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Abstract

The shape of aggregates, from whatever source, plays a crucial role in determining the properties

of the composite material in which they are embedded (e.g., asphaltic or portland cement

concrete). To properly characterize this three-dimensional shape, three-dimensional information

is needed. We show how this kind of information can be acquired via x-ray computed

tomography. Mathematical “burning” algorithms can be applied to a multi-aggregate image to

extract individual particles of various sizes. A spherical harmonic mathematical analysis can then

be used to completely characterize the three-dimensional shape of each extracted aggregate.

This real shape information can then be incorporated into algorithms for simulating the rheology

of suspensions (fresh concrete or other materials) and into algorithms for simulating the structure

of portland cement concrete.

______________________________________________________________________________
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Introduction

Crushed and naturally rounded aggregates come in all shapes and sizes.  Since aggregates

comprise the bulk of the volume in concrete, whether the matrix is asphalt or portland cement

paste, the aggregate shape will play a crucial role in determining the properties of the composite

material in which they are embedded [1,2].  Two-dimensional (2-D) information, as obtained

from microscopy or other imaging systems, is often biased, especially in the case of aggregates

with low sphericity, and is not sufficient to properly characterize the three-dimensional shape.

True three-dimensional (3-D) information is needed.

In this paper, we show how this kind of detailed 3-D information can be acquired via x-

ray computed tomography (CT).  Mathematical “burning” algorithms can be applied to a multi-

aggregate image to extract individual particles of various sizes. A mathematical analysis based

on spherical harmonics can then be used to completely characterize the three-dimensional shape

of each extracted aggregate.  This real shape information can be incorporated into algorithms for

simulating the rheology of suspensions (fresh concrete or other materials) and into algorithms for

simulating the structure of hardened portland cement concrete and other composites.

The following sections briefly describe the process of acquiring, analyzing, and using the

3-D aggregate information in a process mixing real images and computational techniques. This

research is part of a larger effort, which unites the computational and experimental materials

science of building materials to develop standards and tools useful to industry and to predict

material performance.  This process is exemplified by the Virtual Cement and Concrete Testing

Laboratory [3], which unites the experimental capabilities of leading industries with the

experimental and computational expertise of the National Institute of Standards and Technology

(NIST) to develop a software tool for concrete that will make possible the engineered design of

new concretes in a similar spirit to how the pharmaceutical industry now designs new drugs.
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The 3-D shape of the aggregate particles in a real concrete sample was captured using an X-ray

CT system located at the Turner Fairbank Highway Research Center.  Concrete prisms with a 75

mm x 75 mm cross sectional area were cast.  The mix designs for all the prisms had a water/cement

mass ratio of 0.5, with quartz sand used as the fine aggregate, and limestone used as the coarse

aggregate.  An industrial CT system operating at 420 keV and a 512 channel digital detector [5] was
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Particle Acquisition and Shape Analysis

Given that a 3-D multi-aggregate image has been obtained, one can proceed to extract individual

particles.  Ideally, the image should be taken of a system with a fairly low volume percent of

aggregate, say 20 %, so that on the average, most particles are not near each other.  The image in

Fig. 1, however, was of a real concrete at a practical aggregate volume percentage (around 60

%).  Because of this fact, when the 3-D image was made, many particles appeared to be in

contact.  This is also due partly to the fairly coarse resolution of the image, as described above,

which would make many close but not touching contacts to appear as real contacts.  Also, the

very nature of x-ray CT causes the exterior of particles to be a little bit “fuzzy”, so a large

aggregate volume will result in some artificial “touches.” This situation can be handled with a

simple erosion and dilation algorithm [6], which breaks apart the tenuously connected

aggregates, without significantly changing their size.

We next describe the “burning” algorithm that was used to identify single particles.  It is

quite analogous to that algorithm used in percolation studies, both in digital, pixel-based models

[7-9], and in continuum model studies [10].  Imagine a 3-D cube of pixels, where each pixel is

labeled either matrix (1) or particle (2).  Assume for now that no particle is touching any other

particle.  We will also stay away from the boundaries, so that the proper boundary conditions are

not a consideration.  Scan through the image until a pixel is found that has label “2.”  Now find

all nearest neighbors (back-front, left-right, up-down) of this pixel that also have label “2.”  Save

the locations of these pixels, and then again find all neighbors of these pixels that also have the

same label.  Iterate this process until no more pixels of label “2” can be found.  The collection of

pixels found constitutes a single particle.  Figure 2 illustrates this process in two dimensions.

The center of mass of this collection of pixels is computed, simply by finding the average

of the (i,j,k) labels defining the pixels.  Taking this point as the origin for the particle, the pixels

making up the particle are then stored in terms of their (i,j,k) label relative to the center of mass

of the particle.

A solid particle can be described by the function r (θ,φ), where r is the distance from the

center of mass point to the particle surface along the direction specified by the two angles θ,φ

from spherical polar coordinates.  The unit vector along this direction is sinθ cosφ i + sinθ sinφ j

+ cosθ k, where i, j, and k are the usual Cartesian unit vectors.   The function r is numerically
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determined at about 10,000 choices of the angle pairs, using the pixel collection taken from the

tomograph.

The function r can be analyzed using spherical harmonics, a mathematical method often

encountered in quantum mechanics [11] and in shape analysis of molecular orbitals [12,13]. For

any function f(θ,φ), defined on the surface of a sphere (0 < φ < 2π and 0 < θ < π), the spherical

harmonics form a complete set [14]:
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where ),( φθm
nY  is a spherical harmonic function of order (n,m) and a(n,m) is a numerical

coefficient [14].  Typically n=20 to n=30 is a high enough order to go to in the series above to

capture the shape of most particles.  Work is underway to determine the optimum range of n.

A simple way of seeing how well the spherical harmonic series captures the shape of a

real particle is displayed in Fig. 3.  This figure shows three sets of real particles, as taken from

the interior of Fig. 1, in yellow, alongside the shape as derived from the spherical harmonic

expansion, in purple. It is clear, even from these 2-D images, that the spherical harmonic

expansion does indeed capture the shape of the real particle well.  Seeing the particles in a 3-D

imaging package confirms this belief. The actual size of the long dimension of the particles was

about 10 mm to 20 mm.

There are two main results of this particle analysis process.  First, many functions of the

particle shape and size can now be analytically calculated, including volume, surface area,

moment of inertia, and others.  Second, these particles now have a fairly simple mathematical

form, like that of a sphere or ellipsoid, so that they can be incorporated into a model like the hard

core soft shell model for concrete microstructure [15,16].  This will allow real aggregate shapes

to play a role in models that before used only simple shapes like spheres and ellipsoids [17].  An

additional benefit will be the ability to construct databases of 3-D aggregate shapes

corresponding to various aggregate sources.
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Rheology Simulation

The computational modeling of complex fluids systems like suspensions presents a significant

challenge, largely because it is difficult to track the boundary between a fluid and a solid phase.

Recently, a new computational method called dissipative particle dynamics (DPD) has shown

great promise for modeling such systems [18-20].

We have carried out extensive simulations to validate the DPD approach for modeling

suspensions. For example, our rheology codes recover the Einstein prediction of the intrinsic

viscosity for the case of a very dilute suspension of spheres. We have also tested our algorithms

for the case of a dense suspension of monosize spheres. While there is no accepted theory for

predicting the rheological properties of such suspensions, we have found good agreement with

experimental data [21,22]. Figure 4 shows the reduced viscosity vs. Peclet number for different

solid fractions. The Peclet number describes the competition between hydrodynamic forces due

to shear and Brownian motion. For Pe > 1, hydrodynamic forces dominate, while Brownian

forces dominate for Pe < 1.  In most problems of interest to the aggregate industry, the Peclet

number is much bigger than 1, so that hydrodynamic forces dominate. Experimental data are also

included in Fig. 4 from studies of silica particles [23]. Note the good agreement over a wide

range of solid fractions.  The experimental and computational uncertainties are given in the

caption of Fig. 4.

While our initial studies have focused on validating our DPD-based algorithms for the

case of the flow of suspensions composed of uniform shaped objects (e.g. single size sphere and

ellipsoids), we have begun to study the role particle size distribution plays in controlling the

rheological properties of suspensions.  Figure 5 shows a multi-size spherical aggregate system

where the aggregates are approximately consistent with an ASTM coarse aggregate specification

[24].  We are also applying the DPD code to studying the rheological properties of realistic

shaped particles based on tomographic images of concrete, as in Fig. 1 above. Once the

tomographic image has been processed with the burning algorithm to identify each particle, the

individual digitized aggregate images can be used as templates to construct a set of rigid body

inclusions that may be input into the DPD-based rheology code.  Studies of such systems are

currently being pursued.
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Conclusion

We have shown how a combination of x-ray tomography, image analysis-type techniques, and

spherical harmonic analysis can give a complete 3-D mathematical characterization of an

aggregate particle.  Detailed information about the particle can be obtained from this description.

The derived mathematical form of the real particle also allows incorporation of the particle into

various algorithms, allowing real particle shape to be used in models that before only were able

to use simple shapes like spheres and ellipsoids.  Databases of 3-D aggregate shape can be

constructed, characterizing various aggregate sources. The rheology of a suspension of real

particles can now be simulated with good accuracy, which should result in a useful

computational tool for concrete.
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Figure 1:  Reconstructed x-ray computed tomograph of a concrete specimen (270 x 270 x

270 pixels)(about 108 mm x 108 mm x 108 mm).  This cube has been “cut” from a larger

image, so that the flat faces of the aggregates at the surfaces are artificial.
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Figure 2:  Showing a model particle in two dimensions (gray) embedded in a matrix

(white).  The black pixel shows the first particle pixel that is found by the burning

algorithm.  The pixels found at each iteration are labeled a-i.  Nine iterations were

necessary to “find” the complete particle.

Figure 3: Three different sets of particles, comparing the real particle (yellow) as taken

from the tomograph of Fig. 1 and the particle as re-created from its spherical harmonic

expansion (purple).  The long dimension of each particle is about 10 mm to 20 mm.
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Figure 4:  Log-log plot of experimental and computational viscosities vs. Peclet number.

The particle volume fraction is denoted as φ. The lines represent experimental data from

sheared suspensions of silica particles (dashed line φ=0.60, solid line φ=0.48, dotted line

φ=0.44) and the points correspond to data from the DPD simulation (plus signs φ=0.60,

open circles φ=0.50, filled squares φ=0.46, and filled triangles φ=0.40).  Note that there are

no experimental data to compare to the φ=0.50 computational data.  The experimental

uncertainties are approximately 10 %, and there is approximately 5 % uncertainty in the

computational results (due to statistical uncertainty).



13

Figure 5: A multi-size spherical aggregate system where the aggregate PSD is

approximately consistent with an ASTM C33 coarse aggregate specification. The picture is

from the dissipative particle dynamics unit cell.


