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Abstract—Most cellular solids are random materials, while practically all theoretical structure-property
results are for periodic modelis. To be able to generate theoretical results for random models, the finite element
method (FEM) was used to study the elastic properties of solids with a closed-cell cellular structure. We
have computed the density (p) and microstructure dependence of the Young's modulus (E) and Poisson’s
ratio (PR) for several different isotropic random models based on Voronoi tessellations and level-cut Gaussian
random fields. The effect of partially open cells is also considered. The results, which are best described by
a power law Exp” (1<n<2), show the influence of randomness and isotropy on the properties of closed-
cell cellular materials, and are found to be in good agreement with experimental data. © 2001 Acta Materialia
Inc. Published by Elsevier Science Lid. All rights reserved.
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1. INTRODUCTION

Manufactured cellular materials have been developed
for a range of applications [1] (e.g. insulation, light-
weight reinforcement), and their natural counterparts
(e.g. wood) have a cellular structure that optimizes
performance for their particular requirements. The
useful properties of cellular solids depend on the
material from which they are made, their relative den-
sity, and their internal geometrical structure, It is
important to link the physical properties of cellular
solids to their density and complex microstructure, in
order to understand how such properties can be opti-
mized for a given application. Many studies have
focussed on the elastic response of periodic materials
with particular cell shapes. Equally important is the
effect of disorder (e.g. isotropy), and the interaction
between cells on a mesoscopic scale, as most real
cellular solids are not periodic. In this paper we study
model isotropic cellular solids at scales (=100 cells)
where these effects can be probed.

At low densities, experimental results indicate that
the Young’s modulus (E) of cellular solids is related
to their density (p) through the relation [1]:
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where E, and p, are the Young’s modulus and density
of the solid skeleton and p = p/p, is the reduced den-
sity. The constants C and n depend on the microstruc-
ture of the solid material. The value of n generally
lies in the range 1<n<4, giving a wide range of
properties at a given density. For closed-cell foams,
experimental studies indicate that 1<n<2. The com-
plex dependence of C and n on microstructure is not
well understood, and this remains a crucial problem
in the ability to predict and optimize the elastic
properties of cellular solids. At the local or cellular
scale, important variables include the cell character
(e.g. open or closed), the geometrical arrangement of
the cell elements (e.g. angle of intersection), and the
shape of the cell walls (e.g. curvature). At a larger
scale, the geometrical arrangement of the cells is also
crucial. The values of both C and n will depend on
whether the material is periodic or disordered.
Analysis of simple models shows that three basic
mechanisms of deformation are important for closed-
cellular solids. If the cell walls are much thinner than
the cell edges, the deformation is governed by edge-
bending. In this case, E varies quadratically with den-
sity (» = 2), and can be described by results for open
cellular solids [1]. If cell-wall bending is the mech-
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anism of deformation, Gibson and Ashby [2] have
shown that E should vary cubicly (n = 3) with den-
sity. However, the fact that 1<n<2 indicates that
cell-wall stretching (n = 1) is actually the dominant
behaviour [1, 3].

The “tetrakaidecahedral” foam model, in particular,
has been the subject of many recent studies [4-8].
The cells of the model uniformly partition space, and
are defined by truncating the corners of a cube giving
eight hexagonal and six square faces (Fig. 1). The
foam has a relatively low anisotropy {5] (E varies by
less than 10% with direction of loading), and is
thought to be a good model of isotropic cellular sol-
ids. In all cases, E was found to decrease linearly with
density (n = 1). However, real materials exhibit a
larger dependence of E on density (n>1), indicating
that periodic models do not capture salient features
of foam microstructure. It is likely that the random
disorder is responsible, and it is important to study
its influence on the properties of cellular solids.

There have been several recent studies of the effect
of disorder in cellular solids. For two-dimensional
models, variation in cell-shape leads to a variation of
4.9% in elastic properties [9], while deletion of 5%
of -cell struts decreased the modulus by 35% {10].
Similar effects of “imperfections” were seen in spring
lattices, which have some similarities to foams [11].
In three-dimensions, Grenestedt [6] showed that dis-
order decreased the Young’s modulus of the tetrakai-
decahedral foam (with 16 cells) by 10%. However,
only the pre-factor of equation (1) was affected; the
scaling exponent remained constant (n = 1). Grenes-
tedt [12] has also estimated the effect of “wavy-
imperfections” on the stiffness of a cube with closed
cell walls. If the wave-amplitude was five times the
cell-wall thickness, the stiffness decreased by 40%
compared to the case of flat faces.

From the foregoing discussion it is clear that more
complex, three-dimensional random models are
necessary to improve predictions for cellular solids
[13). There are two main problems in studying ran-
dom models. First, a sufficiently accurate model of
the microstructure must be developed. And second,
the properties of the model must be accurately evalu-

Fig. 1. The tetrakaidecahedral model, The model corresponds
to the Voronoi tessellation of a body-centered cubic lattice.
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ated. We emphasize that there are no exact analytical
calculations available for general random materials,
so that numerical methods become necessary.

In this paper we use a finite element method (FEM)
[14] to estimate the elastic properties of model cellu-
lar solids over a range of densities. The models are
generated using tessellation methods [15] and level-
cut random field models [16]. The Young’s moduli
of the models can be described in terms of simple
two parameter relations [e.g. equation (1) in the low
density limit]. The results demonstrate the effect of
microstructure, isotropic disorder, and finite density
on the elastic properties of cellular solids, including
both Young’'s modulus and Poisson’s ratio. Apart
from the small numerical errors in the finite element
method, 10% or less, the results are exact for each of
the models. Therefore, the results can be used to pre-
dict the properties of cellular solids if their structure is
similar to one of the models, or be used to accurately
interpret experimental data.

2. PRIOR RESULTS

In this section we discuss prior results for closed-
cell foams. The results illustrate, and attempt to quan-
tify, the basic mechanisms of deformation. We com-
pare the results to our FEM results in subsequent sec-
tions to illustrate the effect of disorder in muilti-
cellular models.

Christensen [17] has derived a result for a closed
cell material comprised of randomly located and iso-
tropically oriented large intersecting thin plates. The
results are,

2(7—5v,) P, v = 1+ Sv,
31-v)9 + 5v,) p,) 9 + Sy,

E
E~ )

where the subscript “s” indicates the solid phase. The
linear dependence (n = 1) of modulus on density is
typical for cellular materials with “straight-through”
elements. In this case, cell-wall stretching is the only
mechanism of deformation.

Analysis of more corplex closed cell foams is very
difficult, but computational results {4-8] have been
obtained for the closed cell tetrakaidecahedral foam
shown in Fig. 1. Simone and Gibson [5] recently
found that the Young’s modulus is nearly equal
(within 10%) for loading in the (100}, (111) and (110)
directions. For the density range 0.05<p/p,<0.20,
their results for the (100) direction were fitted with
the formula

2
I’;—wzo.sls(ﬁ) + 0.209(;’1)

which compares well with the earlier result
E100/E~0.33(pip,) [4}. For the case where the face
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thickness is 5% of the edge thickness, Mills and Zhu
[8] found E,o/E,=~0.06(p/p,)% in the density range
0.015<p/p,<0.1.

Gibson and Ashby have proposed the semi-empiri-
cal formulae

E_[pY 1
_E_z¢2(§) + (1—¢}g; vzi “)

where ¢ is the fraction of solid mass contained in the
cell-edges (the remaining fraction 1—¢ is in the cell
faces). Gas trapped in the cells can also increase the
stiffness, but this effect is usually negligible [1]. The
first term of equation (4) accounts for deformation in
the cell edges. Note that the case ¢ = 1 corresponds
to a commonly used semi-empirical formula for open-
cell solids, i.e. equation (1) with C= 1 and n = 2.
The second term corresponds to stretching defor-
mation in the cell faces. The result provides good
agreement with data for closed-cell foams when
0.6<=¢=0.8 [1]. In part, the implied relatively high
cell-edge fractions can be attributed to the fact that
surface tension forces drive mass out of the cell walls
into the edges. However, in some foams, the cell
faces are relatively thick, giving ¢ = 0.01-0.07 [8]
(note that these authors report the fraction of total
mass in the faces which corresponds to 1—¢) and we
expect equation (4) to overestimate the measured
values.

There are also several kinds of exact bounds that
have been derived for the elastic properties of com-
posite materials {18)]. If the properties of each phase
in a composite are not too dissimilar, the bounds can
be quite restrictive. For porous materials, however,
the bounds on Poisson’s ratio are no more restrictive
than the range guaranteed by the non-negativity of K
and G for isotropic materials (—1=v=0.5), and the
lower bound on E reduces to zero. Nevertheless, the
upper bound on E is sometimes found to provide a
reasonable approximation of the actual property.

The most commonly applied bounds for isotropic
composites are due to Hashin-Shtrikman {19]. These
bounds can be evaluated if the elastic properties and
volume fraction of each phase are available. The
upper bound E, is

E, _ p Y =
E-Trcasy =03 Q)
Co= (1 + v)(13—15v) ©

2(7-5v,)

Note that Cy(v, = 0.2) = 1, and 11/12=Cy;<1.006
for v,>0 (the maximum occurring near v, = 0.27).
Therefore as (p/p,)—0, E/E,~0.5(p/p,). In order to
improve the bound, it is necessary to know the N-

point correlation functions of the composite {18, 20].
These functions are generally only available for cer-
tain models to order N = 3. In this case, the bounds
are referred to as 3-point bounds.

It is interesting to compare the bound with the for-
mulae reported above. It is simple to show that equa-
tions (2) and (6) are identical as p/p,—0. This indi-
cates that, to the accuracy of Christensen’s
approximation, randomly oriented straight-through
plates provide an optimally stiff microstructure. Also
note that the semi-empirical formula given in equ-
ation (4) actually violates the bound if more that half
the solid material resides in the cell faces (¢<0.5).

3. FINITE ELEMENT METHOD

The FEM uses a variational formulation of the lin-
ear elastic equations, and finds the solution by minim-
izing the elastic energy via a fast conjugate gradient
method. The FEM we use has been especially adapted
for periodic rectangular parallelepiped digital images
(although they can be used on non-periodic images).
The algorithm handles only linear elasticity at
present, although it is not in principle restricted to
only linear elasticity.

Each pixel, in 3-D, is taken to be a tri-linear finite
element [21]. For random materials, it is much easier
to mesh using the pixels of the digital image lattice
rather than a collection of beams, plates, etc. The
digital image is assumed to have periodic boundary
conditions. A strain is applied, with the average stress
or the average elastic energy giving the effective elas-
tic moduli [18, 22]. Details of the theory and copies
of the actual programs used are reported in the papers
of Garboczi and Day {14] and Garboczi [23]. ’

Given a digital microstructure, the FEM provides
a numerical solution of the elasticity equations. The
accuracy is only limited by the finite number of pixels
which can be used (around 105 in this study). Prelimi-
nary studies indicated that about 100 cells are neces-
sary to properly simulate the macroscopic properties
of a cellular solid (which may have many thousands
of cells). We generally calculated the properties of
five samples at each density and report an average
value. The statistical uncertainty in the results is esti-
mated to be less than 10%. Note that if a foam is
regular and periodic, just one measurement on a unit
cell is sufficient.

A potentially greater source of error occurs in the
FEM when there are insufficient pixels in a solid
region to correctly model continuum elasticity. A use-
ful method of estimating these discretization errors is
to compute the properties of regular periodic foams,
since in these models there are no sources of statisti-
cal error, and there are exact solutions to which to
compare the numerical results. The foams we con-
sider have cubic symmetry, which means that the
direction dependent elastic properties can be charac-
terized by three independent constants, Cy,, C,, and
C.s, of the Hooke’s law stress—strain tensor [24]. For
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loading along the x-axis (i.e. one of the axes of
symmetry) the Young’s modulus and Poisson’s
ratio are

_ (Cyi—Ci)(Cyy + 2Cy)
(Cu + Cpr)

Q)

Cl2

Y= Ch T Cy

@®

The bulk modulus is actually independent of direction
and given by K = E,/3(1—2v,,), and the anisotropic
shear modulus (for shearing parallel to a symmetry
plane) is just C,,. The finite element codes evaluate
the C;; directly, but for simplicity we report the engin-
eering constants. :

To check the effect of resolution for the FEM we
measured the Young’s modulus (E,q) of two tetrakai-
decahedral models with edges of thickness 4 pixels
and 8 pixels, respectively. We found virtually no dif-
ference (<1%) in E,q indicating that the discretiz-
ation errors are quite small. However, the absolute
value is 15% greater than that estimated by Simone
and Gibson [5] using a specially tailored finite-
element grid. Since we have found our FEM to be
accurate for many other test cases, the origin of the
discrepancy is unclear. In related studies, we have
found discretization errors of around 10%, and we
assume this will be true for the random models stud-
ied here.

4. ELASTIC PROPERTIES OF MODEL CELLULAR
SOLIDS

4.1. Voronoi tessellations

The most common models of cellular solids are
generated by Voronoi tessellation of distributions of
“seed-points” in space. Around each seed there is a
region of space that is closer to that seed than any
other. This region defines the cell of a Voronoi (or
Dirichlet) tessellation [15]. The Voronoi tessellation
can also be obtained [15) by allowing spherical
bubbles to grow with uniform velocity from each of
the seed points. Where two bubbles touch, growth is
halted at the contact point, but allowed to continue
elsewhere. In this respect the tessellation is similar to
the actual process of liquid foam formation [25]. Of
course physical constraints, such as minimization of
surface energy, will also play. an important role.
Depending on the properties of the liquid and the pro-
cessing conditions, the resultant solid foam will be
comprised of open and/or closed cells.

It is worth noting that the tessellation of the b.c.c.
armray (the tetrakaidecahedral cell model discussed
above) is a reasonable approximation to the foam
introduced by Lord Kelvin [7, 26]. The cells of the
Kelvin foam are uniformly shaped, fill space, and
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Fig. 2. The Voronoi tessellation model of a closed cell foam.

The reduced density is p/p,~0.18. The model shown has 63

cells, whereas the computations were performed on samples
with 122 cells.

satisfy Plateau’s law of foam equilibrium (three faces
meet at angles of 120°, and four struts join at 109.5°).
In order for this to be true, the faces and edges are
slightly curved [26], unlike those of the tetrakaide-
cahedral cell model.

To generate foams with a roughly uniform cell size
we use 122 seed points corresponding to the center’s
of close-packed (fraction 0.511) hard spheres in ther-
mal equilibrium [18]. A pixel in the digital model is
defined as belonging to a face if it is approximately
equidistant from at least two sphere centers. The den-
sity of the model is changed by varying the thickness
of the cell faces. An illustration of the model (with
only 63 cells) is shown in Fig. 2.

Using M = 128 pixels in each direction to resolve
the structure, and a wall thickness of two pixels, the
minimum density obtainable (using 122 cells) was
p/p, = 0.16. In order to examine the stiffness at lower
densities we also generated samples with 26 cells. We
found that foams of 26 and 122 cells had the same
stiffness (within 1%), indicating that finite size effects
are very small for the model. The results are given
in Table 1 and plotted in Fig. 3. In the low density
limit the Young's modulus of the closed-cell model
can be described to within a 1.5% relative error by,

Table 1. Properties of the closed cell Voronoi tessellation model. Data
at the two lowest densities were obtained for 3 realizations of the 26
cell model, and the remainder were obtained for five realizations of the
122 cell model. The relative density of the cell-edges (pip,), was
obtained by deleting all the faces in the closed-cell models

plp. EIE, ©lpds ¢ M
0.104 0.038 0.016 0.ts 128
0.137 0.052 0.028 021 9%
0.165 0.065 0.045 0.27 128
0.216 0.090 0.077 0.36 96
0.255 0.1 0108 042 80
0.312 015 0.16 0.52 64
0.400 0.21 0.24 0.60 48
0.553 034 0.35 0.62 64
0.655 0.45 0.46 o 64
0.744 0.56 0.56 0.76 64
0.895 0.80 0.80 0.89 64
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Fig. 3. The Young's modulus of the Voronoi tessellation (O)

and Gaussian random field model (A). The solid lines are the

empirical fits to the data given in equations (9) and (11),
respectively. The dashed lines are the fits to equation (10).

1.19 )
§—=0.563(£-) for0.1<2<03. (9

This simple scaling relation cannot reproduce the
high density behavior (E—E, as p—p,) unless C is
fortuitously equal to one. Rather than choosing a
three- or four-parameter relation to describe the full
density range, we instead use the equation

£ -
E, 1-py Ps ’

which has been found to be useful for describing the
properties at high densities. With m = 2.09 and
po = —0.140 equation (10) describes the data to
within 4% for 0.15<p/p,<1.

4.2. Effect of deleting faces

Depending on the physical conditions for foam for-
mation, it is possible for the final foam to contain
both open and closed cells. It is relatively easy to
delete cell-walls from the Voronoi tessellation, which
allows us to quantitatively investigate how the pres-
ence of partially open cells degrades the foam stiff-
ness. In the Voronoi tessellation, a cell edge is defined
by points which are equidistant from three (or more)
cell centers. If the edges are retained but the cell walls
are absent, an open-cell Voronoi tessellation results.
In a parallel study of open-cell foams we have shown
that the Young's modulus of the open-cell foam is
EIE, = 0.93(p/p,)*™ for plp,<0.5, in good agree-
ment with scaling arguments.

To test the intermediate cases we consider tessel-
lations with 20%, 40%, 70% and 85% of the faces
removed at random. The underlying edges of the
open-cell tessellation are left intact. Examples of the
microstructure are shown in Figs. 4 and 5 for the
cases where 70% and 100% of the cell walls have
been deleted. The results are plotted in Fig. 6. If 20%
of the faces are deleted, we find E/E, =

a10)

Fig. 4. The Voronoi tessellation model with 70% of the faces
deleted. The reduced density is p/p,~=0.09.

Fig. S. The open-cell Voronoi tessellation model with reduced
density p/p, = 0.05. (All the faces have been deleted.)

05

0.2 -

0.01

0.008 ~1-
0.08 0.3 02 0s

Fig. 6. The effect of deleting faces from the closed-cell Voronoi

tessellation. The symbols correspond to deletions of 20% (QO),

40% ((J), 70% (A) and 85% (<). The extreme cases of no-

deletions { )} and 100% deletions (— -—-—) are also

shown. The dotted lines correspond to the empirical fits
described in the text.

0.64(p/p,)** and when 40% of the faces are deleted,
the result is E/E, = 0.76(p/p,)"". For 70% and above,
the Young’s modulus follows the open-cell result.

It wounld be theoretically useful to partition the
results for partial deletion into a contribution from
edge-bending and plate stretching, similar to equation
(4). For each model, we can directly measure the
respective solid fractions p, and p; of the edges and
faces, with p. + p; = pip,. In the absence of cell
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1

L)
] 0.1 0.2
Py

Fig. 7. If the modulus of the partially-open tessellation model

could be lincarly resolved into a contribution from the cell

faces and edges (with fractions p; and p,) then we would

expect (E/E,—p?)ip, to be independent of p,. This is seen not

to be the case. The line has a slope of one. The symbols corre-

spond to deletions of 0% (V), 20% (O), 40% (0J), 70% (A)
and 85% (<)

walls, the edges have a modulus of E/E,=~p2, and the
cell walls should contribute a term which depends lin-
early on p,. Thus, if the contributions can be linearly
combined, a plot of F(py) = (E/E,~pd)ip; vs p¢ should
yield a constant value. This is seen not to be the case
in Fig. 7. Indeed F(py) is seen to increase nearly lin-
early with p, indicating that the additional contri-
bution of the mass in the cell walls to the Young’s
modulus approximately follows a quadratic law. We
conclude that it is not possible to describe the
Young’s modulus of the partially open cell model in
terms of a contribution of “edge-bending” and “plate-
stretching”. Clearly both mechanisms are active in
deformation, but they combine non-linearly. Our evi-
dence suggests that the data can be best represented
by a power law with a non-integer exponent 1<n<
2.

4.3. Gaussian random fields

The Voronoi tessellation has regular cells with per-
fectly flat walls. However some cellular solids, such
as the polystyrene sample shown in Fig. 8, have
irregularly shaped cells which are likely to reduce
their stiffness [12]. Since it is difficult to include this
type of randomness in the Voronoi tessellation we

Fig. 8. Irregular cell shapes and sizes in polystyrene foam [13}.
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consider a statistical model based on Gaussian ran-
dom fields (GRFs), which shows a large variation in
cell shapes and sizes. To generate the model, one
starts with a GRF y(r) which assigns a (spatially
correlated) random number to each point in space. A
two-phase solid-pore model {16, 27] can be defined
by letting the region in space where —B<y(r)<f be
solid, while the remainder [|y(r)|=f] corresponds to
the pore-space. A closed-cell model can be obtained
from the model by forming the union set of two stat-
istically independent level cut GRF models [28].
Details for generating the models have been pre-
viously described [29]). An example is shown in Fig.
9. While not exactly reproducing the stiucture of
polystyrene, the model is able to qualitatively mimic
the closed cells and curved walls seen in Fig. 8.
The Young’s modulus of the model can be
described to within a 2% relative error by,

1.54
E_ 0.694(;’:—) for 0.15<2. <04
E s pl

an

in the low density regime, and equation (10) with
m=230 and p,= —0.121 for 0.15<p/p,<1
(relative error 3%). The data and fitting curves are
shown in Fig. 3. As in the case of the closed-cell
Voronoi tessellation, the difficulty of resolving the
very thin cell walls prohibits lower densities from
being studied at present.

S. COMPARISON OF FEM RESULTS WITH PRIOR
RESULTS

In Fig. 10, we compare FEM data for the closed-
cell foams with the prior results discussed in Section
2. The results for the random Voronoi tessellation are
seen to be around 10% greater than Simone and Gib-
son’s results for the tetrakaidecahedral model, It is
not clear if this implies that the disordered tessellation
is stiffer than a regular tessellation. Indeed, Grenes-
tedt [6] found that a tessellation of a randomly per-
turbed b.c.c. lattice was in fact 10% weaker than the

Fig. 9. The closed-cell Gaussian random field model with
reduced density p/p,~0.2.
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Fig. 10. Comparison of the FEM data (symbols) with theory
(lines). The data shown is for the closed-cell Voronoi tessel-
lation -(O) and the closed-cell Gaussian random field model
(). The theories are due to Christensen [17]) (-+-) and
Simone and Gibson {5] (...). We also show the Hashin-Shtrik-
man bound for all isotropic materials (— — —) and the 3-point
bound on the modulus of the Gaussian random field model
(¢ ).

tetrakaidecahedral model. Therefore, it is possible
that differences between the models are explicable in
terms of systematic discretization errors (which we
estimate to be around 10%). The modulus of the
Gaussian random field model is considerably below
the estimate for the tetrakaidecahedral model. This
can be attributed to the highly irregular cell shapes
and curved faces of the Gaussian model. At low den-
sities, Christensen’s result significantly overestimates
data for both random models, indicating that the
assumption of “straight-through” faces is not justified
for random foamns.

As expected, all of the data fall below the Hashin-
Shtrikman bound for isotropic materials. For the
Gaussian random field model it is possible to evaluate
the 3-point statistical correlation function {27], and
calculate the more restrictive 3-point upper bound
[20]. Figure 10 shows that the 3-point bound still does
not provide a good estimate of the Young’s modulus
and computation is necessary.

To apply the semi-empirical formula of Gibson and
Ashby given in equation (4), we need to estimate the
fraction of mass contained in the cell edges ¢. To
determine ¢ for the Voronoi tessellation we have
deleted all the faces from the model and recorded the
remaining density (see Table 1). For p/p,<0.3, we
find ¢<3 indicating that the prediction of equation (4)
is in fact greater than the Hashin-Shirikman bound.
For the closed cell Gaussian random field model, an
analytic result for ¢ can be derived as follows. If,
instead of a union set, we form the intersection set of
two level-cut random-fields, we obtain an open-cell
model comprised of the cell-edges of the closed-cell
model. Denoting the reduced density of the open- and
closed-cells Gaussian models as p,, and p, it can be
shown that p,; = VPpep(2—VPop) [29). The fraction of
mass in the edges is then

195

¢=P __:(1"“"17«:1)2

12
Pa Pa ( )

Now for p,<§, ¢<i, indicating that the semi-empiri-
cal formula will exceed the Hashin-Shtrikman upper
bound at lower densities. Therefore the semi-empiri-
cal formula does not provide an accurate estimate of
the elastic modulus for either model.

The Poisson’s ratio of the closed cell foams are
compared with predictions in Fig. 11. The FEM data
for the closed cell Voronoi tessellation and Gaussian
random field models increase from 0.2 (the solid
value) to about 0.24 and (.28, respectively, as density
decreases. The results lie between the predictions
v =02 and v = 0.33. In a related study [30], we
have shown that the Poisson’s ratio becomes inde-
pendent of the solid-Poisson’s ratio at low densities
indicating that the predictions are not correct for the
models studied here at any solid Poisson’s ratio.

6. COMPARISON OF FEM RESULTS WITH
EXPERIMENT

To illustrate the utility of the FEM, we compare
the computed results to experimental data (it should
be remembered that the computed results have about
a 10% uncertainty, mainly due to digital resolution).
Since real foams can have densities lower than those
we are currently able to computationally study, we
use the formula E/E, = C(p/p,)* to extrapolate the
results. This is justified by the fact that the low den-
sity FEM data appear to fall on a straight line when
plotted against log-log axes. Accurate comparison of
theoretical and experimental results is hindered by the
imprecision involved in estimating the properties of
the solid skeleton E, and p,. We report E, and p, when
they have been given, but some data sets are reported
only in terms of E/E, and p/p,. Some of the data sets
we have taken from the literature have been pre-
viously summarized {1, 3].
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Fig. 11. Comparison of the FEM data for closed-cell foams
(symbols) with theory (lines). The data shown is for the closed-
cell Voronoi tessellation (O) and the closed-cell Gaussian ran-
dom field model ([J). The lines correspond to Christensen’s
theory [17] (~ * -) and the empirical result v, = 0.33 of Gibson

and Ashby [1] (- --).
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Fig. 12. Young's modulus of foamed glasses with closed cells.

The data is from Morgan et al. [31] ((J), Zwissler and Adams

[32] (O) (E, = 69 GPa [3]) and Walsh ez al. [35] (Q) (E, =

75 GPa). The solid line (: ) corresponds to the closed-

cell Voronoi tessellation. Results for the closed-cell GRF
model (— —-) are shown for comparison.

Data for closed cell porous glass [31, 32] (Fig. 12)
agrees well with the FEM results obtained using the
closed cell Voronoi tessellation. Micrographs of the
glass studied by Zwissler and Adams [32] indicate a
structure similar to that of the Voronoi tessellation
shown in Fig. 2, indicating that the model is appropri-
ate. Data for closed cell polymer foams is shown in
Fig. 13. The data for expanded polystyrene [33] gen-
erally agree with the predictions of the closed-cell
Gaussian random field model. The data for extruded
polystyrene [34] decreases from the Voronoi tessel-
lation towards the Gaussian random field result as the
density decreases. Micrographs of polystyrene [13]
indicate a cell structure similar to that of the Voronoi
tessellation, but the cell walls show some curvature.
This may explain why the results for the random field
model (which contains curved cell walls) more
closely match the data.
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Fig. 13. Young’s modulus of closed cell polymer foams. The
data is for extruded polystyrene [34] (O, E; = 1.4 GPa and
p. = 1050 kg/m®), polystyrene beads [8] (A, E, = 3.0 GPa
and p, = 1100 kg/m®) expanded polystyrene [33] (O, E, =
2.65 GPa and p, = 1020 kg/m®) and for low-density poly-
ethylene [36] (V). The solid ( ) and dashed lines (- ~-)
correspond to the closed cell Voronoi tessellation and Gaussian
random field models.
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7. DISCUSSION AND CONCLUSION

‘We have used the finite element method to estimate
the Young’s modulus of realistic random models of
isotropic cellular solids. At low densities, the results
can be described by the scaling relation E/E, =
C(p/py)", where the parameters are reported in the
text. At moderate to high densities, the results were
described by equation (10). The equations used to
describe the data were chosen to provide a reasonable
fit, and consequently the fitting parameters do not
have clear physical significance. It would be ideal to
resolve the modulus into components from edge-
bending and plate-stretching. However, the non-linear
interaction between arbitrarily shaped cells and defor-
mation makes this task impossible in all but the sim-
plest of models.

All our results were obtained using a solid Pois-
son’s ratio of v, = 0.2, It has recently been shown
[30] that the Young’s modulus only varies by around
2% for 0<v,<0.5 indicating that our results are valid
for all usual values of the solid Poisson’s ratio. The
fitting relations we have derived can be used to pre-
dict the properties of cellular materials that have a
microstructure similar to one of the models, and can
be useful for interpreting experimental data.

Our results for closed-cell Voronoi tessellations
were in general agreement with earlier studies on the
tetrakaidecahedral foam, i.e., E/E~{{p/p,) as
(plpy—0 [4]. The actual exponent was n = 1.19
which is greater than the value n = 1 obtained for
single-cell models and scaling arguments [equation
4), <1]. If more than 70% of of the cell faces are
removed, the Young’s modulus exponent increased
to n = 2, indicating that edge bending becomes the
dominant mechanism of deformation.

The closed-cell random field model, with curved
cell walls, showed a significantly greater density
dependence than the Voronoi tessellation (with
exponent n=1.5). Although the minimum density at
which we were able to measure properties was

" (p/py)=0.15, the data showed no evidence of adopting
"a linear decay for (p/p,)—0, as suggested by theory.

The semi-empirical closed-cell theory given in equ-
ation (4) was found to not be applicable to the models
studied here, since the low edge fractions (¢<0.5)
caused the equation to exceed known upper bounds
on the Young’s modulus. Moreover, attempts to
describe the'deformation of closed or partially closed
cellular materials in terms of a bending (exponent
n = 2) and plate stretching (exponent n = 1) compo-
nent were not successful. Instead, our results indicate
that these mechanisms combine non-linearly and are
best represented by a non-integer power law. Vari-
ational upper bounds, and other predictions for ran-
dom closed cell foams, were found to significantly
over-estimate the Young’s moduli of the models.
Therefore numerical simunlation must be relied on for
accurate predictions.

In this study, we have shown that it is important
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to consider large-scale (multi-cellular) models of ran-
dom cellular solids in order to obtain realistic elastic
properties. While the moduli of the closed cell
Voronoi tessellation can be approximately described
by a single cell of the tetrakaidecahedral model, it is
not possible to model the effect of missing faces and
irregular cells with curved walls using single-cell
models. Our results are consistent with experimental
data, and show a more complex density dependence
than predicted by conventional theories based on sca-
ling arguments and periodic cell models. Our results
focus on the effect of multi-cellular disorder, rather
than local characteristics (e.g., distribution of mass
between cell edges and walls) of cellular materials,
for the following reasons. First, it is difficult to simul-
taneously model the local and global variables with
finite computational power, and second, study of sin-
gle cell models probably provides a more fruitful
route to understanding the influence of local cell-
character on the overall properties. We believe that
the results of both approaches may be beneficially
combined.
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