical harmonic technique described in
this paper has been used previously for approximating
molecular orbital surfaces [19-21] of proteins and other
molecules. It has also been used recently, in a very similar
way to that which this paper describes, to characterize the
shape of a really big rock-an asteriod [22]. A different
form of spherical harmonic mathematical techniques is also
used in geodesy in the study of the shape of the earth and
the shape of satellite orbits [23], an extra-large length-scale
shape characterization problem. Similar mathematics as
described herein have been used to analyze the shape of
aggregates in serial sections [24]. The novel feature of the
method used here is that it starts from a 3-D digital image
acquired from X-ray tomography. The special features of the
spherical harmonic anaJysis caused by this source of ori-
ginal images will be seen in later sections of the paper. The
intention of this paper is to serve as a guide to those desiring
to carry out shape analysis using spherical harmonic func-
tion techniques. As such, many mathematical details are
included in the main text and in appendices to enable
practical use to be made of the paper.

The whole procedure of mathematically analyzing shape
is far easier to visualize in 2-D than in 3-D. A similar kind
of analysis, for 2-D representations of aggregates used in
concrete and other shapes, has been carried out previously
[25-27]. We review and extend this 2-D formulation here,
in order to give a framework of understanding and to
introduce concepts, before going into the full 3-D analysis.

2. 1\vo-dirnensionaJ illustration

to base a shape optimization of aggregates in concrete. If the
shape of particles in a given aggregate type can be math-
ematically and quantitatively represented in 3-D, inclusion

shape-composite property relationships can be developed
in a meaningful way.

The third reason to mathematically characterize shape is
so that real, random particles can be successfully incorpo-
rated into computational models. The random Structure of
concrete makes it very difficult to be able to model a
representative piece of concrete using digital-image-based
models, as has been successfully done at the cement particle
and paste level [14]. 100 many voxels are required, mainly
because of the presence of the interfacial transition zone
(ITZ) and the wide size range of aggregates present. I For

example, a representative size sample of a concrete with a
maximum aggregate size of about 10 rnm should be a cube
with a side length of least 50 rnrn. 10 adequately resolve the
ITZ as well as all the aggregate requires that the minimum
voxel size should be at most about 5 IJJn on an edge, since
the ITZ is about 20 IJJn in width. The minimum sample size
in voxels will then be 10,0003 or 1012. Storing the model
with one byte per voxel would require a computer memory
load of 1 TByte, which is uncomfortably large for being
able to handle even one model per computer.

To overcome this difficulty, continuum models, called
hard-core soft-shell models [15], have been used. Thes(
store only the position, orientation, size, and shape informa-
tion of each particle. If a particle is a sphere, its shape is
known and only its diameter need be stored, along with the
coordinates of its center. For an ellipsoidal particle, its
center, the length of its three semi axes, and a 3-D vector
denoting its orientation have to be stored. Any regular
geometric particle can be handled in a similar way. In
addition, one must be able to decide if two particles overlap,
so that a reasonable concrete model with nonoverlapping
aggregates can be generated. For Euclidean particles such as
ellipsoids, this can be readily done through fairly simple
mathematical functions since the geometry is completely
characterized by the orientation and length of the thref
semiaxes [16-18]. However, real aggregates are not smooth
and regular particles, but have random shapes. To be able to
insert random particles into these kinds of continuum models
requires that each particle be characterized by a limited set of
numbers, much fewer than required by digital techniques,
where the location of each voxel needs to be stored.

Motivated by the above three factors, the focus of this
paper is how mathematical shape analysis of real particles
can be successfully performed by acquiring real shapes via
X-ray tomography and by analyzing them using spherical
harmonic functions. Each particle can be reduced to a
limited set of numbers, the coefficients of the spherical

A sample "aggregate" shape to be analyzed is shown in
Fig. 1, which was drawn by hand using a drawing program
and then saved as a digital file. This file was converted to an
ASCII file of one's and two's (one for background, two for
object) using a shareware image processing program. The
shape is then represented in the computer as a collection of
pixels or list of numbers, located at specific sites in the
plane. For a rea] particle, with an actual size, there will be a
certain rea] length associated with the side length of each

square pixel.
The center of mass of the object is found using the

following equation:

Eir;"
D (1r-+CM =

I It should be noted, however, that, if the effect of the ITZ can bf

ignored, as in some rheolo!!ical studies, and a more limited aggre!!ate size
range is chosen. then digital image models can be used for the ~tructure of
concrete under these limitations

where the sum over i is a sum over all pixels of the object
(pixels with label "2 "), the position vector is defined as the
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y feature, and internal porosity that is resolved on the length
scale of the pixel size.

The Gaussian quadrature is a method for doing integrals
numerically [28]. If a function/is to be integrated from -1
to 1, and a Gaussian quadrature of order N is chosen, then:

(2)

where the function is evaluated at the points Xn, -1 <Xn < 1,
of the Gaussian quadrature, and Wn are the weights of the
Gaussian quadrature of that order. In this paper, a l20-point
Gaussian quadrature was generally used. If the integration
limits are instead a and b, then one uses the linear trans-
formation:

x

x~ = ~ (b -a )Xn + ~ (b + a)
(3)

Fig. I. A 2-D model aggregate shape. The angle 9 used in the Fourier
analysis is defined. The origin of the coordinate axes is at the center of mass
of the object.

The function is evaluated at these new points, and the
sum in Eq. (2) is used to evaluate the integral with the same
weights. If a = 0 and b = 21\, the limits for e in the surface

problem, then this transformation gives the values of e"
used, for a given value of 0 ~ n ~ N.

Now the function R(e)={(en,Rn)} is the length from the
center of mass to the surface at an angle en, where en is
measured counterclockwise from the x-axis. This function
can be constructed to be periodic in e, by letting
eN+;=e;+21\, and so can be expanded in terms of cosine
and sine functions:

oc

R(9) = L[ajcos(J"9) + bjsin(J"9)].

j=O
(4)

Note that the value of bo can be taken to be zero, as sin(O)
equals zero identically. Also !tote that Eq. (4) could be

vector from the (arbitrary) origin to the center of the pixel of
interest, and the symbol in the denominator is the numeral
one. The denominator is then simply the area of the object in
terms of the number of pixels contained in the object.

The surface of the object is found next, numerically, at a
given number of angles by extending a line segment from
the center of mass to a point that just crosses the digital
surface of the object, which is taken to be the edge of the
pixel found at the surface in the direction chosen. The
lengths of these line segments are denoted Rn. The angles,
between 0 and 21\, are chosen according to a Gaussian
quadrature scheme2 [28] of the order desired, and are
illustrated in Fig. 1. This method of finding the surface will
cause the numerical surface to contain the small-scale
"digital roughness" of the pixellated surface. It is conceiv-
able that some sort of interpolation or smoothing operation
could be done at this point, to get rid of the digital rough-
ness to some extent. This has not been done in this paper,
for 2-D or for 3-D.

One must note here that this method of finding the
surface will only work for a certain class of shapes. Defining
this class precisely is left for the 3-D section. For now, it can
be simply said that when extending a line segment from the
center of mass to the surface, one must not intersect the
surface twice. Fig. 2 shows a particle that has two features
that would invalidate this procedure: an "overhanging"

Fig. 2. A 2-D model aggregate shape that illustrates the features that are not
allowed in the mathematical analysis, including resolved internal porosity,
and an "overhanging" region, giving a nons ingle-valued surface, as
measured by directed segments from the center of mass.

2 Note that the Gaussian quadrature points and the Gaussian curvature

are related only by the name of the single brilliant mathematician who

thought of them both.
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written in tenDs of a complex exponential, which combines
the sine and cosine tenDs.

The values of OJ and hi are given by the integrals:

1 2r271

21\ Jo
3

R(9)cos(j6)d9

a--

:i-

127\ ]

b;=2-; 0

R(e)sin(je)de

(5)

4 5 6These integrals are straightforward to do, since the values
of en were chosen according to the Gaussian quadrature
procedure, and so are "ready-made" to do the integrals.

Fig. 3 provides a plot of the values of ai and hi vs.j found
for the shape shown in Fig. 1. Note that, while there is
fluctuation, the values of the coefficients tend to decrease as
the value of j increases. By j = 20, the coefficients have

become small enough to be negligible. After this point,
higher order values ofj are just trying to match the pixel-to-
pixel digital structure of the exterior of the object, which is
probably not an important or realistic part of the real shape.

Fig. 4 shows the computed shape of the object for
different numbers of Fourier coefficients used, i.e.,

7 8 9

10 12
N

R(9) ~ L[a;cosv"9) + bjsinv"9)]
;=0

(6)

Fig. 4. The shape of the analyzed image of Fig. I for different numbers of
cos and sin coefficients used to recreate the shape. The numeric labels in the
figure are equivalent to the j values in the previous figure.

Note that the ao coefficient is a measure of the average
circular size of the object, as can be seen also in Eq. (5), and
the other coefficients U;::: 1) can be thought of ~s perturbing
the average circular surface to match the correct shape.

Fig. 5 shows the computed area of the shape, using the
expansion, as a function of how many expansion coeffi-
cients were used. The equation for the area A of a given
shape, using N coefficients, is [29]:

30

20

A =.!. f2"
2Jo

(7)10

.D 0

(t\ Note that by N = 10 or so, the area has reached its

asymptotic value, which is less than the digital value by
only 0.1 %. The digital area is just the number of the pixels
times the area of each pixel. In this model case, the area of
each pixel is taken to be unity. The slight disagreement
reflects the fact that the surface of the object was only
sampled at a finite number of points. Choosing surface
points according to a higher order Gaussian quadrature
would cause this error to be smaller, as long as the
numerical accuracy of the computer was not exceeded.
However, one does not want to totally reproduce the digital
details of the pixellated surface, as presumably these details

.10

-20

-30
0 10 20 30 40

Fig. 3. The cos and sin coefficients as a function of the indexj for the shape
shown in Fig. 1. The value of au '" 200 is off the venical scale so that the
smaller coefficients could be seen.
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m
Q)
...

~

Fig. 5. The computed area of the shape shown in Fig. 2 as a function of the

index!

are not real, but are only an artifact of using square pixels to
represent a true curved surface. So there is an upper limit on
how fine one wants to resolve the surface.

The technique described for 2-D has been: image acquisi-
tion, numerical surface determination, and then Fourier
analysis. In 3-D, the image is (1) generated using X-ray
tomography, (2) acquired numerically, and then (3) analyzed
with spherical harmonic functions, which are the 3-D
equivalent of the Fourier series. In the case of the asteroid
mentioned earlier [22], the surface was numerically sampled
using laser range finder measurements made by an orbiting
satellite. The X-ray tomography and particle image acquisi-
tion step for the procedure in 3-D is described next.

convenience, as much larger samples can be handled).
Aggregates (high density) in Fig. 6 appear white, while
the matrix, consisting of cement paste and unresolved fine
aggregate particles, appears black. The large flat areas on
the aggregates showing on the faces of the cube are from the
cut through the sample, and are not part of the real image.
The voxels are cubes with dimensions of approximately 0.4
mm per side. The physical size of the concrete sample
shown in Fig. 6 is then about 108 x 108 x 108 mm. The
image shown in Fig. 6 represents preliminary work at a
fairly coarse resolution, but is adequate for the purpose of
illustrating the mathematical algorithms described in sub-
sequent sections. Much higher resolution, of about 20-40
f1m per voxel side, is possible.

Given that a 3-D multi aggregate image has been
obtained, one can proceed to extract individual particles.
Ideally, when carrying out this procedure routinely, the
image should be taken of a system with a fairly low volume
percent of aggregate, say 20%, so that on the average, most
particles are not near each other. The image in Fig. 6,
however, was of a real concrete at a practical aggregate
volume percentage (around 60%). Because of this fact,
when the 3-D image was made, many particles appeared
to be in contact. This was because of the fairly coarse
resolution of the image, which would make many close but
not touching contacts to appear as real contacts. Converting
the gray scale image to a binary image can also cause some
artificial particle contacts. This situation was handled with a
simple erosion and dilation algorithm [32], which broke
apart the tenuously connected aggregates, without signific-
antly changing their size or shape.

A "burning" algorithm was used to identify single
particles. It is quite analogous to the algorithm used in

3. X-ray tomography and particle acqujsjtion

X-ray computed tomography (CT) [30] offers a non-
destructive technique for visualizing features in the interior
of opaque solid objects to obtain digital information on their
3-D geometry and topology. In the case of concrete, the
aggregates used in the concrete can be visualized inside a

concrete cylinder.
The aggregate images to be shown in this paper were

taken from an X-ray tomograph of a real concrete sample
captured using an X-ray CT system located at the Turner
Fairbank Highway Research Center [31]. Concrete prisms
having a 75 x 75 mm cross-sectional area, a water/cement
mass ratio of 0.5, with quartz sand used as the fine aggregate
and limestone used as the coarse aggregate, were made and
used. The gray scale image that comes from the tomo-
graphic process was thresholded to a black and white image
by recovering the known volume of aggregates contained in

the sample.
Fig. 6 shows a 2703 pixel portion of the final result, cut

out of the original image (this size was chosen only for Fig. 6. A 2703 voxel piece of a tomographic image of a concrete material.
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4. Spherical harmonic mathematical analysis

The procedure to generate the 2-D surface of a 3-D
particle is qualitatively the same as in generating the I-D
surface of a 2-D particle. Starting from the center of mass,
which is defined in 3-D similarly to 2-D, line segments are
positioned from the center of mass to the surface at various
angles (Oi'~;)' where these angles are the usual spherical
polar coordinates [34]. The length of these line segments,
denoted R!J{Oi,<I»>, are found numerically at the values of the
angles corresponding to the points of a double Gaussian
quadrature, one for each angle, where Rij is the distance
from the center of mass to a surface point along the direction
defined by (OJ,<I>>>. A surface point is defined as a point on
the surface of a pixel. The Cartesian coordinates of these
surface points, with the origin defined at the particle center
of mass, are:

Xii = Rijsin(ei)cOS(~i

Yij = Rijsin(e; )sin( <l>i

percolation studies, both in digital, pixel-based models [33],
and in continuum mode] studies [12], for determining the
connectivity of extended clusters. Imagine a 3-D cube of
pixels, like that shown in Fig. 6, where each pixel is labeled
either matrix (I) or particle (2). Assume that enough
precautions have been taken, either physically, by keeping
the volume fraction of aggregate low, or numerically, by
using some kind of erosion/dilation routine, that no particle
is touching any other particle. We will also stay away from
the boundaries and so not allow any artificially "s]iced"
particles to be identified. Scan through the image until a
pixel is found that has label "2." This corresponds to the
single black pixel shown in Fig. 7, which shows a model
particle in 2-D. Now find all nearest neighbors (back-front.
left-right, up-down) of this pixel that also have label "2."
In Fig. 7, the first round of this neighbor identification will
come up with those pixels labelled a. Save the locations of
these pixels, and then find all neighbors of the a pixels that
also have the same label (b in Fig. 7). Iterate this process
until no more pixels of label "2" can be found. The
collection of pixels (voxe]s in 3-D) found constitutes a

single particle.
The main image is now systematically examined for

particles, which when found are stored in a simple database.
The coordinates of each voxel, relative to the center of mass
of the particle in which it was found, are stored. Any particle
can easily be regenerated by placing its center of mass at
any location in a 3-D digital image. These coordinates are
used to generate a surface function of the 3-D particle,
which can be analyzed with spherical harmonic functions, as
is described in Section 4.

Zij = Rijcos(9;) (8)

Fig. 7. A 2-D illustration of how the burning algorithm for particle
identification works. The black pixel is found first, then the a neighbors,
then the b neighbors, and finally the i neighbors, completing the particle

Now is the time to state more clearly what kinds of
particles can be handled accurately by this kind of analysis.
We require that the shape to be "star-like" [19-21]. For a
shape to be star-like, any line segment whose one endpoint
is the center of mass and the other endpoint is on the surface
must be totally contained in the shape itself. Therefore, there
can be no "overhangs" or "bubbles" in the shape, as was
depicted in Fig. 2. This requirement should be satisfied by
almost all aggregates, because the grinding process, whether
natural, in a riverbed, or artificial, in a rock-crushing
machine, should break down any "overhanging" bits, and
rocks usually do not have internal porosity large enough to
show up in a tomograph that uses the resolutions of tens of
micrometers per pixel. Many aggregates do have internal
porosity, but as long as it is smaller than the resolution of the
tomograph, it will not be seen in the particle images created
by the tomograph. If there are any of these features in the X-
ray tomographic images, the spherical harmonic analysis
process will create a "valley" from the internal bubble to
the real surface, since encountering the bubble surface first
as a line segment proceeds from the center of mass will
cause it to be interpreted as the real particle surface. The
signature of this happening will be a significant difference
between the digital volume and the volume as computed
from the spherical harmonic expansion. All the examples of
aggregates that will be shown in this paper are star-like, as
judged from the original tomographic image, and did not
have internal porosity.

Once a star-like particle has been obtained, and surface
points RiI{ej,<p) found, then spherical harmonic analysis (the
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3-D equivalent of 2-D Fourier analysis) can be applied. The
key equation in the spherical hannonic analysis process is
the following, where r(9,<I» is any smooth function defined
on the unit sphere (0::; 9 ::;1t, 0::; <1>::; 21\) [34-36]:

OC 11

r(9,cj» = L L all/l1r;~'(9,cj»
11=0 /11=-11

(9)

Many properties of the shape can be computed once the
spherical harmonic expansion is known. These include
volume, surface area, mean and Gaussian curvature both
at a point of the surface and integrated over the surface, and
the moment of inertia tensor, as defined below. The volume
and moment of inertia can also be computed directly from
the digital image by counting voxels.

The equation for the volume of the shape in polar
coordinates is particularly simple and is given by:

For these assumptions, the spherical expansion exists and
converges. In our case, r(e,<!» is given numerically by
(ej,<!>j.Rij). The function Y,,:,(e,<!» is called a spherical har-
monic function, and is given by:

1"1/"(9.
v= Jo ?sin(e)drded<j>

where the integral is over all angles and for values of r
between the origin at the center of mass and the surface,
r(6,(j)), which is given by the computed expansion ofEq. (9).
The r integral can be analytically perfonned, and the
resulting integral is then, in tenDS of the function r(6,(j)),

1( (2n + 1)(/1 -m)!
) ?:;'(COS(e))eim,

y:'(e,<!»=y 41T(n+m)!

(10)

The equations for the surface area and integrated curva-
tures involve some auxiliary terms that are defined in
differential geometry. These are given below [21}. A useful
way of denoting points on the surface of the particle is by
the vector X, which is the Cartesian coordinates of surface
points. The components of X (XI =x, X2=Y, X3=z) are
similar to those given in Eq. (8), and derivatives of X are
denoted by a subscript.

There are eight auxiliary quantities that are useful in
analyzing surfaces, and they are all built out of components
of X and the surface normal vector n, which is given by:

The functions P;'(x) are called associated Legendre
functions, and are a set of orthogonal polynomials found
in quantum mechanics [35] and many other fields.
Appendix A lists the associated Legendre functions up to
order n = 8. In this case, x=cos(9). Values of higher order

associated Legendre functions can be found using recursion
relations [34]. These recursion relations are available in
user-ready Fortran programs like DXLEGF, a part of the
SLATEC numerical package [37]. Using explicit formulae
for the associated Legendre functions up to n = 8 helps give

more accuracy to this recursion process, hence the listing
herein. Using explicit formulas up to higher values of n
would be still more helpful, but the algebra to calculate
these quickly becomes tedious.

The computed surface points are then used to calculate
the coefficients anm, which depend -on both nand m
according to the following definition:

14)

-+ -+
A Xe X X'"
n--
-!Ye x~r21t

anm = Jo 1" d<l>desin(e)r(e, <I> )r;~'*

The differential surface area element, dA, which is the
area of the patch of surface at r<O,<j», is given by:where the asterisk denotes the complex conjugate. Choosing

each angle to correspond to the points of a Gaussian
quadrature makes evaluation of these integrals straightfor-
ward. In 3-D, a 120-point Gaussian quadrature was used for
each angle, so that Eq. (Ii) was evaluated by summing over
1202 = 14,400 points. In some cases, a 240-point Gaussian
quadrature, with 57,600 points, was used.

A set of coefficients, once determined, then serve as a
complete, within numerical error, mathematical character-
ization of the aggregate particle. Much of the later sections
of this paper examines error analysis of how well the
expansion works for simple shapes, by direct numerical
comparison to analytically known quantities, and by visual
apd numerical comparison to the original random digital
particles from the tomograph.

(15)

The parameters E, F, and G are given by:

-+ -+
E=Xo.Xe

-+ -+
F=Xo'Xq,

G=Xcb'Xq, 16)
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The parameters L, M, and N are: The parameters E, F, and G are given by:

E=~~ ~

L= -Xe .ne

F=rfjr

., .,."G =~ + r-sm~e
<D (21

N=X.J,o,z,

(17)

Since the function r(6,<j» is known in terms of a
spherical harmonic expansion, and the Cartesian coordi-
nates of the surface are known in terms of 1-(6,<j», all the
above derivatives can be taken and the results for all the
various surface parameters given in terms of derivatives of
r(6,<j». In the following, these derivatives of r(6,<j» are
denoted by the notation:

r = r{9.,<I»

ar(9, <1»

The parameters L, M, and N involve vector products of
the derivatives of the components of X and 11 (see Eq. (17)).
The components of 11 and derivatives of the components are
fairly complicated, so that the explicit forms of L, M, and N
are not given in the text. The derivatives of the components
of X and 11 are listed in Appendix B, however. Eq. (17) can
then be used to write out the equations for L, M, and N, and
numerically evaluate them and the values of other quantities
that depend on them.

The local mean curvature H is defined as the arithmetical
mean of the two principaJ curvatures at each point on the
surface [21], and is given by:

H = !!;!.V ..:: GL -2FM ,-, ,

2(EG -F2)
= H(8, q» (22)= rfj

ae
The Gaussian cuf\'ature K, which is another measure of
surface curvature, is the geometric mean of the two principal
curvatures at each point on the surface:~~

8<!>

LN-M:
EG-

K=

F1=K(6,<!»

(23)
&r(6,<I»

-~-
= rq)(j>

The mean curvature, averaged over the surface and
weighted by the differential surface element, is defined here
as h, where:

&r(9, <1»

W =rfM!

*1

1" HdA. (24)

&r(9, <1»

8<1>89
(18)= rl!JH = rtj,p

The actual functional fonn of these derivatives, in tenns of
the spherical hannonic expansion (Eq. (9) are given in
Appendix B.

The surface area SA is an integral over e and <I> ofihe
differential surface element in Eq. (15). The parameter S,
using the spherical hannonic expansion, is:

The parameter h has units of inverse length, since the
mean curvature H has units of inverse length. If h is then
inverted, the resulting length depends on the size and shape
of the ob.iect considered. One should note that the term
"integrated mean cuT\rature" is often referred to in the
literature as Eq. (24) without the normalizing factor of
SA -I [38].

An interesting propelty of the Gaussian curvature, when
similarly integrated over the surface, is that:

s = r[~ + ~sin2(9) + ?sin2{e)JI {19)
I fk=- KdA=1 (25)

41t s

when the object under consideration is topologically
equivalent to a sphere. This is the case for the star-like
aggregate considered here. "Topogically equivalent to a
sphere" means if the object were made out of very pJiant

so that the surface area SA is:

SA = 12" 1" r[r;, + r~sin2(e) + rsin2(e)]1/2dfJdlj) (20)
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rubber, it could be defonned, without ripping or puncturing,
into a sphere. Eq. (25) is then a very useful quality control
check for the spherical hannonic expansion procedure.
Also, one should be able to make a judgement of when
"enough" tenDS in the expansion have been computed, by
when this criterion is fulfilled.

The tenDS of the moment of inertia tensor Iii' where i,j= 
1,2,3, are given by [7]:

(26)1;;= p(r)d3r(bij? -X;Xj)

where p(r) is the density of the object, bij is the
Kronecker delta (zero for i rf j and 1 when i = n, the

integral is over the entire particle volume 1-; and Iji=Iij. If
the mass density of the object is uniform, so that p =M/V
(total mass divided by total volume), then using the
definition of the polar coordinates in Eq. (8), and
perfonning the r integral like in Eq. (13), the I II integral,
for example, transfonns to:

be a part of the ellipsoid if its center were inside the
analytical limits of the ellipsoid.

Fig. 8 shows the volume and surface area for a 5:1
prolate ellipsoid as a function of the number of spherical
harmonic coefficients used (in terms of N). The solid lines
are the exact analytical result for an ellipsoid with axis
dimensions, in terms of voxel length, of (21, 21, 105). The
expansion results become very close to the exact analytical
results by aboutN= 12. Fig. 9 shows, for the same ellipsoid,
the values of 111 and 133' The graph also shows h -1, which
is a combined measure of the average size and shape of the
object. Again, the results basically become equal tQ the
exact analytical results by about N= 12. Although not
shown, the value of k stays very close to 1 (much less than
1% difference) for all values of N up to 24.

It is important to note that the spherical harmonic
coefficients are being generated from the digital realization
of the ellipsoid, not the exact formula. By using the exact
formula for an ellipsoid centered on the origin and aligned
with the coordinate axes,

xl r i1-+-+-=
02 02 c2

11
(28)

where again 20=21 and 2c=105, one can easily show that
the exact value of 1'(6,<1» is given by:

The remaining components of the moment of inertia tensor
can be found in Appendix B.

Even though the result of Eq. (25) exists for any
aggregate shape that would be considered, it is important
to have other checks as well, to establish the limitations and
perform error analysis on the spherical harmonic expansion
procedure. This error analysis is carried out next using
various analytical shapes.

r(9, <1» = a2c{a2c2sin2(9) + a4cos2(9)]- (29)

Since 1"(6,<1» is a function of 6 only, this implies that
the only spherical harmonic coefficients that are non-zero

5. Error analysis using ellipsoids 30000

One can analyze the limitations of the spherical hannonic
shape analysis method, as developed in this paper, by
applying it to shapes for which all the properties of interest
are known analytically. A sphere is a known shape, but its
analysis is trivial, since only the coefficient °00 is non-zero
when a spherical hannonic expansion like Eq. (9) is carried
out for a sphere. An ellipsoid, however, has many non-zero
values for its coefficients, and has known analytical results
for its properties. Ellipsoids of revolution in particular were
used, as there exists closed-fonD solutions for the properties
of these shapes in tenDS of elementary functions [38-40]
(see Appendix C). The shapes used were a 5:1 prolate and a
1:5 oblate ellipsoid of revolution. By this is meant ellipsoids
with axes in the ratio of 1:1:5 and 5:5:1. Various digital
versions, using different digital resolutions, were made of
these shapes and the numerical procedures tested on them.
Only results for the prolate ellipsoid will be shown, as the
results were similar for the oblate ellipsoid. Each ellipsoid
was centered on a voxel center, and a voxel was counted to

25000

20000
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5000

0
3010 15

N
20 250 5

Fig. 8. The volume and surface area of a 5:] prolate ellipsoid of revolution
as a function of the number of spherical harmonic functions, N, used in the

expansion. The expansion was made from a digital image of the ellipsoid
that was 2] x 2] x ] 05 pixels in extent. The solid lines are the exact result

for a continuum ellipsoid.
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Fig. 9. The two independent components of the moment of inenia tensor
(described in text) and the reciprocal of the surface-area-weighted
integrated mean curvature for a 5: I prolate ellipsoid of revolution. ploned
as a function of the number of spherical harmonic functions, N. used in the
expansion. The expansion was made from a digital image of the ellipsoid
that was 21 x 21 x 105 pixels in extent. The so!id lines are the exact result

for a continuum ellipsoid.

Fig. 10. The volume and surface area ofa 5:1 prolate ellipsoid of revolution
as a function of the number of spherical harmonic functions, N, used in the
expansion. The expansion WIIS made from a digital image of the ellipsoid
that was II x I I x 55 pixels in extent. The solid lines are the exact result
for a continuum ellipsoid

results in the spherical hannonic expansion? A similar
analysis is perfonned. but with coarser resolution digital
ellipsoids, comparing the spherical hannonic-computed
quantities with their exact analytical counterparts.

Fig. ]0 shows the volume and surface area for a 5:1
prolate ellipsoid as a function of the number of spherical
hannonic coefficients used (in tenDS of N), for an ellipsoid
that now has axis dimensions, in terms of voxels, of
11: 11 :55. The expansion results become very close to the
exact analytical results by about N= 12, although there is a

500

have m = O. And since l-(e,<I» is even in e, only ana with 11

even are non-zero. This is found to be approximately true
for the numerical results; which are generated from the
digital image of the (2], 2], 105) ellipsoid. not the exact
value of 1-(e).

Table] shows the values of 0(11,0) vs. 11 for the numerical
and the exact analytical results (generated using the exact
value of r). One can see, as N gets into double digits, an
increasing amount of disagreement between the exact and
numerical results. The disagreement should increase for a
coarser resolution ellipsoid image and decrease for a finer
resolution image.

The above was an analysis of the error incurred when
using a varying number of coefficients on a fixed digital
resolution image. One also has to address the question of
changing digital resolution on the computed shape param-
eters of particles, such as volume and surface area. What is
the resolution needed, for a given number of spherical
harmonic coefficients, for a digital object to give accurate

400

200Table 1
The exact and numerical values of the am) coefficients in the spherical
harmonic expansion for an ellipsoid of revolution with axes in the ratio

21:21:]05

100
0 5 10 15

N
20 25 30

52.0237
19.7127
9.9545
5.5475
3.2408
1.9461

].]899

52.1800
19.6905
9.9199
5.5526
3.2673
1.9885
1.1228

0.3
-0.1
-0.35

0.1
0.8
2.2

-5.6

0 000

2 D2 (I

4 D40
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8 D.o

10 010 II

12 012 (I

Fig. II. The volume and surface area ofa 5:1 prolate ellipsoid of revolution
as a function of the number of spherical harmonic functions. N. used in the
expansion. The expansion was made from a digital image of the ellipsoid
that was 5 x 5 x 25 pixels in extent. The solid and dashed lines are the

exact result for a continuum ellipsoid.
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they were spheres, the equivalent ratio would be 1.5. For an
aspect ratio of 20, the oblate ratio is 1.085 and the prolate
ratio is 1.371.

How the prolate ratio changes with shape is hard to see
intuitively. The range of variation for the oblate shapes is
easier to see. As an ellipsoid of revolution becomes very
oblate, its surface area approaches the surfaces of two circles
(see the oblate surface area formula in Appendix C). The
digital area of a circle is very accurate [33], and so the ratio
should go to unity in this limit, and vary between 3/2 and 1
in between the sphere and extreme oblate limit.

Now that the accuracy of the spherical harmonic tech-
nique has been analyzed, one can go on to illustrate its use
on images of real aggregates.

6. Some results on real aggregates

small amount of "drift" upwards past the exact quantities
for higher values ofN. Fig. 11 shows the same quantities,
but for an ellipsoid with axis dimensions of 5:5:25. It is
interesting to note that there is a flat part of the graph
starting again at about N= 12. The spherical harmonic
results go si~ificant1y above the exact lines as N increases
beyond about 20. If one were to stop at N= 12, the volume
would be off by 5% and the surface area would be too high
by about 8%.

One can analyze the lowest resolution ellipsoid data in
several ways. First, the digital volume is itself inaccurate at
this resolution. For this ellipsoid, which has axis dimensions
of 5:5:25, the exact volume is 327.25. The digital volume is
349. For N= 12, the volume calculated using the spherical
harmonic expansion, which was itself taken from the digital
image, is only off from the digital volume by -1.4%.
Second, one can examine the integrated Gaussian curvature
of Eq. (25) to see at how high a value of N should the
spherical harmonic expansion be trusted. By N?; 14, the
value of k is more than 2% different from 1. So the "best"
results for this shape are at N = 12, which agrees with the flat

part of the graph. Also, it is clearly seen that the spherical
harmonic expansion faithfully follows the digital image
shape, not the analytical shape. Since in the case of images
of aggregates derived from X-ray tomographs, only the
digital image is available, this fact is comforting.

When considering the surface area of digital images in
the past [43], it was found that the digital surface area,
obtained by counting voxel faces, was too high. For a
sphere, it is too high by a value of about 3/2. For many
random pore structures, not based on a sphere, this value
also holds true [44]. However, by examining Table 2, one
can see that the ratio of the digital surface area to the true
surface area does depend on the shape of the ellipsoid,
oblate, or prolate, but only weakly on the resolution used, at
least down to the lowest resolution shown in the table. But,
as could be seen in Fig. 8, the spherical harmonic expansion
gave a surface area that was quite close to the exact value
for the prolate ellipsoid. So, in this case, there is higher
accuracy in using the expansion than in correcting the
digital surface area, since the correction is not universal,
but depends on the ellipsoid shape. For example, if the
aspect ratio was 1 for both prolate and oblate shapes, so that~

Table 2
The digital and exact surface areas and their ratio for three oblate and three
prolate digital ellipsoids of different resolutions

Shape Ellipsoid axes Digital SA Exact SA Ratio of digital

SA to exact SA

Prolate
Prolate
Prolate
Oblate
Oblate
Oblate

5:5:25
11:11:55
21:21:105
25:25:5
55:55:1 ]

]05:105:2]

3
15
55
]0

51
]8,9

1.422

1.395
1.390
1.287
1.285
1.287

Real aggregate shapes were obtained via the burning
algorithm from Fig. 6. Visual comparisons will be made
first between numerical image data obtained directly from
the X-ray tomograph and images of particles that have
been reconstructed from the spherical harmonic expan-
sion.

Figs. 12 and 13 show side-by-side views of real particles
(mottled dark gray) taken directly from the X-ray tomo-
graph, and the corresponding reconstructed particle (light
gray). By "reconstruction" is meant that an image rendering
program was used to triangulate the particle surface as
defined by the spherical harmonic expansion. The image
pairs can be seen to match each other closely in both figures.
How the spherical harmonic expansion effectively interpo-
lates the surface can be qualitatively seen in these image
pairs. This simple visual comparison is reassuring, but not
conclusive, as to the accuracy of the spherical harmonic
expansion on random shapes.

A more quantitative study can be done of the random
particles shown in Figs. 12 and 13. But, the most important
question in this analysis, which must be addressed first, is
the following: what is the "right" answer against which the
spherical harmonic analysis is to be compared? There are no
analytically correct quantities with which to compare as was
the case for ellipsoids, except for the result of Eq. (25),
which is true for all shapes considered herein.

Only the digital volume of the original image exists
against which to compare the spherical harmonic-derived
volume. The moment of inertia tensor can also be computed
using the centers of the voxels to numerically evaluate Eq.
(26). In general, terms involving volume integrals are easily
computed for the digital shapes by performing the appro-
priate sums over the voxels.

However, terms that are calculated by surface integrals
are difficult to compute for digital images. The surfaces
of digital images are composed of square tiles oriented
along the coordinate axes (digitally rough), and overcount
the surface area by some amount up to a factor of 3/2, as

446
2]]8
7694
1382
6678

24,366

13.7
18.3
33.7
73.6
96.4
38.8
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Fig. 12. Comparing the digital image taken directly from the original X-ray tomograph (mottled gray) (digital volume=9l75 voxels), with the spherical
harmonic expansion reconstruction (shiny gray). A slight surface texture has been added to the tomographic image in order to see the digital detail more clearly

was discussed above. It is real.lY not possible to integrate
over a digital surface without using some kind of inter-
polation scheme. The spherical harmonic expansion essen-
tially interpolates the digital surface. If there were to be a

physical measurement of aggregate surface area, the
number computed using the spherical hannonic expansion
would be better to compare with rather than the digital
measure of surface area, as has been seen previously. Of

Fig. 13. Comparing the digital image taken directly from the original X-ray tomograph (mottled gray) (digital volume=9061 voxels), with the sphericaJ
harmonic expansion reconstruction (shiny gray). A slight surface texture has been added to the tomographic image in order to see the digital detail more clearly
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Fig. ]5. The volume, nonnalized by the particle volume of 906] voxe]s for
the particle shown in Fig. ] 3. and the value of k, as a function of the number
oftenns, N, used in the spherical harmonic expansion. The two k curves are
Gaussian quadratures of 120 and 240 points used for all aspects (surface
determination, calculation of spherical harmonic coefficients, calculation of
particle properties) of the spherical hannonic expansion calculation.

to N= 25 when the 240-point quadrature was used. Surpri~-
ingly, the volume was relatively insensitive to the differinF
number of quadrature points, so only the l20-point case is
shown. This example shows how the integrated value of the
Gaussian curvature can be used for "quality control" of the
mathematical analysis.

course, the value of k must be unity for any random or
nonrandom shape aggregate like those considered here.
Because of these facts, it is only meaningful, in the
following, to compare spherical harmonic results for
,'olume and 1ij, since they are computed via volume
integrals, and k, since it is independent of shape, to their

digital equivalents.
With these limitations in mind, one can proceed to do

similar calculations with the real particles as with the
ellipsoids, looking at the effect of the number of spherical
hannonic tenDS used and at the number of Gaussian quad-
rature points used to originally compute the surface analysis
(surface interpolation) and spherical harmonic coefficients,
and then used to compute the various properties of the
particle considered. These two sets of Gaussian quadratures
are kept equal to each other, and are varied together below.

First, consider the particle shown in Fig. 12. One can
compute the components of the moment of inertia tensor
using the spherical hannonic expansion, as a function of the
number of terms used in the expansion. Fig. 14 shows these
components, as well as the "exact" numbers computed
directly from the digital image. By the time N gets past
12 or so, there is quite good agreement (1%) between all
five pairs of terms. The term 122 is not shown, as it was
similar in ,'alue to 133. Even the negative term, 113, show~
good agreement bet\'-'een digital calculation and spherical
harmonic expansion.

Fig. 15 shows the results for the volume and k for the
particle shown in Fig. 13, as a function of the number of
tenDS taken in the spherical harmonic expansion. The
volume has been nonnalized by the "exact" digital volume.
Both a 120-point and a 240-point Gaussian quadrature were
used to compute the volume and k integrals. The value of k
deviates significantly from unity by N = 10, for the 120-

point Gaussian quadrature, but is close to unity all the way

7. Future ,,'ork and discussion
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C 13~
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Fig, 14, The components of the moment of inertia tensor, for the panicle
shown in Fig, 12, as a function of the number of spherical harmonic terms,
N, used in the expansion of the panicle shape, The solid lines are the
components as calculated directly from the X-ray tomographic digits]
image, and serve as the "exact" check on the spherical harmonic resul1

This paper has shown that the technique of acquiring 3-D
particle images via X-ray tomography, extracting the indi-
vidual particles computationally from the image, and ana-
lyzing the particle in terms of a spherical harmonic
expansion, can completely mathematically characterize the
shape of random panicles. Using the expansion, one can
systematically build aggregate databases, similarly to how
cement image databases are being built [41] inside the
Virtual Cement and Concrete Testing Laboratory [42].
These databases can be used to analyze the aggregate
particles from a certain quarry or made by a certain process,
making use of the quantitative shape information that comes
from the spherical harmonic expansion.

One must remember the limitations of the technique,
balancing the digital resolution of the original tomographic
image against the number of Gaussian quadrature points
used to determine the surface and spherical harmonic
coefficients and to calculate the various particle properties.
Careful analysis of these effects leads to estimates of the
uncertainties involved in the process.

One can also estimate what is the smallest aggregate
particle that can be handled with the X-ray tomographic
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shape has been used for satellite orbits and the shape of the
earth ("'-' 1 07 m in size), for the shape of asteroids ("'-' 104
m in size), and for the shape of molecular orbitals
("" 10 -J 0 m in size). The size scale of the application

discussed here, aggregate shapes, lies in between these
extreme length scales. But, in all these applications, only
the size scale and physical problem differs-the mathemat-
ical techniques are the same. So it is rather satisfying to
use these techniques at the size scale of aggregates
employed in concrete. The combination of X-ray tomo-
graphy and spherical harmonic analysis allows the routine
3-D analysis of aggregate shapes, completing the multi-
scale picture of "particle" shape for a very wide range of
length scales.
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Appendix A. List of associated Legendre functions

Letx=cos(e) and s = ~. The associated Legendre
functions P,,"'=P,,"'(x) are listed below, for n=O, 8 and
m = 0, n, in Table 3 (n = 0, 5) and Table 4 (n = 6, 8). The

Table 3
List of associated Legendre polynomials from n =0 to n = 5

I
x
s

¥3~- I)
3xs

3(1 -~)
~[x(S~ -3)]
-«Sx2 -1)oS'
lSx(1 -~)

ISs3

~3SX4 -30~ + 3)

«7~ -3x)oS'
~iX2 -IXI -~)
-IOSXS3

IOSS4

~[x(63x4 -70~ + IS)}

1i{s(2Ix4_14~+I)]
19j'[x(1 -~)(3~ -I)]

19j'[s3(9x2 -I)]
94SXS4

94Sss

2
2
2
3
3
3
3
4
4
4
4
4

5
5
5
5
5
5

0
I

2
0
I

2
3
0
I
2
3
4
0

2
3
4
~

resolution available. Suppose that the resolution of the X-
ray tomographic unit is x,. micrometers per voxel edge
length. From the ellipsoid work carried out above, the
smallest particle, in terms of voxels, that can reasonably
approximate the shape of a real particle, is probably about
5 -1 0 voxels on a side. Taking 5 as the lower limit, the size
of the particle is at most 5x,. IJ.In in extent. If x,. = 50 1J.In, then
the smallest particle that can be analyzed is 250 ~m in size,
corresponding to a standard mesh size between no. 100 and
no. 50. This is a small sand particle, in terms of usual
aggregate classifications, but not the smallest routinely
encountered.

In an X-ray tomographic apparatus, the resolution x,. can
be reduced, but at the expense of using a smaller sample.
Roughly speaking, whatever the physical size of sample is.
the 3-D tomographic image will be N3 in size, where N is
typically 512 or 1024. So the value of x,. is just the sample
size divided by N. Decreasing the sample size will decrease
the image resolution, but at the expense of having to use
smaller aggregates. To acquire images of the entire aggreg-
ate range used in concrete, coarse to fine, would probably
require at least two samples, one large and one small.

The first and second proposed use of the spherical har-
monic technique, as discussed in the introduction, was to
analyze and classify the shapes of individual particles and
compare their shape quantitatively to performance properties.
This can now be done. A range of aggregate images can be
captured via X-ray tomography, and the particles acquired
and stored in a database automatically using the modified
burning algorithm. A spherical harmonic expansion can be
generated for each one, and the expansion coefficients
analyzed and correlated versus performance properties, since
they are an exact measure of shape. Much more research
needs to be done in this regard, since this paper only makes
the technique available-applications need to be carried out.

The third proposal was to use the analyzed shapes to
build models using these particles in a similar way to how
spheres and ellipsoids could be handled before. This task is
not yet complete. What mainly needs to be done is to be
able to take two particles, place them at arbitrary locations
and at arbitrary rotations, and then decide whether or not
these two particles overlap. The mathematics of placing and
rotating particles is contained in Ref. [21], and so just needs
to be implemented for this program. Deciding whether two
particles overlap, which is necessary for building up real
concrete models, is spmewhat harder and remains to be
worked out. Some insight will come from analyses of
ellipsoidal contact functions [16-18], which are mathemat-
ical functions that give an unambiguous answer, > 1 or < 1,
whether two ellipsoids overlap or not. This task is achiev-
able, as in principle all the information about the surface is
analytically contained in the spherical harmonic expansion.
Progress has been made in accomplishing this task, and will
be reported in a forthcoming publication.

As has been seen from the literature, the spherical
harmonic expansion technique for reconstructing particle
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Table 4

List of associated Legendre polynomials from n" () to n" f cx; n
r""" =:):= L -m2anmy;{e,cJ»

n=O m=-n

.

3
4

~
II -(n -m + 1)p;:~I]eimCIJ
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7

tJ

7
0
]
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5
b

7
"

~ ~ QnnJnnl[( ( )2 29) nII1 rIM! = L.., L.., ~ n + I + n + I COS £n
n=O m=-n sm 9

-2cos9(n -m + I )(n + 2)P:+l
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B.2. Surface normal and surface vector quantitie.\

associated Legendre functions with m = -M < 0 are simply

given in terms of the equivalent functions with M>O
according to:

The components of the unit surface nonna] n are:

nx = S-I[rr.;,sin<j) -rrAsin6cos6cos<j) + r2sin26cos<j)]

P': =p;M = (-l)M~~P'!
(n +M)! n (30)

n." = S-I [-n-",cosQ> -n-esin8cos8sin<j> + ,.2sin28sin<j>J

Appendix B. J\1athematicaJ quantities for sphericaJ
harmonic shape anaJ)'sis

nz = S-I [rrllsin26 + ,':cos6sin6]

-;
and the derivatives of the surface vector X areB.lo Derivatives of the surface function r(9, <1»

--t
ax
a</>

The vaJues of the various derivatives of the surface
function r(G,<j» are given beJow, in tenDS of the sphericaJ
hannonic expansion and using the recursion reJations given
in Ref. [34}, where the auxiJiary parameter fnm is:

= (rcjJsinecoscj> -rsinesincj>, rq,sinesincl>

+ rsinecos<!>, r.,cose)

-+
ax
00

(31) = (rcos6cos<jJ + rAsin6cos<l>, rcos6sin<jJ

+ resiDe sincp, recose -rsine)
Note thatfor negative values of m, one uses the defi-

nitions of associated Legendre functions with negative
values of m given above in Appendix A. The derivatives of the components of Ii with respect to <I>

are given by the following formula, where i=x, y, z:

ani I { ( rq> Ci )]~ = S- Qi -hi -;- + ""S2
cx; n

rcj> = L L (im)anmY:(G,cj»
n=O m=-/1
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where the functions ai, bi, and Ci are: c] = r(jJred, + rerl*1sin2e + n-esin2e + ~sinecose

+ r'- sine cose
Q) = ~,sjn<j> + rrd>cf,sin<j> + rrcj,cos<j> -r"cj,rEjsjn6c_os6cos<j>

-rrQd,sin9 cos9 cos<j> + rresin8 cos9 sinqJ
°2 = -rtj,rf!cos<j> -"6(f)cos<j> -ri sin9cos9sin<j>

-rroosine cos9 sin<j> -rre COS2e sin<j> + rresin2e sin<j>+ 2rrd-sin6cos<j>

+ 2rrf\sin2esin<!> + 2~sinecosesin<!>
-?sin26sin<l>

b, = -rr~cos<!> -n-Asinecosesinq, + ,.zsin2esinq,hi = n-cj,sin<!> -rr/lsin9cos9cos<!> + ?sin~6cos<p

C2 = C
c] = ,.2 (rq,rdHj> + rereq,sin2e + rrq,sin2e

0, = -r~cos<jJ -rrcj)~cos<l> + rr6sin<jJ -r@rf!sin9cos9sin<jJ
°3 = ~sin26 + rrw;sin26 + 2rresin6cos6 + 2rresin6cos6

+ ,.2cOS26 -,.2sin26

b3 = rrf\Sin2e + ,.2sinecose
-rre.;,sinO cosO sin<j> -rresinO cosO cosdJ

+ 2rrmsin20sin<j> + ,.2sin2OCOSCP

b2 = -rr6COS<!> -rrfjsin6cos6sin<!> + ?sin26sin<!> C3 = CI

C2 = CI
B.3. Moment of inertia tensor

Q3 = rd>rl!sin10 + rr9<tlSin20 + 2rrrl,sinOcosA

b3 = rresin29 + ,.2sin9cos9

(37)C3 = C]

The derivatives of the components of fI with respect to e
are given by a formula similar to that for q,:

ani
Be

I [ (re Ci)]= S- Qi -hi -; + S2 (38)

where the functions ai, hi, and Cj are:

OJ = rerq,sincj> + rreq,sincj> -~sinecosecos<jJ

-rr~sin~cosecoscj> -rreCoS2eCOS<jJ

+rresin2eCOScj> + 2rresin2eCOS<jJ

1):1 = *121\ 1'" ~(e,<I»COS(e)sin2(e)COs«I»d<l>

+2~sjnecosecos<l>

bt = rr.;,sin<!> -rrAsin6cos6cos<!> + 7-2sin26cos<!>

After completing the r integral in Eq. (26), the compo-
nents of the moment of inertia tensor, for a uniform density
particle, in terms of the spherical harmonic expansion, are:
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Appendix C. Exact equations for ellipsoids of revolution

This appendix gives the exact analytical fonnulae for
ellipsoids of revolution for volume, surface area, moment of
inertia, and integrated mean curvature [38].

For any ellipsoid with semi axes a, b, and c, the volume is
simply given by V=(4/3)1{abc. In the case of ellipsoids of
revolution, where a = b, this becomes V=(4/3)1{a2c.

For the other three quantities, let T] = cIa. For prolate

ellipsoids, 11> I, while for oblate ellipsoids, T] < I. For prolate
ellipsoids, the surface area is:

SA = 21ta2 (41 )

while for oblate ellipsoids:

SA = 2'1\"a (42)

The integrated mean curvature for the prolate ellipsoid,
without the surface area normalization, is:

hSA = 21ta['f] +('f]2- 1)-1/2cosh-I('f])] (43)

while for the oblate ellipsoid, it is:

hSA = 2'1ta('TJ+ (1 -'TJ2)-1/2COS-I('TJ)] (44)

The moment of inertia tensor, because of the symmetry
of an ellipsoid of revolution with unifonn density, has only
three non-zero elements, 11 J = 122 and 133. If semi axis c is
along the z direction, and semi axes a = b are along the x and

y directions, then 1 J 1 corresponds to spinning about the x- or
y-axis, and 133 corresponds to spinning about the z-axis.
Spinning around the z-axis is the easiest way to spin for the
prolate ellipsoid, and the hardest way to spin for the oblate
ellipsoid. The diagonal elements of the moment of inertia
tensor are given in tenDS of the semiaxes. For both kinds of

ellipsoids,

2MM 2 2) 2III =h2 =S(a +C ,133 = 5 (a) (45)
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