Elastic moduli of a material containing composite inclusions: effective
medium theory and finite element computations

By

E.J. Garboczi
Building and Fire Research Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899 USA

and
J.G. Berryman
Lawrence Livermore National Laboratory

P.O. Box 808, L-200
Livermore, CA 94551-9900 USA

Reprinted from M echanics of Materials, Vol. 33, No. 8, 455-470, 2001.

NOTE: This paper isa contribution of the National I nstitute of Standardsand
Technology and is not subject to copyright.

Mational Institute of Standards and Technology
Technolagy Adminisiration, ULS. Depariment of Cammerce



MECI&A;IICS
MATERIALS

www.elscvier.com/locate/mechmat

e e
LSEVIER Mechanics of Materials 33 (2001) 455 470

E

Elastic moduli of a material containing composite inclusions:
effective medium theory and finite element computations

E.J. Garboczi **, J.G. Berryman °

* Building Materials Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8621, Gaithershurg,
MD 20899-8621, USA
® Lawrence Livermore National Laboratory, P.O. Box 808, L-200 Livermore, CA, 94551-9900, USA

Received 15 May 2001

Abstract

Concrete is a good example of a composite material in which the inclusions (rocks and sand) are surrounded by a
thin sheli of altered matrix material and embedded in the normal matrix material. Concrete, therefore, may be viewed as
consisting of a matrix material containing composite inclusions. Assigning each of these phases different linear elastic
moduli results in a complicated effective elastic moduli problem. A new kind of differential effective medium theory (D-
EMT) is presented in this paper that is intended to address this problem. The key new idea is that each inclusion
particle, surrounded by a shell of another phase, is mapped onto an cffective particle of uniform elastic moduli. The
resulting simpler composite, with a normal matrix, is then treated in usual D-EMT. Before use, however, the accuracy
of this method must be determined, as effective medium theory of any kind is an uncertain approximation. One good
way to assess the accuracy of effective medium theory is to compare to exact results for known microstructures and
phase moduli. Exact results, however, only exist for certain microstructures (c.g., dilute limit of inclusions) or special
choices of the moduli (e.g., equal shear moduli). Recently, a special finite element method has been developed that can
compute the linear elastic moduli of an arbitrary digital image in 2D or 3D. If a random microstructure can be rep-
resented with enough resolution by a digital image, then its elastic moduli can be readily computed. This method is
used, after proper error analysis, to provide stringent tests of the new D-EMT equations, which are found to compare
favorably to numerically exact finite element simulations, in both 2D and 3D, with varying composite inclusion particle
size distributions. © 2001 Published by Elsevier Science Ltd.
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1. Introduction zes, ranging from the smallest sand grains of
diameter 100 pm, to the largest rocks of diameter

Concrete is a composite material. A typical 10-20 mm. But concrete is not just a simple two-
mixture contains a cement paste ( = hydrated ce- phase composite. Upon closer examination, one
ment) matrix and inclusion particles of various si- finds that the presence of the grains in the paste

changes a thin layer of matrix material surrounding
each inclusion. The cement paste matrix in this shell
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layer is often called the interfacial transition zone
(ITZ) (Bentz et al., 1993; Scrivener, 1989; Scrivener
and Nemati, 1996; Garboczi and Bentz, 1991).

Concrete, therefore, consists of at least three
distinct types of constituents. If the altered shell of
matrix material is associated with the grains, the
point of view may be taken (and this will become
our point of view) that concrete consists of a ma-
trix material containing composite inclusions. As-
signing each of these phases different isotropic
linear elastic moduli results in a complicated ef-
fective elastic moduli problem.

In fact, the problem is still more complicated.
The “‘shell” around each inclusion actually con-
tains a gradient of properties, since the cement
paste matrix density is least at the particle surface
and increases outwards to the full matrix density
(Scrivener, 1989; Shane et al., 2000; Bentz et al.,
1992). If the inclusions in concrete are modeled as
spheres, which is a good approximation for many
concrete mixtures, then the dilute limit, with a
single spherical inclusion surrounded by a thin
layer containing a spherically symmetric gradient
of point-wise isotropic elastic properties, can be
handled exactly (Garboczi and Bentz, 1997; Herve
and Zaoui, 1993; Iske et al., 1994; Lutz and
Monteiro, 1995). But the non-dilute microstructure
of concrete, with a wide particle size distribution of
inclusions, each surrounded by overlapping gradi-
ents of properties, is very difficult to treat analyti-
cally, by numerical methods, or by effective
medium theory (EMT). However, it has been
shown that a multi-scale model can be used in order
to map this complex microstructure into a simpler,
but still complicated, microstructure, where the
shell layers can be treated theoretically as having
uniform properties (Garboczi and Bentz, 1997,
1998; Bentz et al., 1998). The three phase composite
described above then becomes appropriate for the
concrete elastic moduli problem, and is the focus of
this paper. We note that other treatments of how to
actually map interphase microstructure into effec-
tive layer properties sometimes allow for aniso-
tropic elasticity in the interphase region (Ostoja-
Starzewski et al., 1996). We restrict ourselves to
isotropic elasticity in this paper.

Differential effective medium theory (D-EMT)
for this three-phase microstructure has been de-

veloped previously in several ways (Cleary et al.,
1980; Sheng and Callegari, 1984; Norris, 1985;
Sheng, 1990, 1991; Dvorkin et al., 1999). Predic-
tions for the electrical properties of this micro-
structure have recently been checked against
random walk simulations (Schwartz et al., 1995:
Garboczi and Berryman, 2000). These simulations
are accurate and simple, but time-consuming,
hence the use of effective medium theory. The most
accurate D-EMT for this application was devel-
oped using a new idea in differential effective me-
dium theory (D-EMT) (Garboczi and Berryman,
2000). The key idea was that a spherical inclusion,
along with its surrounding thin shell of altered
matrix material, was exactly mapped into a new,
slightly larger homogenized inclusion, which in-
cluded the hard but poorly conducting particle and
the softer but better conducting shell, and which
had a uniform conductivity. The new system of
effective particles embedded in the matrix could
then be treated easily using a differential effective
medium theory (D-EMT).

A rather different approach to three-phase cf-
fective medium theory could be based on the self-
consistent formulas of Christensen and Lo
(Christensen and Lo, 1979; Christensen, 1979), but
as we shall show, the method presented here has
considerably more flexibility in the range of com-
plex microstructures that can be incorporated into
the model.

This new kind of D-EMT is extended to linear
elastic properties in this paper. Similar to the idea
used for conductivity, a spherical inclusion, with a
surrounding shell layer, is mapped onto an effec-
tive particle of uniform elastic moduli. The prob-
lem then becomes a simple composite composed of
spherical particles, of varying sizes and elastic
moduli, embedded in a uniform matrix. This
composite can then be treated in the usual D-
EMT.

Except for some special models (Milton, 1985),
the accuracy of most EMTs is often in doubt.
From the point of view of tailoring the approxi-
mation to the specific material microstructure that
we want to model, EMTs of any kind tend to be
uncontrolled approximations. Checking the accu-
racy of an EMT by comparing its predictions to
experimental results is inadequate from the
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theoretical point of view because the microstruc-
ture and phase elastic moduli are usually only
approximately known experimentally. Observed
discrepancies could be from the EMT, or equally
well could arise from the approximate knowledge
of the experimental material. A more satisfactory
way of assessing the accuracy of EMT is to com-
pare to exact analytical results, where microstruc-
ture and phase moduli are controlled by the user.
But exact elastic results for non-trivial micro-
structures are rather rare, and only exist for certain
microstructures (e.g., dilute limit of inclusions) or
special choices of the moduli (e.g., equal shear
moduli) (Hill, 1963; Garboczi, 1998). In the case of
conductivity, the D-EMT results could be checked
on model concrete microstructures using accurate
random walk simulations (Garboczi and Berry-
man, 2000). Recently, a special finite element
method has been described that can compute the
linear elastic moduli of an arbitrary digital image
in 2D or 3D (Garboczi and Day, 1995). This
method is used, after proper error analysis, to
provide stringent tests of the new D-EMT equa-
tions. The results are found to compare favorably
with the essentially exact finite element calcula-
tions, in both 2D and 3D, with a variety of simple
inclusion size distributions.

2. Differential effective medium theory and effective
particle mapping

D-EMT (McLaughlin, 1977; Berryman, 1995)
was chosen as the best candidate for the composite
inclusion problem for the following reason. The
accuracy of an EMT is often linked to how well its
percolation properties match those of the experi-
mental system being considered (Schwartz et al.,
1995; Xia and Thorpe, 1988; Berge et al., 1993). In
D-EMT, the inclusions are always discontinuous,
and the matrix is always continuous. Concrete has
the same properties since the granular aggregate is
fully surrounded by the cementing matrix material.
Thus, the microstructures of the theory and the
problem of interest are well matched. Further-
more, we want to be able to incorporate a range of
sizes of particles into the theory in a controlled
way. It is not clear how to do this in a self-con-

sistent three-component model (Christensen and
Lo, 1979), but we will show that this is not difficult
to achieve with the present approach.

The standard D-EMT is a two-phase theory, or
rather two topological phases, since each inclusion
can be a different phase through having different
elastic properties. In the present case, the thin shell
of disturbed material around each granular inclu-
sion causes conceptual problems for D-EMT, since
it introduces at least one more topological phase.
To make use of D-EMT in this setting, the fol-
lowing question arises: Should this shell should be
treated as part of the inclusion, or as part of the
matrix?

Since the shell regions, disregarding possible
overlaps between shells, will necessarily assume the
same shape as the spherical inclusion particles, the
option of making the shell regions part of the in-
clusions seems the most appropriate one. This is
accomplished by mapping each spherical inclusion
particle, together with its accompanying shell, into
a single effective particle, with size sufficient to
incorporate both and with uniform elastic prop-
erties. This idea is illustrated in Fig. 1, and will be
developed more fully below. Thus, the effective
medium theory that we develop will be for a ma-
terial having a matrix that contains spherical
composite inclusions.

In what follows in Section 2, first the standard
two-phase D-EMT is described. Then the effective
particle mapping is discussed, showing how the
three phase model of concrete can be reduced to a

b
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Fig. 1. The mapping of a composite inclusion particle into an
effective particle whose diameter is that of the outer shell. The
figure shows a cross-section of a sphere (or a circle) taken
through the center.
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two topological phase model, which is more
readily handled with D-EMT. Then we show how
the standard D-EMT can be modified so as to use
the effective particles, producing a new D-EMT
result.

2.1. Standard D-EMT

In the usual D-EMT (McLaughlin, 1977).
when a particle with elastic moduli X, and G, is
embedded in a matrix with elastic moduli X, and
G,,, the dilute limit is used to generate an ap-
proximate equation that can be solved for the
effective elastic moduli (McLaughlin, 1977). In
the dilute limit, the value of ¢, the volume frac-
tion of particles. is small enough so that the
particles do not influence each other. The effective
clastic moduli, K and G. are then given by Tor-
quato (1991)

K = Km + Kllk(Kp:\ Knn G,”)C + O(CJ)._ (IJ
G=G,+G,g(G,.K,.G,)c+ O(c). (2)

where k and g are dimensionless coefficients. These
coefficients are often called the dilute limit slopes
or the intrinsic moduli (Douglas and Garboczi,
1995), and are functions of both the shape of the
particle and the moduli shown. The higher-order
terms in the ¢ expansion come from interactions
between particles. and so are negligible in the di-
lute limit.

For circular particles in a 2D matrix and
spherical particles in a 3D matrix, these dilute
limits are known. For circular particles in 2D, the
values of k and g are:

(Km + Gm) (1(/1 - Klt) (3)
Kr: (Kp + Gm) '
Z(Km + Gm)(Gp - Gm)

= . 4
& T Gk + G,) + G, (K + Go) @

k:

For spherical particles in 3D, the values of k and g
are:

— (Km + %Gm) (Kp - Klt)

; 5
KoK, +36,) o
S(Km + %Gm)(G7 - Gm)
g= : ! (6)

3Gm ([(m + %Gur) + 2G/7([<m + 2Gm) '

The dilute limits are now used to generate ap-
proximate differential equations suitable to esti-
mate the elastic moduli when arbitrary amounts of
the included phase are introduced into the matrix.
Suppose that a non-dilute volume fraction ¢ of
particles have been placed in the matrix. The ef-
fective elastic moduli of the entire composite sys-
tem are now K =K(¢) and G = G(¢), where
¢ =1 — ¢ is the matrix volume fraction. The re-
sulting system of matrix plus particles is treated as
a homogeneous material. Supposc then that more
parlicles are added by removing a differential
volume element, dV, from the homogeneous ma-
terial, and replacing it by an equivalent volume of
the inclusion phase. The new elastic moduli.
K +dK and G + dG. are given in the dilute limit
by
. dv

K+dK =K+ Kk(K,.K.G) 7. (7)
dr

G+dG =G+ Gg(G,.K,G) =

(8)

where 1V is the total volume and k(K,.K,G) and
g(G,, K. G) are the same quantities as those in Eqs.
(1) and (2), but with the replacement X,, — K and
G,, — G. This is the key approximation that is
made in order to generate the standard two-com-
ponent D-EMT. The variable d7/V is now play-
ing the role of the dilute volume fraction ¢ in Egs.
(1) and (2). When the volume element dV is re-
moved, only a fraction ¢ is actually matrix mate-
rial, so that the actual change in the matrix volume
fraction, d¢, is given by

d¢ = —q’)g—VK. 9)

Making this substitution, Egs. (7) and (8) reduce
to the coupled set of equations

dK

S = —kK/9.
by (10)
O 26/
dp ~ &7

These equations are coupled via the k and g terms,
which depend on the values of K and G for the
matrix at the given value of ¢.
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The above has been written for a single size
inclusion. For a size distribution of inclusion
particle diameters {b;}, the theory is only slightly
more complicated. Some composites might also
have different elastic moduli for different sizes of
particles. A general way of characterizing the in-
clusion size distribution is by specifying the di-
ameter of each type, d;, j = 1,M, where M is the
number of different kinds of particles, and f; is the
fraction of the total inclusion volume that is taken
up by the jth kind of particle, with > ,fi=1.The
elastic moduli of the jth kind of particle is given by
K; and G,.

It makes some difference, mathematically, to
the final results just how (i.e., in what order) the
various inclusion types are mixed into the com-
posite (Norris, 1985). One might put all the
smallest particles in first, then all of the next size
particle, and so on, with the largest particles the
last to be put in, or vice versa. We have chosen to
assume the inclusion distribution is maintained as
a fixed quantity throughout the mixing process,
and have ignored other procedures. This means
that the complete size distribution of inclusions is
used each time particles are mathematically added.
In the case of concrete, one can picture putting all
the sand and rocks into a large container,
throughly mixing the inclusions, then scooping out
the mixture into the cement paste matrix. The way
this affects the D-EMT is seen in the dilute limit, or
the values of k and g, which become (k) =3, fik;
and (g) = 3_ f;g;. These slopes are first averaged
over the inclusion particle size distribution before
being used in the formula for the dilute limit. The
D-EMT is then built up the same way as for a
single kind of particle, but using the average
slopes.

2.2. Effective particle mapping

It has been long known that a spherical par-
ticle, surrounded by a spherical shell of different
elastic moduli, can be exactly mapped into a new,
uniform property spherical particle, which is as
large as the old particle plus shell combined
(Hashin, 1962; Christensen, 1979, 1990). This can
also be done for a circular particle surrounded by
a circular shell. Of course, in concrete some of the

shells overlap. In this effective particle mapping,
overlaps are ignored, so that each particle is as-
sumed to have a complete, isolated shell around
it. This procedure can actually be done for n such
spherical shell layers (Herve and Zaoui, 1993;
Iske et al., 1994), though this paper restricts its
analysis to a single layer around a spherical
particle.

Let the interior particle be phase 3, with di-
ameter b, and the shell material be phase 2, with
outer diameter a. The phase label 1 is reserved for
the matrix. Fig. 1 shows a schematic of such a
mapping. The reference (Christensen, 1990) con-
tains the formulas for such a mapping in 3D, for
both the effective properties K and G, and for G
in 2D. The 2D mapping for K is also included
below. Note that in Christensen (1990), in 3D,
label i is the same as 3 here, and label m is the
same as 2 here. In 2D, label f is the same as 3
here, and label m is the same as 2 here. Also, in
both 2D and 3D, v; is the Poisson’s ratio for
phase /.

The 3D results are presented first. The effective
G is the solution to the following quadratic equa-
tion (the positive square root is the physical
choice):

A(G/Gh)* +2B(G/Gx) + C =0 (11)

with the coefficients given by

A= 8z(4 — Svy)n,p'" — 2[63zn, + 2’7#’/;-]]’7’{3
+252zn,p° — 502(7 — 129 + 833)yp
+4(7— 10"2)’7/}’77,

B = —2z(1—5v)n,p'""" + 2[63zn, + 2n,n.]p""
—252zn,p°" +752(3 - Vo) Hyvap

3
+ 5 (1 sz - 7)’7/}17,‘

C=4z(5v, = Tyn,p"" = 2[63zny+ 20,0 ]p""°  (12)
+ 2522’7/;[’5/3 +25z2(v3 — Mg — (T+ Sva)ngn..,

1, = 2(7—101)(7 4 5v3) + 105(v3 — v1),

My = 2(74 5v3) +35(1 — v3),

7. =2z(8 = 10v,) + 15(1 — vy),

z= G3/Gz - 1,

p=(b/a)’.
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The effective K is given by

K; — K,
K:K3+l P(l : (I:'J)*K:)' (13)
+ (=P

For 2D, the plane strain shear modulus, s, is
used from Christensen (1990), but with the nota-
tion of this paper. The effective G is given by the
solution of the following quadratic equation (in this
case the negative square root is the physical choice):

A(G/G,)’ +2B(G/G>) +C =0 (14)
with the coefficients given by
A=3p(1=p)*(r = 1)(r+n5)

+ [y + a3 = (i — 13)p]

x [pny(r=1) = (r, + 1),
B==3p(1 =p)’(r—1)(r+n)

+%[””Iz+(”‘ Dp+1]

X [(ny = D(r +m3) = 2(rm, — 03)p’)

+ 50+ D0 = D05+ (m = )], (15)
C=3p(1=p)’(r=1)(r+ns)

+ [+ (r = Dp+1]

X [r+ 13+ (rmy = )7,

n,=3—4v; fori=2,3,
yr= 63/62,
p=(b/a)’.
The effective K, derived independently from
Christensen (1990), is given by

K+ G)Ks+ (1 — p)(Ks + Go)ka

K+ G2) + (1 = p)(Ks + Go)

(16)

2.3. New D-EMT

The resulting effective particle is now treated as
the inclusion phase in the usual D-EMT, as de-
scribed above. When an inclusion particle size
distribution is used, the functions k and g are av-
erages over this size distribution, as was stated
above. The differential equations can be easily
solved numerically by a fourth-order Runge-Kutta
method (Hildebrand, 1956; Press et al., 1988).

There are a few differences, however, involving
the effective inclusion volume fraction. Each par-
ticle is now of diameter a; = b; + h;, where #; is the
shell thickness for the jth kind of inclusion, so that
the volume fraction of “effective inclusions™ now
goes to the renormalized value ¢, not ¢. The value
of ¢/ must be known in order to know where to
terminate integration of the D-EMT differential
equations, which start at ¢ = 0. Possible overlaps
are ignored in this calculation. The total volume of
these effective particles is equal to the original
volume of inclusions, plus the volume of a com-
plete shell around each particle. The effect of
overlaps, which is fairly minor, will be discussed in
a later section.

The new volume fraction of effective particles
can be determined simply by considering the
number of particles of a certain type. If V; is the
total volume of the jth kind of particle, and N; is
the total number of this kind of particle, then

T

N.i‘6‘(bj)3 =V (17)
and, therefore,

Nrw, 5 V

=z (b)’ = :.f;"c:

T
”./3(51)3 = fic

where Vis the total volume of the system and n; is
the number of particles of type j per unit total
material volume.

The values of f; and ¢’ are defined directly by
writing

¢ =Y mea. (19)
J=1
’ n.fa_;
fj - ZK[ ”ia? ‘ (20)

Combining the above equations, we can then de-
rive forms for /; and ¢’ that involve only f}, ¢, and
% = a}/b):

M
d=cy fi, (21)
=1
4 fja‘i
fj ZZ] Sio 22)
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1t should again be noted that while the value of
¢ was for non-overlapping inclusion particles, the
value of ¢ is for the volume occupied by each in-
clusion particle and its surrounding shell, where
the shell layers are assumed to not overlap. In a
real concrete, these shells do overlap, which can
cause percolation phenomena (Winslow et al.,
1994). This treatment of the shell volume fraction
is another approximation of the D-EMT method.
In the numerical results described in Section 3
chosen to check the D-EMT, the shell regions ac-
tually do not overlap, and, therefore, are consis-
tent with the assumptions built into the theory. An
overlapping shell example is also chosen to show
the minor difference this factor makes.

In summary, a D-EMT calculation is performed
as follows. First, all the different kinds of com-
posite inclusions are mapped to effective particles,
with new moduli and sizes. Next, the inclusion
particle size distribution is used to compute ¢’ and
J/;. Finally, the differential equations in Eq. (10)
are solved numerically using a fourth-order
Runge-Kutta method, where the slopes (k) or (g)
are averaged over the effective particle size distri-
bution f]. Note that for spherical particles, the new
diameters of the effective particles, a;, do not come
in explicitly into any of the equations for k and g,
but only in the definitions of /] and ¢’. For many
materials, including concrete, the inclusion particle
size distribution is given by a sieve analysis, where
partial volume fractions f; refer to the amount
lying inside a certain diameter range. This case can
be easily converted to the one considered here, by
dividing each range into several points, and di-
viding up the volume in that range appropriately.
The actual FORTRAN software used to calculate
the D-EMT results in this paper is freely available
{Garboczi, 2001).

3. Finite element computations

A recent finite element method for digital im-
ages (Garboczi and Day, 1995) was used to gen-
erate data with which to check the results of the
D-EMT. Of course, if one is going to check the D-
EMT results with the finite element method
results, one must ask: how accurate are the finite

element method results themselves? Since these
results are for concentrated, random systems, there
are no exact analytical data against which to check
the numerical results. Fortunately, by careful
consideration of the possible sources of errors, one
can establish the accuracy of the numerical data.

These numerical computations are carried out
by first generating the random microstructure de-
sired by building a periodic digital image using
square pixels on a 2D square lattice or cubic pixels
on a 3D cubic lattice. Each pixel is then considered
to be a bi-linear element (2D) or tri-linear element
(3D) (Garboczi, 1998), so that the entire digital
lattice is treated as the finite element mesh. The
elastic displacements are linearly extrapolated
across the pixels, which is why the the pixels are
called bi-linear (2D) and tri-linear (3D). The elastic
equations are written as a variational principle in
the elastic energy, which is then minimized over
the digital lattice. The effective moduli are usually
defined by a stress average, although they could be
defined by an energy average (Garboczi, 1998).

Because of the structure of the algorithm, there
are three main sources of error: (1) finite size effect,
(2) digital resolution, and (3) statistical variation
(Roberts and Garboczi, 2000). Note that another
method of handling similar systems without peri-
odic boundary conditions (Ostoja-Starzewski and
Schulte, 1996) has different finite size effects.
However, both methods have similar digital reso-
lution and statistical variation errors. We have
found that in digital models the resolution errors
often dominate the other sources of error.

The finite size effect comes about because any
given digital image, even with periodic boundary
conditions, can only represent a small part of a
large random solid. Here we are thinking of in-
clusions embedded in a matrix. There can be errors
induced if the sample is not large enough to possess
enough inclusions to be statistically representative.
This sampling error can be assessed by running
several different size samples, and seeing whether
the results change between system sizes. When as-
sessing this source of error, the inclusion size, in
terms of pixels, stays the same, so that samples
having larger lattices contain more inclusions.

The digital resolution error comes from using
square or cubic pixels to represent the inclusions.



462 E.J. Garboczi, J.G. Berrvman | Mechanics of Materials 33 (2001 ) 455—470

Even if the inclusions had the same shape as the
digital lattice, there would still be a resolution er-
ToT since one is representing continuum equations
with a digital lattice. The size of this error can be
checked by holding the number of inclusions
constant, and varying the size of the lattice so that
there are more or fewer pixels per unit length.

The statistical variation error source simply
comes about because the systems under consider-
ation are random ones. For a given concentration of
inclusions, there are many ways in which the inclu-
sions might be randomly arranged. Each arrange-
ment will have somewhat different elastic moduli, in
general. The size of this error source can be assessed
by computing the elastic moduli of several different
realizations of the same system (same size lattice,
same pixel size and number of inclusions).

In what follows, all the systems shown in the
figures were prepared by random sequential ad-
sorption (Cooper, 1988), with the largest particles
placed first, and then in descending order in diam-
eter. The inner and outer particles were not allowed
to overlap with any other inner or outer particle. In
the placement process, a trial center was picked at
random. If a particle centered at this point did not

B
(a)

overlap any other particle, then it was placed and a
new site chosen at random. If the particle did
overlap another particle, then the site was aban-
doned and a new site was chosen at random.

Fig. 2 shows the 2D 1000° systems that were
used to check the D-EMT results. There were three
sizes of inclusions. On a 1000 size digital lattice,
these had outer-inner diameters, in pixels, of 121—
99, 91-69, and 61-39. Experience with many pre-
vious results has shown that having the diameter
of the largest inclusion less than 1 of the size of the
unit cell makes any finite size effects negligible.
Holding the number of inclusions fixed to assess
the digital resolution error, calculations were also
made at sizes of 5007 and 2000°. There was only 1
2% variation among the different sizes, so that the
size used for all the runs was 1000°. The statistical
variation for 1000° size systems was very small,
and so was neglected.

The inner particle had Young’s modulus
E; = 5.0 and Poisson’s ratio vy = 0.2, the matrix
had E; = 1.0 and v; = 0.3, while the shell had a
Young’s modulus £ that ranged from 0.1 to about
10.0 and a Poisson’s ratio of v, = 0.3. Two systems
were chosen, with matrix area fractions of ap-

Fig. 2. Gray-scale pictures of the 2D models used to test the D-EMT predictions (non-overlapping shells). Using concrete terminology,
the dark gray is the cement paste matrix, the middle gray is the ITZ regions, and the lightest gray phase is the inclusion or aggregate
phase. There are three sizes of aggregates in this picture, and the matrix arca fraction is 0.3 (a) and 0.5 (b).
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Table 1

Parameters defining the 2D microstructures®
IVL N M N S (&1 (&) Cy
36 28 35 0.303 0.275 0.422
26 20 25 0.499 0.198 0.303

“N: number, L: large circles, M: medium circles, S: small
circles, and ¢ is area fraction. Phase 3 is the inner circle, phase 1
1$ the matrix, and phase 2 is the shell material.

proximately 0.3 and 0.5. Exact details of the mi-
crostructures considered are displayed in Tables 1
and 3. These details are given for future reference,
as these highly accurate results for random, non-
dilute systems are practically unique.

In 3D, there were two systems considered. The
first used only one size of composite sphere, with a
ratio of outer to inner diameters of 1.75. The ratio

of the unit cell size to the particle outer diameter
size was chosen to be about 7, which makes finite
size errors negligible. The digital resolution effect
was analyzed by running the exact same geometry
at sizes of 100%, 200°, and 300°. Fig. 3 shows four
non-consecutive parallel slices of the 300° system.
A full size range was only run for E» = 0.1 and
10.0, which were the limits of the shell stiffness.
The phase moduli were the same numerically as in
2D. We found that at E> = 0.1 the resolution error
was essentially 0, as all three systems gave almost
exactly the same answer, within less than 0.1%.
However, at E; = 10.0, there was a 3.7% drop in
bulk modulus and 5.6% drop in shear modulus
between the 100° and the 200* systems. There was
only a 0.5% further drop in bulk modulus and
0.8% in shear modulus when going to the 300°

Fig. 3. Four 300° slices from the 3D monosize composite sphere model used to test the D-EMT predictions. Using concrete temr-
minology, the dark gray is the cement paste matrix, the middle gray is the ITZ regions, and the lightest gray phase is the inclusion or

aggregate phase. The matrix volume fraction is 0.668.
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Table 2
Parameters defining the 3D microstructures, which had either
one or two sizes of spheres*

Table 3

Areas of circles and volumes of spheres used in pixels and
voxels

N Ny ¢ e 3 Circle Sphere Area Volume
230 0.668 0.269 0.063 diameter diameter (pixel #) (voxel #)
220 900 0.517 0.392 0.091 121 11476
“The numbers are all for 200° systems. N: number, L: large 99 7668
spheres, S: small spheres, and ¢ is volume fraction. Phase 3 is 91 6488
the inner sphere, phase 1 is the matrix. and phase 2 is the shell 49 Z 720
material. 6l 2912
39 1184
28 11536
. . R 16 2176
system, so it was decided that the 200° system 14 1472
would give adequate accuracy for all the shell H] 280

moduli. For this size system, the outer particle
diameter was 28 pixels wide, while the inner di-
ameter was 16 pixels wide. Statistical errors be-
tween configurations were negligible.

The second 3D system was 2007 in size, and had
two size spheres, with outer and inner particle di-
ameters of 28-16 and 14-8. Judging from the data

Fig. 4. Four 200° slices from the 3D two-size sphere model used to test the D-EMT predictions, Using concrete terminology, the dark
gray is the cement paste matrix, the middle gray is the ITZ regions, and the lightest gray phase is the inclusion or aggregate phase. The

matrix volume fraction is 0.517.
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obtained on the single-sphere results, this choice
should also have given adequate accuracy, though
it was not as carefully checked as were all the other
systems. The detailed parameters used for both 3D
systems are presented in Tables 2 and 3. Fig. 4
shows four parallel non-consecutive slices of the
200" system used.

4. D-EMT results

The D-EMT equations were solved for the four
(two 2D, two 3D) different microstructures for
which finite element results were obtained. By
varying both the microstructure and the shell
stiffness, a range of data was obtained to provide a
rigorous test of the D-EMT results.

Figs. 5 and 6 show the comparison between the
finite element results for the 2D microstructures
(symbols) and the numerically integrated D-EMT
results (lines). Both graphs show excellent agree-
ment, with the best agreement being at the greater
matrix area fraction (Fig. 6). This is not surprising,
as the largest matrix area fraction has the fewest
inclusions, and so is closer to the dilute limit,
where the D-EMT is virtually exact. However,
even for the 0.3 matrix area fraction system, Fig. 5,
the agreement is still very good. Tables 4 and 5
show the actual numbers in the graphs, for closer
comparison and future reference. Note that as the
matrix area fraction decreases, the moduli curves
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Fig. 5. Showing the D-EMT results for K and G compared to
the numerical results for the 2D 0.3 matrix area fraction model.
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Fig. 6. Showing the D-EMT results for K and G compared to
the numerical results for the 2D 0.5 matrix area fraction model.

become steeper. This is because the shell area
fraction (¢-) is becoming larger, and so changing
its moduli has a greater effect on the overall mo-
duli.

Fig. 7 shows the comparision between D-EMT
and finite element results for the 3D system with
one size of inclusions. The agreement is excellent,
as can also be seen in Table 6. Fig. 8 shows the
same kind of comparison but for the two-size
sphere 3D system. The agreement in this case be-
tween D-EMT and finite element data is almost as
good as in Fig. 7. The data for this case are in

Table 4
A list of numerical data and D-EMT results for the 2D, 0.3
matrix area fraction system

E.JE, K K G G
(data)  (D-EMT)  (data)  (D-EMT)

0.1 0320 0319 0.186  0.187
0.3 0.645 0643 0364  0.378
0.5 0855 0854 0479 0495
0.7 1.005 1.006 0.564  0.580
0.9 1.120 1.123 0631  0.644
15 1.351 1.360 0772 0.775
25 1.568 1.580 0910 0897
35 1.702 1.714 0.995 0971
45 1.797 1.809 1.055 1.023
5.5 1872 1.883 1.101 1.063
6.5 1.935 1.944 1.138 1.096
75 1.988 1.997 1.168 1.123
8.5 2036  2.044 1.194 1.147
9.5 2079 2.086 1.216 1.168

10.5 2119 2125 1.236 1.186
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Table 5
A list of numerical data and D-EMT results for the 2D, 0.5
matrix area fraction system

Table 6
A list of numerical data and D-EMT results for the 3D, 0.668
matrix volume fraction, one-sphere system (Fig. 7)

E,/E, K K G G E./E, K K G G
(data) (D-EMT) (data) (D-EMT) (data) (D-EMT) (data) (D-EMT)
0.1 0.401 0.397 0.226 0.227 0.1 0.455 0.436 0.233 0.238
0.3 0.665 0.663 0.370 0.378 0.3 0.613 0.602 0.300 0.311
0.5 0.812 0.811 0.449 0.460 0.5 0.720 0.713 0.346 0.357
0.7 0.910 0.910 0.502 0.513 0.7 0.799 0.795 0.381 0.392
0.9 0.979 0.981 0.540 0.551 0.9 0.861 0.858 0410 0.420
1.5 1.109 1.114 0.614 0.621 1.0 0.887 0.886 0.422 0.432
2.5 1.218 1.226 0.677 0.680 2.0 1.058 1.063 0.510 0.517
35 1.280 1.289 0.713 0.713 3.0 1.157 1.160 0.565 0.569
4.5 1.321 1.332 0.737 0.735 4.0 1.214 1.224 0.603 0.606
5.5 1.353 1.365 0.755 0.752 5.0 1.260 1.271 0.633 0.635
6.5 1.378 1.391 0.768 0.765 6.0 1.296 1.307 0.657 0.657
7.5 1.399 1.413 0.778 0.776 7.0 1.326 1.336 0.678 0.676
8.5 1.418 1.432 0.787 0.785 8.0 1.350 1.360 0.695 0.692
9.5 1.434 1.449 0.795 0.793 9.0 1.371 1.381 0.710 0.706
10.5 1.449 1.464 0.801 0.800 10.0 1.390 1.399 0.723 0.718
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Fig. 7. Showing the D-EMT results for X and G compared to

the numerical results for the monosize sphere 3D model. The
matrix volume fraction is 0.668.

Table 7. It should be recalled here that the finite
element results for the two-size sphere 3D system
were not checked as thoroughly as were the other
systems, so there could be a larger degree of error
in these results. It was found in the one-size sphere
3D system that increasing the system size for the
larger values of £, tended to decrease the overall
moduli. If the numerical results in Fig. 8 were to
drop by only a few percent, the already good
agreement with the D-EMT results would be
substantially improved.

0.0 2.0 4.0 8.0 10.0 12.0

6.0
E,JE,
Fig. 8. Showing the D-EMT results for X and G compared to

the numerical results for the two-size sphere 3D model. The
matrix volume fraction is 0.517.

5. Discussion and summary

One limitation of the D-EMT equations is our
ability (or inability) to match the microstructure of
composites (Torquato, 2001). In concrete, for ex-
ample, several modeling and experimental studies
have shown that in a typical concrete, the shell
regions are themselves overlapping and percolat-
ing (Winslow et al, 1994; Bentz et al., 1999;
Scrivener and Nemati, 1996). The form of D-EMT
considered in this paper does not reflect this fact.
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Table 7
A list of numerical data and D-EMT results for the 3D, 0.517
matrix volume fraction, two-sphere system (Fig. 8)

E»/E) K K G G
(data)  (D-EMT) (data)  (D-EMT)

0.1 0.346 0.327 0.183 0.189
0.3 0.537 0.526 0.269 0.283
0.5 0.676 0.668 0.331 0.346
0.7 0.785 0.779 0.381 0.396
0.9 0.874 0.869 0423 0.437
1.2 0.983 0.980 0.476 0.487
15 1.071 1.075 0.521 0.533
2.0 1.189 1.187 0.584 0.589
4.0 1.479 1.475 0.755 0.746
6.0 1.650 1.639 0.868 0.846
8.0 1.772 1.753 0.953 0.919

10.0 1.866 1.837 1.022 0.975

The model microstructures used to test the D-
EMT, therefore, were carefully constructed to
have non-overlapping and therefore non-perco-
lating shell regions. However, whether or not
percolation of a phase significantly affects the
overall properties depends on the contrast of its
properties with those of the surrounding phases
(Shane et al.,, 2000; Garboczi et al., 1995). In
concrete, the shell moduli are less than the matrix
moduli by a factor of at most 2-3, which is not
enough contrast for percolation to be important
(Shane et al., 2000). So this deficiency in D-EMT
should not significantly affect the accuracy of D-
EMT for the concrete problem (Garboczi and
Berryman, 2000).

The exact effect of this aspect of the D-EMT
was explored by creating a microstructure like that
shown in the lefthand side of Fig. 2. The same
number and type of inclusions were used, but now
the shells were allowed to be overlapping, al-
though phase 3, the inclusions, were still not al-
lowed to overlap. There was therefore the same
area fraction for phase 3, but the matrix area
fraction was 0.340, instead of 0.303, and the shell
area fraction became 0.238, instead of 0.275. The
shell overlaps caused a somewhat smaller shell
area fraction, and thus a larger matrix area frac-
tion.

Fig. 9 shows the numerical results, along with
two sets of D-EMT results. The first, the dashed
lines, are just the D-EMT results shown in Fig. 5.
These actually work quite well, with a maximum
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Fig. 9. Showing the D-EMT and numerical results for K and G
for the system when the shells were allowed to overlap. The
matrix area fraction is 0.340. The dashed lines are the D-EMT
results from the non-overlapping (no) shell case. The solid lines
are the D-EMT results for the overlapping (o) case, where the
true matrix area fraction was used (0.340 instead of 0.303).

error of less than 10% at the highest values of
E>/E,. Most real concrete materials have
0.1 < E,/E, < 2.0, and in this region the D-EMT
compares well with the numerical results. The
second set of D-EMT results is for the case of a
matrix area fraction of 0.340, which matches the
real microstructure. In the numerical solution of
the D-EMT equations, the variable is the matrix
area fraction, so it makes sense to use the actual
known value for the overlapping shell micro-
structure. In this case, there is significantly better
agreement with the numerical results, as good as
that seen in Fig. 5.

In the 2D models, the shell thickness was such
that the shell area fraction was comparable to the
matrix area fraction. This is why there was a sig-
nificant difference in area fractions between the
non-overlapping and overlapping shell micro-
structures. This would be the case also in the 3D
models considered as well. However, in most
concrete materials, the shell is very thin compared
to the inclusion diameters. The difference between
non-overlapping and overlapping shell volume
fractions would be quite small. Fig. 10 shows, for a
typical concrete aggregate (inclusion) particle size
distribution, the shell volume fraction if the shells
are considered to be non-overlapping, and the
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Fig. 10. Showing the shell volume fraction, ¢», vs. the inclusion
volume fraction, c;, for a 3D case where the size distribution of
the particles was that of the aggregates in a typical concrete
mixture. The three sets of curves are labeled with the thickness
of the shell phase in micrometers. The solid curves are the shell
volume fractions assuming no overlaps, while the dashed curves
are the Lu-Torquato estimate, which has been shown to be very
accurate for overlapping shells.

overlapping shell volume fraction as given by the
Lu-Torquato formulae (Lu and Torquato, 1992),
plotted vs. the volume fraction of the aggregate,
which is the only phase volume fraction that is
precisely known in concrete. The Lu-Torquato
formulae have been shown to be very accurate for
concrete problems (Garboczi and Bentz, 1997;
Garboczi and Bentz, 1998). The aggregate volume
fraction in concrete is typically from 60% to 70%.
Since the three-phase model thickness of the ITZ
in most concrete materials is 20 um or less, it is
seen that there is little difference between the shell
volume fraction for the two cases, which implies
that the fact of shell overlap in real concrete will
not make much difference to the utility of the D-
EMT equations in the elastic case.

Since EMT is an uncertain approximation
(having relatively crude control of the underlying
microstructure), the results of this paper are es-
pecially important in carefully showing the ex-
pected accuracy of the D-EMT equations. We
have shown that the new form of D-EMT worked
very well for the class of problems considered.
Checking the D-EMT against models for a mate-
rial like concrete, where the particle size distribu-
tion of the inclusions is quite a bit larger (about

two orders of magnitude) than that studied here,
has not been done. The main difficulty comes in
finding a numerical representation of the inclusion
structure using a digital image. The pixel width
must be at most 5 um, in order to barely resolve
the 20 pm ITZ regions. To look at even a 1000
mm°® cubic sample, which is small for concrete, a
2000° model must be considered, which would
require 1600 GB of memory, and require weeks or
months of CPU time to run (Garboczi, 1998). This
run time would of course be diminished by using
massively parallel computers, and the memory
required could be reduced by using an adaptive
meshing scheme, to optimize the finite element
mesh and so use fewer elements. The errors in-
curred using the D-EMT for a material like con-
crete could be significantly larger. But the excellent
agreement with the numerical data found here
strongly suggests that successful extensions to
concrete are possible.

Tables 4-7 in this paper should be useful for
other researchers who wish to test various forms of
EMT or other approximate formulas, by listing
accurate data for the linear clastic properties of
non-trivial random systems. Using the information
contained in Tables 1-3, the microstructures can
be recreated easily, in case new numerical methods
need to be tested. Modern computers and com-
puter methods can now be used for the quantita-
tive testing of approximate micromechanics
theories on non-trivial, non-analytic microstruc-
tures. This will allow a better sorting of various
equations into areas of greatest usefulness, and
should inspire the creation of better, more accurate
choices among the various theories available now
(Torquato, 2001) and possible in the future.
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