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A finite-element method is used to study the elastic properties of random three-
dimensional porous materials with highly interconnected pores. We show that
Young’s modulus, F, is practically independent of Poisson’s ratio of the solid phase,
vs, over the entire solid fraction range, and Poisson’s ratio, v, becomes indepen-
dent of v, as the percolation threshold is approached. We represent this behaviour
of v in a flow diagram. This interesting but approximate behaviour is very similar
to the exactly known behaviour in two-dimensional porous materials. In addition,
the behaviour of v versus vy appears to imply that information in the dilute porosity
limit can affect behaviour in the percolation threshold limit. We summarize the finite-
element results in terms of simple structure—property relations, instead of tables of
data, to make it easier to apply the computational results.

Without using accurate numerical computations, one is limited to various effective
medium theories and rigorous approximations like bounds and expansions. The accu-
racy of these equations is unknown for general porous media. To verify a particular
theory it is important to check that it predicts both isotropic elastic moduli, i.e. pre-
diction of Young’s modulus alone is necessary but not sufficient. The subtleties of
Poisson’s ratio behaviour actually provide a very effective method for showing differ-
ences between the theories and demonstrating their ranges of validity. We find that
for moderate- to high-porosity materials, none of the analytical theories is accurate
and, at present, numerical techniques must be relied upon.

Keywords: structure—property relationships; theoretical mechanics;
porous media; elasticity; percolation

1. Introduction

A central goal in the study of materials is to understand and quantify the relationship
between the internal structure of materials and their properties. Structure—property
relationships are used for designing and improving materials or, conversely, for inter-
preting experimental relationships in terms of microstructural features. Ideally, the
alm is to construct a theory that employs general microstructural information to
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make accurate property predictions. A less ambitious, but more likely, goal is the
provision of structure—property relations for different classes of microstructure.

Significant progress towards this goal has been made for the linear elastic prop-
ertics of random porous media. Relevant reviews of the topic have been made by
Hashin (1983) and Torquato (1991). If the pores are isolated, can be approximated by
spheroids and occupy low-to-modcrate volume fractions, a variety of effective medium
and rigorous approximations provide good predictions. These types of materials can
be termed dispersions. However, many porous materials have a more interconnected
or interpenetrating structure. Even at low porosities, the pores can form large clus-
ters, while at higher porosities the pore phase can be macroscopically interconnected,
giving a bi-continuous structure. Currently, no practical theory exists that is guaran-
teed to accurately predict the properties of random interpenctrating porous media.
For example, the predictions of effective medium theories were 25% higher than data
for a porous model with just 20% porosity (Roberts & Garboczi 1999). In this paper
we address this deficiency by computing empirical structure property relations for
porous media with a wide variety of microstructures.

A number of theoretical formulae have been proposed that are relevant to interpen-
ctrating porous media. For example, effective medium theorics (Hashin 1983) were
developed to extend exact results for dilute inclusions to higher volume fractions.
Certain microstructures were shown a posteriori (Milton 1984) to have properties
that correspond to the theories, but the physical structures are very unusual. A dif-
ferent class of theorics is rigorously based on realistic microstructural information.
These are the classic variational bounds (Milton & Phan-Thien 1982), which only
provide an upper bound for porous media, and the recent expansion of Torquato
(1998). The microstructural information nceded to evaluate the results is quite dif-
ficult to obtain, so in practice the bounds and expansion are evaluated at ‘third
order’. Even with limited information, the upper bounds and expansions are thought
to give good predictions for dispersions (Torquato 1991, 1998, §3.5). The accuracy
of either class of theorics is not possible to determine a priori for realistic inter-
penetrating porous media, so it is difficult to use the results to either improve a
material or interpret cxperimental data. This uncertainty has limited the applica-
tion of the results. Nevertheless, effective medium theories are commonly used, and
the rigorous theories are attractive because of their relatively simplicity (compared
with computation). Therefore, it would be extremely useful to establish the con-
ditions and realistic microstructure types for which the theories do make accurate
predictions. To address this question, on a model-by-model basis, we compare various
well-known theories to our numerical data. However, to verify a particular theory,
it is important to check that it predicts both isotropic elastic moduli, i.e. prediction
of Young’s modulus alone is necessary but not sufficient (even though this is usually
the only parameter measured!). The subtleties of the Poisson ratio behaviour actu-
ally provide a very effective method for showing differences betwecn the theories and
demonstrating their ranges of validity. These subtleties will be described later in the
paper.

The macroscopic clastic properties of two- and three-dimensional isotropic porous
materials can be characterized by two independent constants, Young’s modulus (E)
and Poisson’s ratio (v). In general, we expcct the elastic constants to depend on
properties of the solid matrix (which we denote with subscript s), or E = E f(p, )
and v = g(p, vs). Here, p is the relative density or solid volume fraction, and the form
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Linear elastic properties of porous materials 1035

of the dimensionless functions f and g depends on microstructure. In two dimensions
it has been observed that f and g have two remarkable properties for arbitrary
porous materials (Day et al. 1992). First, Young’s modulus is independent of v, or
f(p,vs) = f(p). Second, if the solid fraction decreases to the percolation threshold pe,
the effective Poisson ratio converges to a fixed point independent of the solid Poisson
ratio, or g(p, vs) — v1 as p — p.. Both results were subsequently proved analytically
by Cherkaev et al. (1992) (CLM) and Thorpe & Jasiuk (1992). Christensen (1993)
has pointed out that although E cannot be independent of v, in three dimensions,
it is nearly so for materials with dilute spheroidal voids over a restricted range of
Poisson’s ratio 0 < v, < 0.5. Variational bounds and approximate self-consistent
theories showed a similar weak dependence of E on vy (for 0 < v < 0.5) over
the full range of solid fraction 0 < p < 1. Since the CLM theorem, which is only
true in two dimensions, was used to prove the existence of the fixed point for v
in two dimensions (Thorpe & Jasiuk 1992), this behaviour is not thought to hold
rigorously in three dimensions. However, it is interesting to examine how well these
inherently two-dimensional results, both for F and for v, do approximately hold in
three dimensions.

2. Theoretical structure—property relationships
(a) Dilute limits and effective medium theory

One of the few exact structure-property results in three dimensions is for a dilute
concentration of spheroidal inclusions with bulk and shear moduli K; and G; dis-
persed in a solid matrix with moduli K and Gs. In this case, where unsubscripted
variables stand for effective quantities (Hashin 1983),

K = K, + ¢ P*(K; — K,), (2.1)
G = Gs + Q% (G ~ Gy). (2.2)

Here, ¢; = 1 — p denotes the concentration (volume fraction) of inclusions and, for
the case of spherical inclusions,

3K, + 4G,
a 3K + 4G,

si

Qsi o Gs + F B Gs 9K, + 8G,

—IsT s Lo TSI T O 2.3
Gi+Fq’ ’ 6 Ks+2G§ ( )

The form of P and @ for spheroidal inclusions (Wu 1966) is given by Berry-
man (1980). Young’s modulus and Poisson’s ratio are obtained via the rclations
E=9KG/(3K + G)and v = (3K — 2G) /(6 K + 2G). When the inclusions are pores,
v exhibits the interesting property that v = 0.2 when v, = 0.2 for any value of E. This
has been shown before (Garboczi & Day 1995). In two dimensions, the equivalent
value is %

To adapt the dilute formulae to the casc of a finite concentration of inclusions,
a number of proposals have been made. The approximate equations that result are
usually called cffective medium theories. The most common approximation is the
so-called self-consistent method (SCM) of Hill (1965) and Budiansky (1965). In this
model, the equations of elasticity are solved for a spherical inclusion embedded in a
medium of unknown effective moduli. The effective moduli K and G are then derived.

In the dilute case, the embedding medium is just the matrix. The Hill-Budiansky
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result can be stated as (Berryman 1980)
(PR — K,) 4+ . P™(K, — K,) =0, (2.4)
ARG — GL) 4+ Q™ (G — G,) =0, (2.5)

where K, and G. denote the effective moduli and P*™ and @*™ are given in (2.3).
Here, ¢, = 1 — ¢; = p. Numerical methods are usually used to solve for K, and G,
(see Hill (1965) and Berryman (1980) for details). Garboczi & Day (1995) showed
that, for spherical zero-moduli inclusions, a value of the matrix Poisson ratio v = 0.2
gave v = (.2 for all inclusion concentrations that gave non-zero cffective moduli. In
d dimensions, the critical value of v was found to be 1/(2d — 1).

Two other forms of the SCM are relevant to our numerical results. When the
inclusions arc voids, the SCM predicts a vanishing modulus for ¢; > 0.5, although
many materials remain rigid above this threshold. To address this problem, Chris-
tensen (1990) derived an alternative SCM based on concentric spheres embedded in
a matrix of unknown moduli. The result is complicated and not reproduced here.
Wu (1966) also proposed an SCM for spheroidal inclusions, which we will employ.

The differential effective medium (DEM) theory, reviewed by McLaughlin (1977),
provides an alternative to the SCM using a similar philosophy. Suppose that the
effective moduli of a composite medium are known to be K, and G,. Now, if a
small additional concentration of inclusions is added, the change in K, and G, is
approximated to be that which would arise if a dilute concentration of inclusions
were added to a uniform homogeneous matrix with moduli K, and G,. This leads

to a pair of coupled nonlinear differential equations, which must be solved to find
K*(¢;) and G*(¢y),

dK, G — K .

— p* , K* G = = Ay, .
el (¢; = 0) = K., (2.6)
dG* i Gi - G* o o
W =T Gla=0)=G, (2.7)

Zimmerman (1994) has shown that v, = 0.2 is also a fixed point for the DEM theory,
for any value of inclusion concentration.

Milton (1984) and Norris (1985) have shown that the predictions of the DEM and
SCM correspond to the properties of materials with spheroidal inclusions at widely
different length-scales. These types of structures are not commonly observed (Chris-
tensen 1990). Therefore, except in the dilute limit, neither method can be accurately
used to interpret experimental results, or guide the improvement of materials because
of the unrealistic microstructural assumptions underlying each kind of theory. Never-
theless, the results are widely used, and until recently (Torquato 1998) were the only
predictive theories used for moderate- and high-porosity random interpenctrating
porous materials.

(b) Ezact bounds and expansions

There are scveral kinds of exact bounds that have been derived for the elastic prop-
crties of composite materials (see the reviews of Torquato (1991) and Hashin (1983)).
If the properties of each phasce in a composite are not too dissimilar, the bounds can
be quite restrictive. For porous materials, however, the bounds on Poisson’s ratio
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arc no more restrictive than the range guaranteed by the non-negativity of K and G
for isotropic materials (=1 < v < 0.5), and the lower bound on F reduces to zero.
The upper bound on FE is sometimes found to provide a reasonable approximation
of the actual property. The most commonly applied bounds for isotropic composites
are due to Hashin & Shtrikman (1963). The upper bound F,, is

E. p v (1 + 1) (13 — 15v4)

E., 1+C1-p) o 2(7 — bu)

Thus the Hashin—Shtrikman bounds imply 0 < F < F, and —1 < v < 0.5, and only
depend on microstructure via the volume fraction.

It is possible to improve the bound if more statistical information, in the form of N-
point correlation functions, is available for the composite. The two-point correlation
function p({z)(r) represents the probability that two points, a distance r apart, will
fall in the solid phase. The three-point correlation function p(3>(7', s,t) is equal to
the probability that three points, distances r, s and t apart, all belong to the solid
phase. Bounds that depend on this information are referred to as three-point bounds.
The form of the three-point bounds (Beran & Molyneux 1966; Milton & Phan-Thien
1982) is quite complex, but to show their qualitative behaviour we report the result
for a porous medium where the solid matrix has a Poisson’s ratio of v, = 0.2. In this
case, the upper bound becomes

Ba_ _ » o B0ETC (2.9)
Es 1+C(1-p) 5¢(9n = ¢)
The three-point bounds on Poisson’s ratio arc —1 < v < 0.5. The ‘microstructure
parameters’ ¢ and 7 are determined by (Milton & Phan-Thien 1982)

oS 1 o0 d 1 ) , (2) . (2) ;
¢ = 9 2/ —S/ du Py(u) [ p™® (r, 5, 1) — prpTs) : (2.10)
2pq Jo v Jo s S p

p
where t* = 7% + 5% — 2rsu and Py(u) = 5(3u® — 1) and Py(u) = §(35u? — 30u® + 3)
are Legendre polynomials. A useful numerical listing of these parameters for various
systems is given by Torquato (1991).
Torquato (1998) has recently derived predictive formulac for arbitrary composites
in the form of exact expansions. For a porous medium, where the solid matrix has a
Poisson ratio of vy = 0.2, the results simplify to

(2.8)

E P 74¢ + 67

LA N S Sl 2.12

Es p+(1-pC 5C(5¢ + 3n) (2.12)
poLly €= o -y (2.13)

5 25¢(6¢+3n) p+C-p)

A clear advantage of the bounds and expansions is that they incorporate micro-
structural information, so can be applied to arbitrary composites. In principle, it
should be possible to increase the accuracy of both methods by incorporating more
statistical information. Howcever, in practice, third-order information is only available
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Figure 1. Boolean models of porous media. (a) Overlapping solid spheres.
(b) Spherical pores. (¢) Oblate spheroidal pores (aspect ratio four).

for a restricted number of models, and it is very difficult to include fourth- or higher-
order information. In the truncated forms given above, the results are thought to
be accurate for dispersed inclusions (Torquato 1991, 1998, § 3.5). Their accuracy for
interpenetrating porous media is not known.

In this section we have described a range of well-known theories for predicting
the elastic properties of random porous materials. We have shown that for materials
with interconnected pores, none of the theories can be confidently used to predict
properties or interpret experimental structure—property relationships. Therefore, in
order to apply the theories, it is necessary to check their range of validity. We do this
by computationally studying the properties of several well-known models that span a
wide range of physically observed microstructure. These numerical results also reveal
behaviour that, to a good approximation, is quite similar to rigorous two-dimensional
behaviour. The next section introduces the kinds of microstructure considered.

3. Computational methods

(a) Statistical models of microstructure

We focus on two classes of statistical models for which it is possible to evaluate the
microstructure parameters (¢, ) that occur in the above rigorous theories. Some of
the models are based on spheroidal inclusions, and should be relevant to the effective
medium theories. The models are also known to mimic some realistic materials (see,
for example, Torquato (1991) and Roberts & Knackstedt (1996)).

The most well-known class of statistical models is generated using the ‘Boolean’
scheme, in which a model is generated by placing objects at random (uncorrelated)
points in space. Since the objects are uncorrelated, they can overlap. We consider
an overlapping solid sphere model, and its inverse, the overlapping spherical pore
or ‘Swiss cheese’ model (see figure 1). The latter is obtained by creating pores in a
solid matrix. These models have a long history (Serra 1988), and the microstructure
parameters ¢ and 77 have been evaluated (Helte 1995; Torquato 1991). For comparison
with the SCM and DM, we also considered oblate spheroidal pores with an aspect
ratio of four (see figure 1). The correlation functions of this model have not been
computed to our knowledge.

These Boolean models have percolation thresholds, when the objects are considered
to be one phase and the background a sccond phase. For the overlapping-sphere
model, starting with a matrix and adding spheres, the sphere phase percolates at
a volume fraction of ca.0.29 (Garboczi et al. 1995), while the matrix, which starts
out continuous, loses continuity above a sphere volume fraction of ca. 0.97 (Torquato
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Figure 2. Three-dimensional Gaussian random field modcls.
(a) Single cut. (b) Two cut. (¢) Open-cell intersection. (d) Closed-cell union.

1991). When the random objects are prolate or oblate spheroids, the percolation
threshold of the objects has been computed (Garboczi et al. 1995), but not the
matrix, which is a much harder computational problem. The percolation threshold
for an oblate object of aspect ratio four (width divided by thickness) is ca. 0.2, which
is less than that for spheres. The ‘isoperimetric’ theorem conjectures that for Boolean
models with a convex Euclidean shape, the sphere gives the largest volume fraction
of overlapping objects at the percolation threshold (Garboczi et al. 1995).

It is possible to generate other realistic microstructure models using the level-
cut Gaussian random field (GRF) scheme. One starts with a Gaussian random field
y(r), which assigns a (spatially corrclated) random number to each point in space.
A two-phase solid-pore model can be defined by letting the region in space where
—00 < y(r) < 3 be solid, while the remainder corresponds to the pore-space (fig-
ure 2a). The solid fraction has a percolation threshold of ca.0.13 (Roberts & Teub-
ner 1995). Since the model is symmetric, the pores become continuous at ca. 0.87.
An interesting ‘two-cut” GRF model (Berk 1987) can be generated by defining the
solid phase to lie in the region —3 < y(r) < § (figure 2b). The solid phase of the
two-cut model remains connected at all volume fractions. i.e. the percolation thresh-
old is zero. This is because the solid walls of the microstructure do not scparate
into pieces as the volume fraction decreases. but instead become thinner. Open- and
closed-cell models can be obtained from the two-cut version by forming the intersec-
tion (figure 2¢) and union (figurce 2d) sets of two statistically independent two-cut
GRF models (Roberts 1997). By construction, the percolation threshold of the open-
and closed-cell models is also zero. It is important to note that in no way can these
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random field models be considered as dispersions. However, at dilute porosities, the
pores do become disconnected.

The random fields on which the models are based can be entirely specified by the
field—field correlation function G(ry,72) = (y(r1)y(rs)), where (-) denotes a volume
average. We only consider isotropic and stationary random fields, in which case
G(ry,r2) = g(r), with r = |r; — r3]. We employ the function

o (-DBE

The parameter d controls the position of the maximum in the correlation function,
which roughly governs the cell size, while the values of the correlation length ¢
and parameter d effect the properties (e.g. roughness) of the pore-solid interface in
the level-cut GRF model. We choose the length-scales as £ = 6/ = 1.91 ym and
d = /6 = 2.45 um, which corresponds to a surface area to total volume ratio of
1( um)?/(um)?® when 3 = 0 for the single-cut GRF model.

To evaluate the bounds, it is necessary to derive the two- and three-point correla-
tion functions of the models. This has been done for the single (Roberts & Teubner
1995) and two-cut (Roberts & Knackstedt 1996) models, although the results are
quite cumbersome and not repeated here. The results can be generalized for the
open- and closed-cell models as follows. In the usual way, we define an indicator
function @(r) that is unity in the solid and zero in the pore space. The volume
fraction and correlation functions can be defined by

p:<9(1“)>7
P = pP(ry) = (O(r)O(r))),
P = O (riy, v i) = (O(r)O(15)O(ry)),

where r;; = |r; — 7;|. The fact that the correlation functions only depend on the
distance between points reflects our restriction to statistical stationarity and isotropy.
Now suppose we have two independent, but statistically identical, random materials
having indicator functions &(r) and ¥(r) with volume fraction ¢, and correlation
functions qz(]) and qz;’k If we form the intersection set @(r) = $(r)¥(r), the volume

fraction is just
p = (D(r)T(r)) = (B(r))(F(r)) = ¢°.
Similarly, the correlation functions are

2 3 3
P =(¢7)? and Pl = (a2

These equations can be used to calculate the correlation functions of the open-cell

GRF model, which is defined by the intersection of two two-cut GRF models. For
the closed-cell GRF model, the union set is formed by taking

O(r) = o(r) +¥(r) — &(r)¥(r).

In this case, the volume fraction is p = ¢(2 — ¢} and the correlation functions are

2
Py =20 +2(1 - 29)¢ + (¢1)?, (3.2)
3 2 3 3
pg]l)f - 2(%(_7 + ql(k) + q](k)>(q + qz(jll) + 2( — 3(])(]1(]2
3 2 2
~ (a5 — 2 e} + a0 d + alial). (3.3)
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Table 1. The microstructure parameters that appear in three-point bounds and erpansions
of the bulk and shear moduli, and the electrical conductivity
(The results for solid spheres were previously calculated by Torquato (1991). Since the spherical
porcs arc the ‘inverse’ of solid spheres, the parameters are related by ¢ =1 ~¢, ' =1 —n for
;o
p=1-p)

single-cut two-cut open-cell closed-cell solid spherical
GRF GRF GRF GRF spheres pores
—_—~— —_——~— —_—— —_——~— —_——— —_——

p ¢ 7 ¢ n ¢ 7 ¢ ] ¢ n ¢ n

0.05 0.11 007 089 0.73 048 0.34 0.03 0.04 040 0.30
0.10 0.16 012 084 065 051 036 089 073 006 0.07 044 034
0.15 0.20 016 082 061 0353 039 086 069 0.09 011 048 0.38
0.20 025 021 080 059 056 042 084 067 011 0.15 0.52 042
0.30 033 030 079 060 061 048 082 0.65 0.17 022 058 049
0.40 0.41 040 079 063 066 055 081 0.66 0.23 0.29 065 0.56
0.50 050 050 080 067 070 062 080 068 029 0.37 071 0.63
0.60 058 060 082 072 075 069 081 072 035 044 077 0.71
0.70 067 070 084 078 080 076 081 076 042 0.51 083 0.78
0.80 075 079 087 084 085 083 082 081 048 0.58 0.89 0.85
0.90 084 088 090 091 089 090 084 08 056 066 094 093
095 088 092 091 093 091 092 085 089 060 070 097 0.96

The use of intersection and random sets to extend other types of microstructural
models has also been cmployed by Jeulin & Savary (1997).

We used the quadrature method of Roberts & Knackstedt (1996) to evaluate ¢
and 7) for the models described above (excluding the oblate pore model). The results,
presented in table 1, have to our knowledge not been previously reported for the
open- and closed-cell GRF models. Application of the parameters is not restricted
to porous materials. Data in the table can be used to bound the elastic moduli and
electrical or thermal conductivity of composite (i.c. non-porous) materials (Torquato
1991). The parameters ¢ and 7 have also been evaluated for several other models
(Jeulin & Savary 1997; Torquato 1991).

(b) Finite-element method

To compute the elastic moduli of the various microstructure models considered,
we used a finite-element method that is specially designed to handle arbitrary voxel-
based models (Garboczi & Day 1995). A detailed description of the method, and
the actual codes are available (Garboczi 1998). In principle, the method provides an
exact solution to the equations of elasticity for a body subjected to a macroscopic
strain. The resultant average stress in the body is used to calculate the various clastic
moduli. In practice, the accuracy of the results is limited by discretization errors
(how well a continuum model can be resolved) and statistical noise (the sample size
is never ‘infinite’). The number of voxels used depends on computer memory and
speed. In this study, a maximum of 128 x 128 x 128 voxels are used. The memory
requirements are approximately 230 bytes per voxel. There was clearly a trade-off
between small well-resolved samples and large poorly resolved samples. For each of
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Fligure 3. Finite-element data and lines of best fit to equation (1.1) for the four GRF models:
single cut (M), two cut (A), open cell (o) and closed cell (V) (semi-log axes). Data for the two-cut
and closed-cell models are nearly coincident.

the models, we conducted a series of tests to find the best sample size. The sample
size was approximately five times the pore size. The diseretization errors tended to be
around a few per cent, and 5-10 independent samples were used to reduce statistical
errors to the same order.

4. Elastic property results

For porous materials there exists a percolation threshold (which is zero for some
models), below which the structure becomes disconnected. As the threshold is
approached, the elastic propertics becone dependent on small tenuous connections,
which are increasingly difficult to resolve. Moreover, for models with a non-zero per-
colation threshold, percolation theory implics that the connections are separated
by an increasing distance, which leads to large statistical errors. Both these factors
place a lower limit on the volume fractions at which we could accurately estimate
the clastic properties. For models with a finite threshold, we only considered volume
fractions such that p — p. > 0.1.

(a) Young’s modulus

Young's modulus of the four GRF models and three Boolean models is shown in
figures 3 and 4, respectively. Each data point represents an average over five samples.
About 10* hours of CPU time, on various workstations, were used to generate the
results presented in this paper. Rather than tabulating the data, the results are
reported in terms of simple empirical structure—property relations. We found that
the data of cach of cach model could be described by the form

£ _(PTPo 5 (4.1)
Es 1—po) o
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Figure 4. Finite-clement data and lines of best fit to equation (4.1) for the three Boolean
models: spherical pores (0O). oblate spheroidal pores (4), and solid spheres (o).

Table 2. Simple structure property relations for seven different model
porous materials considered in this paper
(For p > pruin, we find that the data can be described by E/E. = [(p—po)/(1 —po)]™ to within
a few per cent. For the last three models, the data can be extrapolated using the power law
E/Es = Cp" for p < puax- Poisson’s ratio can be approximately described by relation (4.3) with
paramecters v1 and pp. In certain cases (*), formulac (4.4) and (4.5) should be used if more than
a rough estimate is needed.)

P < Prmax D > Pmin v
model figure n C Dmax m Po Prin vy D1
solid spheres™ la 223 0348 0.50 (.140  0.528
spherical pores 1b 1.65  0.182 0.50 0.221  0.160
oblate pores” le 225 0.202  0.50 0.166  0.396
single-cut GRF 2a 1.64 0.214 0.30 0.184  0.258
two-cut GRF 2b 1.58 0.717 0.50 2.09 —-0.064 0.10 0.220 —0.045
open-cell GRF 2¢ 3.15 4.200 0.20 215 0.029 0.20 0.233 0.114

closed-cell GRF™ 2d 1.564 0.694 0.40 2.30 -0.121  0.15 0.227 —-0.029

A nonlinear least-squares fitting program was used to determine pg and m. The
fitting parameters, obtained for a solid Poisson’s ratio of v, = 0.2, are reported in
table 2. The relative error for any data point is generally around a few per cent
or less. Note that the fitting parameter py is not the percolation threshold p.. For
example, pg = 0.26 for the single-cut GRF model, but p. =~ 0.13 (Roberts & Teubner
1995). Clearly, large errors would occur if equation (4.1) were used to extrapolate
the data.

By definition, the two-cut, open-cell and closed-cell GRF models have no perco-
lation threshold (i.e. po = 0). A plot of E/E; versus p on bi-logarithmic axis (not
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Figure 5. Variation of Young’s modulus with solid Poisson’s ratio at all solid fractions. Data arc
shown at all volume fractions studied. Overlapping spheres and oblate spheroids (o), overlapping
solid spheres (O), two-cut and closed-cell GRF models (o), single-cut GRF model (A) and
open-cell GRF model (V). For comparison, the results of the SCM at p = 0.9 (solid line) and
p = 0.6 are shown (dashed line).

shown) revealed a straight line for small p, indicating that data for these models can
be extrapolated using the equation

~ Cp". (4.2)

Sl

The value of C' and n for each model are given in table 2.

In figures 3 and 4, the slight variance observed at each volume fraction cor-
responds to varying the matrix Poisson ratio. Evidently, as anticipated from the
rigorous two-dimensional results, Young’s modulus is nearly independent of the
solid Poisson ratio, i.e. E(p,vs) = E{p). To quantify the weak dependence, we plot
E(p,vs)/E(p,vs = 0.2) versus vs for the four GRF models and three Boolean models
in figure 5. For 0 < 15 € 0.4, the relative variance is less than 4%, and we presume
that the variance will not be significantly larger for 0.4 < v < 0.5. Since virtually
all solid materials have a solid Poisson ratio in the range 0 < vy < 0.5, we conclude
that Young’s modulus can practically be regarded as being independent of the solid
Poisson ratio. As v decreases, the maximum variance increases to 15% at v, = —0.3.
In the graph, we also show the SCM for spherical inclusions. The weak dependence
of E(p,vs) on vy in the data is qualitatively similar to the SCM theory.

In figure 6, we make a quantitative comparison between data for overlapping spher-
ical and oblate pores and the relevant effective medium theories. For p > 0.9 (the
dilute limit), all the theories give similar predictions and conform with the data. For
both pore shapes, the DEM performs significantly better than the SCM, providing a
reasonable prediction for p > 0.6. This might be anticipated from the close similarity
between the definition of the models and the assumptions of the differential method.
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Figure 6. Comparison of various theories to FEM data for overlapping spherical pores (a) and
oblate spheroidal pores (b): SCM (dotted line), DEM (solid line), Christensen’s SCM (dashed
line), and Wu’s SCM (dot—dashed line).

In both the models and DEM, the volume fraction is decreased by adding pores that
are uncorrelated to the existing microstucture.

We compare the Hashin--Shtrikman bound, the three-point bound and Torquato’s
expansion with the FEM data in figure 7. In all cases, the data fall below the bounds.
It has been argued (Torquato 1991, §3.5) that the three-point upper bound and
expansion (Torquato 1998) will provide a reasonable prediction if the pores are iso-
lated. This is only true for the closed-cell model, and the data are well predicted by
the expansion for p = 0.5. Even when the pores are interconncected, the expansion
provides a reasonable prediction for p = 0.6 in all but the case of overlapping solid
spheres. Note that large relative differences between the expansion and data occur
at lower volume fractions (these become more evident on bi-logarithmic plots).

(b) Poisson’s ratio

In parts (a) and (b) of figure 8 we plot v(p, 1) for the single-cut GRF model as
a function of p and vg, respectively. Two striking features are evident. In (a), a flow
diagram is observed, with v(p,v;s) converging from v(1,15) = v, to a fixed point
v1 = 0.2 as p decreases. The behaviour is very similar to the rigorous behaviour
in two dimensions (Day et al. 1992). Thorpe & Jasiuk (1992) showed that though
the flow behaviour is rigorous, the actual value of the fixed point depends on the
microstructure, specifically on how material is removed to achieve the percolation
threshold. In (b), the lines, which correspond to fixed p, appear to rotate about a
‘critical’ point, which we call v*. On the flow diagram, this point would be represented
by a horizontal line, indicating that, for vy = v*, Poisson’s ratio of the porous material
does not depend on the solid fraction, or v(p.v*) = v*. Since both the behaviours
in (a) and (b) exist, evidently v* and v, must be identical.

However, the behaviour observed in (b) is not a simple consequence of that in (a).
A flow diagram can exist without all the flow lines, when plotted versus the matrix
Poisson ratio, passing through a single point. When this point exists and is found to
be on the v = vq line, it means that for a given value of the matrix Poisson ratio,
the porous body Poisson ratio is the same. As was mentioned in a previous section,
this kind of behaviour, along with the flow to a fixed point, is seen in both the SCM
and DEM effective medium theories, as well as in the spherical pore dilute limit. The
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Figure 7. Hashin Shtrikman (dashed line) upper bounds, three-point (solid line) upper bounds
and Torquato’s expansion (dotted line) versus the finite-clement data. The solid Poisson ratio
is vs = 0.2. (@) Overlapping spherical pores. (b} Overlapping solid spheres. (¢) Single-cut GRF.
(d) Two-cut GRF. (¢) Open-cell intersection set GRF. (f) Closed-cell union sct GRF.

present numerical results indicate that this behaviour appears in a realistic porous
microstructure as well.

It is important to note at this point that the value of v* is the same for cach value
of p, including the dilute limit (p =~ 1). For values of p in this range. the value of
v* is simply predicted from the dilute limit. This remarkable result implies that the
dilute limit can tell us something about the elastic behaviour at the critical point!
This is non-intuitive behaviour, and requires thought. If the result only held true for
models generated by iteratively using a single defect shape. like a spheroid, one might
guess that this shape controlled the microstructure even at porosities approaching
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Fignre 8. Poisson’s ratio v(p. vs) of the single-cut GRF model plotted against p and vy, In (a),
the intercept of the data with the vertical axis at p = 1 corresponds (o . In (b), the dashed
line shows the behaviour of a non-porous solid. the next line up (on the vy = —0.3 axis) is for
p = 0.9, and so on, up to p = 0.3. At p = 0.3, Poisson’s ratio is scen to be nearly independent
of vs. The symbols arc data points and the lines are a best fit to equation (4.3).

the critical point. But this result is true, as is shown below, for most of the Gaussian
modcls as well, which are not made from a given shape.
To a rcasonable approximation, it appears that v(p, 1) is a linear function of both
p and v. The above considerations indicate that the data can be described by the
relation
1—p
V="Us+ -
1 —pm

A least-squares procedurc was used to determine p; = 0.258 and v; = 0.184. The
function, which is shown in figure 8, is scen to provide a reasonable fit.

In figure 9, we show that Poisson’s ratio of the other six models have qualitatively
similar flow diagrams. Five of the models show a critical point (not shown) just as
in figure 8b in plots of v versus v;. In figure 10, it is scen that the closed-cell GRF
model, in contrast, does not show a critical point. However. for all six models, there
appeared to be a linear relationship between v and v,. The fitting paramecters v and
p1 for cach model are given in table 2. In three cases (parts (b), (¢) and (f)), some
nonlinearity in the parameter p is cvident, and equation (4.3) only provides a rough
fit. To obtain a better fit, we tested several generalizations of equation (4.3). The
form

(11 — vg). (4.3)

k
v =1+ ( Lop ) (11 — vg) (4.4)
1—m
was able to provide a reasonable fit of the data for overlapping oblate pores (v =
0.161, p1 = 0.041 and & = 1.91) and overlapping solid spheres (17 = 0.140, p; = 0.14
and k£ = 1.22). In the case of overlapping solid spheres, the error bars (not shown)
are significantly larger than in the other models, and on the order of 50% at the
largest porosity shown. The results are shown as a dashed line in figure 95, ¢. For the

closed-cell GRF model, the simplest form able to fit the data was

v=A(1-p)+vp+ B0 —p)+C(1-p)?), (4.5)

with A = 0.221, B = —0.210 and C' = 0.342. The results arc shown in figurcs 9f
and 10. In contrast to cquations (4.3) and (4.4), this form does not have a critical
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Figure 9. Generic flow pattern behaviour of Poisson’s ratio of porous modecls v as a function of
solid fraction p. (a) Overlapping spherical pores. (b} Overlapping solid spheres. (¢) Overlapping
oblate spheroidal pores. (d) Two-cut GRF. (¢) Open-cell GRF. (f) Closed-cell GRF. The solid
lines are numerical fits to equation (4.3). In cases (b), (¢) and (f), a better fit is obtained with
equation (4.4) (dashed line) or cquation (4.5) (dotted line).

point, and extrapolation to p = 0 gives v = A + (B + C), i.e. Poisson’s ratio does
not become independent of vy in this formula. We would expect, however, that real
data, if they could be accurately generated in this low-p regime, would indeed flow
to a fixed point. Again, we emphasize that the flow to a fixed point is probably more
generic behaviour than is the ‘rotation’” about a critical point, and indeed there is no
reason that flow behaviour need imply the critical-point behaviour.

In figure 11 we compare the SCM and DEM results to data for overlapping spheri-
cal and oblate pores. As for Young’s modulus, all the formulae work well for p = 0.9,
the dilute limit, since they are all based on the exact expression in the dilute limit.
The DEM performs reasonably well for p > 0.7, outside the dilute limit. The SCM
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Figure 11. Comparison of various theories to FEM data for overlapping spherical pores (a) and
oblate spheroidal pores (b): SCM (dotted linc), DEM (solid line), Christensen’s SCM (dashed
line) and Wu’s SCM (dot—dashed line).

theory, however, badly misrepresents the shape of Poisson’s ratio flow diagram for
most values of p, at lcast in part due to the incorrect percolation threshold built into
the SCM for spherical pores.

Torquato’s truncated expansion is compared with the numerical data in figure 12.
This expansion is truncated at the third order because of the difficulty of evaluating
the correlation functions needed for the higher-order terms. Apart from the case of
solid spheres, the predictions are generally very good for p > 0.7. Since the expansion
is not built explicitly upon any dilute limit, it makes scnse to use it to compare to
the Gaussian random field models. For the closed-cell GRF modcl, the predictions
arc very good for a larger range of p (p > 0.3). Note that the closed-cell model has
isolated pores by definition. This supports Torquato’s hypothesis that the truncated
expansion is likely to work for dispersions of isolated pores. However, even when the
pores are connected, the stress is still carried by the solid phase, which might be the
reason that the expansion seems to work well even for systems with connected pores
(S. Torquato 2001, personal communication). At high solid fractions, Torquato’s
expansion is able to quantitatively reproduce quite subtle nonlinearities in the Pois-
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Figure 12. Torquato’s expansion (solid linc) versus the finite-element data. (a) Overlap-
ping spherical pores. (b) Overlapping solid spheres. (¢) Single-cut GRF. (d) Two-cut GRF.
(e) Open-cell intersection set GRI'. (f) Closed-cell union set GRF.

son ratio plots of the different models, which are a much more stringent test of the
theory. In addition to confirming Torquato’s results, this provides strong evidence
that our FEM, model simulations and method of calculating the microstructural
correlation functions and parameters (¢ and 7) are quite accurate.

In figures 13 and 14, we show that all but one of the theoretical results exhibit
the critical-point hehaviour we empirically observed in the data. Christensen’s SCM,
which is thought to model closed-cell matcrials when the inclusions are pores (Chris-
tensen 1998), does not exhibit a critical point. In this respect, it is similar to our data
for the closed-cell GRF model. For spherical pores, the SCM and DEM have exact
critical points at v, = 0.2 (Garboczi & Day 1995). For oblate pores, Wu’s general-
izations of the SCM and the DEM have an approximate critical point at v ~ 0.14.
Berryman’s generalization of the SCM has an approximate critical point at v ~ 0.17,
in good agreement with the measured valuc of overlapping oblate pores (11 = 0.166).
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Figure 13. Critical-point behaviour of various effective medium theories. Spherical pores:
(a) SCM, (b) differential method, {¢) Christensen’s SCM. Oblate pores: (d) SCM, (e) differ-
ential method, (f) Wu's SCM.
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Figure 14. Torquato’s expansion has an approximate critical point at vy = 0.2. (a) Overlapping
spherical pores (11 = 0.22). (b) Overlapping solid spheres (11 = 0.19). (¢) Single-cut GRF
(ri = 0.21). (d) Two-cut GRF (v1 = 0.23). (e) Open-cell intersection set GRF (v = 0.23).
(f) Closed-cell union set GRF (14 = 0.23).

Torquato’s expansion revealed an approximate critical point for all six models near
v = 0.2. For overlapping spheres, and the two-cut, open-cell and closed-cell GRF
models, the prediction was accurate to within £0.01. The form (2.13), in which we
have reported Torquato’s result, shows the mathematical origin of the critical point.
At vs = 0.2, (v — 0.2) x (¢ — n), which is generally quite small (see table 1). Tt
Is instructive to lincarize Torquato’s result v = gr(p, 1) in terms of the variables
W =vs— % and @ = ¢ — n, which gives

v — vy 90 — 12(C +4)u

- 2 1,2 1), .
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This form predicts v =~ vy at pu* = 36/(4¢ + 16). which is weakly dependent on p
via ¢ and . Surprisingly, the absolute difference between v = % + p* and exact
numerical solution of v — gr(r.p) = 0 was less than 0.0015 for all models. For
18] < |u| < 1, equation (4.6) predicts v — vs x (vs — 1), which corresponds to the
cross-over behaviour in figure 14.

5. Discussion and conclusions

We have used the finite-element method to calculate the elastic properties of a
wide varicty of realistic porous media. Our data confirm that several interesting
and related results for two-dimensional materials (Cherkaev et al. 1992; Day et al.
1992) are very nearly true in three dimensions. These results demonstrate how use-
ful the study of two-dimensional elasticity problems can be to understanding morc
difficult three-dimensional problems.

We have confirmed that Young’s modulus of three-dimensional porous materials is
nearly independent of the solid matrix Poisson ratio in the physically realistic range,
0 < v < 0.5. Our conclusion supports Christensen’s (1993) analysis of Young’s mod-
ulus based on exact dilute results and effective medium theory. This simplification
allowed us to generate simple structurc—property relations for the models studied.
The results are summarized in table 2. From the empirical formula for Young’s modu-
lus and Poisson’s ratio, the bulk and shear moduli can be simply calculated. Because
the structure—property relations correspond to a known microstructure, the relations
can be used to interpret experimental data, and aid in the optimization of porous
materials.

We have shown that Poisson’s ratio of porous materials generally becomes inde-
pendent of the solid Poisson ratio near the percolation threshold. This implies that,
in this limit, the shape of the solid matrix dominates lateral expansion under uni-
axial compression, rather than the material properties of the matrix. Similar to the
case of two dimensions (Thorpe & Jasiuk 1992), this Poisson ratio flow behaviour
seems ubiquitous, but with the value of the fixed point varying with microstructure.
Of the seven models studied, the relatively stiff closed-cell model provided the only
exception to this behaviour. The high stiffness may explain why the matrix material
retains an influence on the effective Poisson ratio. Interestingly, the limiting value of
the Poisson ratio was generally close to v; = 0.2, irrespective of microstructure. This
value is predicted by effective medium theory, as was shown in this and other papers
(Garboczi & Day 1995), and as seen in figure 13. The numerical data (extrapolated
to the apparent percolation threshold) varies in the range 14 = 0.14 to 0.28.

In addition to the fixed-point behaviour, the effective Poisson ratio was generally
independent of solid fraction if v = vy (closed-cell models provided the exception).
This was clearly evident as a ‘critical’ point on plots of v versus v for different
solid fractions. When graphed against v, the porous Poisson ratio, for all values
of p considered, intersected the v = vy line at the same point, v = vy = v1. We
would conjecture that this behaviour shows that the dilute limit, in which 14 can
be calculated exactly for various shape pores, must play some role in the critical
behaviour. This is because v, = 11 = v, being an invariant for all values of p, implies
that the fixed point must be equal to the critical point. Although most of the theories
indicate a special significance for the value v = 0.2, we do not know of a physical
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explanation for this behaviour, other than the fact that this is the value that also
comes from the dilute spherical pore analytical limit.

By comparing our data with various predictions we were able to establish, on a
model-by-model basis, the accuracy of theoretical results at a particular solid frac-
tion. Since the accuracy of theoretical results is not generally known « priori, this
represents a practical advance. We showed that the differential method gave a reason-
able prediction for materials with overlapping spheroidal pores at moderate-to-high
solid fractions (p = 0.6). We also found that a recent rigorous result due to Torquato
gave reasonable predictions at p > 0.7 for all models tested, with the exception of
the overlapping solid spheres model. This model has highly interconnected pores
(the pore space is macroscopically connected for p < 0.97), which may have been
a source of greater error in the expansion. We have calculated the microstructure
parameters ¢ and 7 for four models based on Gaussian random fields. These may
also be used to evaluate Torquato’s expansion for non-porous composites. Gener-
ally, porous materials represent a worst-case scenario for predictive methods, leading
us to conjecture that the expansion will be quite accurate for composite materials
with moderate contrast between the properties of each phase. The accuracy of the
expansion at moderate and high solid fractions, using only third-order information,
provides impetus to undertake the difficult task (Helte 1995) of including higher-
order microstructural information.

US Government work in the public domain in the United States. A.R. thanks the Australian
Research Council for financial support. We also thank the HYPERCON High-Performance Con-
crete programmec of the National Institute of Standards and Technology for partial support of
this work.
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