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Abstract

Most cellular solids are random materials, while practically all theoretical structure—property
relations are for periodic models. To generate theoretical results for random models the finite
element method {FEM) was used to study the elastic properties of open-cell solids. We have com-
puted the density () and microstructure dependence of the Young's modulus ( E)and Poisson's
ratio (v) for four different isotropic random models. The models were based on Voronoi tessel-
lations. level-cut Gaussian random fields, and nearest neighbour node-bond rules. These models
were chosen to broadly represent the structure of foamed solids and other (non-foamed) cellular
materials. At low densities. the Young's modulus can be described by the relation E x p". The
exponent n and constant of proportionality depend on microstructure. We find 1.3 < n < 3, indi-
cating a more complex dependence than indicated by periodic cell theories, which predict n = 1
or 2. The observed variance in the exponent was found to be consistent with experimental data.
At low densities we found that v= 0.25 for three of the four models studied. In contrast, the
Voronoi tessellation. which is a common model of foams. became approximately incompressible
{v=0.5). This behaviour is not commonly observed experimentally. Our studies showed the
result was robust to polydispersity and that a relatively large number (15%) of the bonds must
be broken to significantly reduce the low-density Poission's ratio to v 0.33. © 2001 Elsevier
Science Ltd. All rights reserved.
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|. Introduction

Manufactured cellular materials have been developed for a range of applications
(Gibson and Ashby, 1988) (e.g. insulation, light-weight reinforcement. and filtration),
and their natural counterparts (e.g. bone. sponge and wood) have a cellular structure
that optimises performance in a particular setting. The useful properties of cellular
solids depend on the material from which they are made. their relative density, and
their internal geometrical structure. It is important to link the physical properties of
cellular solids to their density and complex microstructure. in order to understand how
such properties can be optimised for a given application. Many studies have focused
on how local cell features, such as strut shape, affect the properties of periodic arrays
of cells. Some theoretical results for such models are generalisable to real materials,
but some are not. Equally important is the effect of disorder (e.g., isotropy), and the
interaction between cells on a rnesoscopic scale, as most real cellular solids are not
periodic. In this paper we study model isotropic cellular solids at scales (= 100 cells)
where these effects can be probed. Since no exact results exist for random porous
materials, new large-scale computational methods for analysing random microstructure
provide the only means of understanding their complex structure—property relationships.
This type of study has not been previously undertaken for three-dimensional models,
and is expected to yield new results. Our primary aim is to provide simple and accurate
structure—property relations for realistic models of cellular solids. The results also allow
us to test the validity of using simple (e.g. periodic) models to predict the properties
of random porous materials.

At low densities. experimental results indicate that Young's modulus (£) of cellular
solids is related to their density (p) through the relation (Gibson and Ashby, 1988):

E o\
Z_cl(l) —cp 1
E, (p) cr v

where £, and p, are the Young's modulus and density of the solid skeleton and
p=p/ps 1S the reduced density. The constants C and » depend on the microstructure
of the solid material. Similar relations hold for the bulk and shear moduli, with possi-
bly different values of C and ». The value of » generally lics in the range 1< n < 4,
giving a wide range of properties at a given density. Experimental evidence suggests
that =2 for open cells. The Poisson's ratio has been thought to be independent of
density (Gibson and Ashby. 1988).

The complex dependence of C and » on microstructure s not well understood. and
this remains a crucial problem in the ability to predict and optimise the elastic propenies
of cellular solids. At the local or cellular scale. important variables include the cell
character (e.g. open or closed), the geometrical arrangemen: of the cell elements (e.g.
angle of intersection), and the shape of the cell struts or walls (e.g. curvature. and
cross-sectional shape and uniformity). At a larger scale. the geometrical arrangement
of the cells is also crucial. The values of both C and » will depend on whether the
material is periodic or disordered.

Most theoretical attention has been focused on simple three-dimensional cell struc-
tures with straight struts (or walls) arranged in periodic arrays at low densities. In
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this limit, explicit solution of the equations of elasticity can be avoided by using thin
beam or plate theories. These results have elucidated some of the basic mechanisms
of deformation. and their influence on the overall properties.

If a periodic open-cell solid has ’straight-through’ struts that traverse the extent of
the sample. deformation occurs along the strut axis, and the moduli varies in direct pro-
portion to the density (Cent and Thomas, 1959: Ko, 1965; Christensen. 1986) (n =1).
It the struts are finite. bending is activated at their intersection points and the Young’s
modulus can be shown tu vary quadratically with the density (Ko, 1965; Gibson and
Ashby. 1982: Warren and Kraynik. 1997)(» =2) in agreement with experiment. In ad-
dition. the importance of strut twisting has also been considered (Warren et al.. 1997).

The ‘tetrakaidecshedral’ foam model, in particular. has been the subject of many
recent studies (Zhu et al., 1997a; Warren and Kraynik. 1997: Grenestedt, 1999: Chris-
tensen, 2000). The cells of the model uniformly partition space, and are defined by
truncating the comers of a cube giving eight hexagonal and six square faces. The foam
has a relatively low anisotropy (Zhu et al.. 1997a) (the Young‘s modulus varies by less
than 10% with direction of loading), and is thought to be a good model of isotropic
foams. However, the model exhibits unusual behaviour that has not been confirmed
in real materials. Specifically, the Young’s modulus varies quadratically with density
but the bulk modulus only varies linearly with density (Zhu et al.. 1997a; Warren
and Kraynik, 1997). In the low-density limits this corresponds to a Poisson‘s ratio
of va 0.5 indicating nearly incompressible behaviour. In contrast, typical foams have
0.1 < v <04 (Lakes, 1987).

There have been scveral attempts to incorporate isotropy in simple models of cellular
structures. Christensen (1986) treated the case of straight-through struts. which does
not reproduce the quadratic density dependence of either the bulk or Young’s modu-
lus, while Warren and Kraynik (1988) examined the case of a rotationally averaged
tetrahedral joint. The model predicts the same unusual linear dependence of the bulk
modulus on density as the tetrakaidecahedral model. As barren and Kraynik (1997)
note, regular tetrahedra do not pack to fill space. and so the model cannot represent a
real foam.

From the foregoing discussion it is clear that more complex random models are nec-
essary to improve predictions for ccllular solids. since periodic models do not capture
all the phenomena observable in real cellular solids. There are two main problems in
studying random models. First. a sutfictently accurate model of the microstructure must
be developed. Second. the propertos of the model must be accurately evaluated. We
emphasise that there are no exact ::nalytical calculations available for general random
materials. so that numerical methods become necessary.

Large-scale computational methc ds (Garboczi and Day. 1995: Poutet et al.. 1996)
and sufficient computational power now exist for measuring the properties ut complex
digital microstructures with a reasonable degree of complexity. One route for property
prediction is to directly image the porous structure. and then use a numerical method
to predicts its moduli (Nieh et cl. 1998). This method can work well for a particular
microstructure. However. it is also important to study how changes in microstructure
atfect properties (c.g.. to guide optimisation). Statistical models. which allow variation
of the density and structure. are ideally suited for this purpose.
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There has been recent progress in this direction. Disorder and imperfections have
been shown to play a significant role in degrading the stiffness and strength of two-
dimensional structures (Silva et al., 1997; Chen et al., 1999). It is important to ex-
tend these studies to three dimensions in order to make quantitative statements about
isotropic materials. Finite element methods have been used to study the properties of
three-dimensional random open-cell Voronoi tessellations (Van der Burg et al., 1997).
The similarities between the mathematical definition of the Voronoi tessellation and
the physics of foam formation make the model a natural choice for cellular solids.
A key question is whether the model can account for the properties of real cellular
materials. As discussed above, the tetrakaidecahedral model, which is an example of
the tessellation of a regular lattice, actually exhibits approximately incompressible be-
haviour in the low-density limit. It is interesting to see if this behaviour is due to
the inherent nature of the tessellation. Two-dimensional studies of random tessellations
do show near incompressibility (Silva et al., 1997), and it is therefore interesting to
study the three-dimensional case. Since foaming is only one route to generating cellular
solids (Gibson and Ashby, 1988), it is useful to investigate different types of cellular
structures via alternate statistical models.

In this paper we use a finite element method (FEM) (Garboczi and Day, 1995) to
estimate the elastic properties of four model cellular solids over a range of densities.
The models are generated using tessellation methods (Stoyan et al., 1995), level-cut
random field models (Berk, 1987), or by simply linking random nodes in space with
struts. The models each have distinct microstructures, and are chosen to be broadly
representative of the morphologies observed in real materials. The Young’s moduli of
the models can be described in terms of simple two parameter relations [e.g. EqQ. (1)
in the low-density limit]. The results demonstrate the effect of microstructure, isotropic
disorder. and finite density on the properties of cellular solids, including both Young’s
modulus and Poisson’s ratio. The results can be used to predict the properties of cellular

solids if their structure is similar to one of the models, or be used to accurately interpret
experimental data.

2. Theoretical and semi-empirical models

We first review a selection of results that are available for periodic cellular solids.
The results illustrate the basic mechanisms of deformation, and provide benchmark
tests for the FEM. These results, gathered from the literature, also provide useful
comparisons with the FEM results for random models discussed in subsequent sections.

First consider a simple cubic array of uniformly spaced intersecting aligned struts.
From elementary considerations, the Young’s modulus is E/Esz§(p/ps) for uniaxial
compression along a strut axis. The linear dependence of modulus on density is typ-
ical of model foams that contain ‘straight-through’ struts that traverse the extent of
the sample; longitudinal compression or tension being the only mode of deformation
(Christensen, 1986; Warren and Kraynik, 1988; Zhu et al., 1997a).

Since most foams do not contain straight-through struts, beam bending comes into
play (Ko, 1965; Gibson and Ashby. 1982; Warren and Kraynik, 1988; Zhu et al.,
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Fig. 1. Periodic models of open-cell solids. (a) The parameters used to define a simple model. (b) A 3-D
version of the simple model. (¢) An open-cell foam considered by Ko (1965). (d) A unit cell of the
tetrakaidecahedral model.

1997a). This is most easily seen in the unit cell of the simple open-cell model shown
in Fig. I(b). The cell is a modification of the model shown in Fig. 5.6 of Gibson and
Ashby's ( 1988) book. since the original model could not be periodically extended. The
solid fraction is

) 3d°L + 18wd” —6d® d? :
_[—:.)( + 123 N( (3—}—]8%), (2)

P (L +d) E
where the approximation is for thin beams d <w, L. and the length scale parameters are
shown in Fig. 1(a). Now consider the deformation of the cell if it is compressed along
the x-axis (100 axis) by a force /. The Young's modulus is E =( //L*)/(8L-L) where
ol is the total deformation. From thin beam theory (Landau and Lifshitz. 1959), the
deformation of a thin beam of half-length w with clamped ends due to an applied force
f is 0L = fw' 24EI,. Here |, is the principal moment of inertia. with /,, =d4* 12 for
a square beam of width d. The deformation is halved because two beams intersect at
the point of application. but as this occurs twice in the unit cell the total deformation
is the same as that for a single beam. Thus in the thin-beam limit we have.

Ep  2d° L :
o C=2=(3-182 (3)

The quadratic dependence of the modulus on density is typical of foams where beam
bending is the principle mechanism of detormation. Ko (1965) demonstrated this be-
haviour for the model shown in Fig. | ( ~ Jloaded in the {1 | |. direction. Note that
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the calculation leading to Eq. (3) is illustrative only. In reality, the beam ends are not
clamped, so the pre-factor is only an approximation.

Zhu et al. (1997a) and Warren and Kraynik (1997) derived analytic results for
the open-cell tetrakaidecahedral model (Fig. 1(d)) packed in a body-centred cubic
array. The results provide a useful check of the FEM (see Section 3). and demonstrate
incompressible behaviour (v — 0.5) at low densities. The results of Zhu et al. for the
Young's modulus and Poisson's ratio for strain parallel to the {10 0} axis are,

Eyo 2 p\ )" L 1= Czlp/ps)
E, "3CZ<ﬂs) (HCZA) ' "2_2<1+Cz(p/pe)>' ©
where C; = 8v21/4* depends on the cross-sectional area 4 and the second moment of
the area /. For equilateral triangles Cz = 1.09 (Zhu et al., 1997a), and for cylindrical
beams C; = 0.900. Note that the Poisson's ratio depends on orientation. The notation
vi2 corresponds to expansion measured in the (0190} or (00 I) directions. As mentioned
above, the foam is relatively stiff under uniform compression, with the bulk modulus
given by K/E, =5pips.

We now review semi-empirical and analytic results for random foams. The most
commonly used result for open-cell foams is (Gibson and Ashby, 1988)

E 2
—zC(—p—) , VR
E; Ps

where the pre-factor C = 1 and Poisson's ratio have been empirically determined. This
semi-empirical formula broadly describes data obtained for many different types of
foams.

There have also been several methods proposed to derive analytic predictions for
isotropic foams. A typical result, which performs an isotropic average of randomly
placed long thin (i.e. straight-through) struts. has been derived by Christensen ( 1986).

E_L(ey L ©
E, 6\ ps 4

Christensen notes that the results are equivalent to those of Gent and Thomas (1959).
In the low-density limit. the same results have been derived for a rotationally averaged
simple cubic structure (Warren and Kraynik. 198%). The absence of bending in these
models is indicated by the linear dependence of the Young's modulus on density.

Warren and Kraynik ( 1988) have derived analytic results for the properties of a foam
comprised of isotropically oriented tetrahedrally arranged struts. The geometry can be
visualised as a node located at the centre of a tetrahedron with equilateral faces, the
four struts (separated by an angle of 109.57) conneciing the central node to the vertices.
There are eight nodes of this type adjacent to the ccntral node in Fig. i(c). The results
are

(5)

| —

E  Cwp'(11 +4Cyp) LT Cup)10-8Cup)

E, 10+31Cwp ~4CLp° S 210 = 31Cw p - 4G P

(7)

where p=pips and Cw =18/ v3A4. For struts ot equilateral triangular cross-section
Cw =1. while for a circular cross-section Cy, = 0.827 As expected from the definition
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of the model, beam bending is the primary mode of deformation for uniaxial com-
pression. However, Egs. (7) imply K £ :})p indicating that bending is not activated
under pure compression. Like the tetrakaidecahedral model, the Poisson's ratio of the
model therefore tends to 0.5 at low densities.

3. Elastic properties of model cellular solids

The finite element method usecs a variational fonnulation of the linear elastic equa-
tions. and finds the solution by minimising the elastic energy via a tast conjugate
gradient method. The digital image is assumed to have complete periodic boundary
conditions. Details of the theory and copies of the actual programs used are reported
in the papers of Garboczi and Day (1995) and Garboczi ( 1998).

Given a digital microstructure. the FEM provides a numerical solution of the elas-
ticity equations. The accuracy is only limited by the finite number of pixels which can
be used (around 10° in this studv). We consider continuum models with a fixed length
scale, such as cell size. and measure the properties of a 7 x T < 7 um region. divided
into A7° cubic pixels. ticre T is much greater than the cell size. If the foam were
regular and periodic. just Hne unit cell would be sufficient. In this section we discuss
the sources of error and ::vw thev can be minimised.

Discretisation errors oc.ur in the FEM when there are insufficient pixels in a solid
region to correctly model . ontinuum elasticity. To check the effect of resolution for the
FEM we measured the Y ung's modulus of the simple cell model shown in Fig. 1{b)
(withL =6. w=2and ¢ | pm) at finer and finer resolutions A/ =7.14.....77. Here.
and in subsequent calculations. we use E, =1 GPa and a solid Poisson's ratio of
v, = 0.2, The results are shown in Fig. 2ca). An empirical tit of the foam £\ = E,,! -~
aM ™" is used to determine the ‘'exact’ modulus: the linear nature of the graph
(Fig. 2(a)) tor .1t > 21 confirms the ansatz. The crror is less than 10% tor M > 28.
which corresponds to a strut thickness of four pixets. As the square beams have
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Fig. 3. The properties of tetrakaidecahedral cell model shown in Fig. 1(d) as a function of density. (a) The
Young's (o). bulk (()) and shear (A)modulus. The lines correspond to Eq. (4) with ¢z —0.9.(b) The
Poisson ratio viz (o} compared with theory (line) [Eq. (4).C7 =0.9]. The results () for the simple cell
model shown in Fig. 1(b) are also plotted.

stress concentrations at the comers, we expect the code will perform better for model
foams with rounded edges. The extrapolated numerical value Eecaei/Es =0.16 is 20%
higher than the theoretical value E4/Es =0.13 [Eq. (3)], the difference being attributed
to the finite density of the model (p/ps=0.14) and the assumption of clamped
ends.

To check the density dependence of Eq. (3) we measured the Young's modulus and
Poisson's ratio of the simple cell model. We used the parameters L =60, n=20 pm
and varied d over the range 1-15um at a resolution of 1 pm/pixel (giving a density
range of p/ps = 0.0024-0.24). The results for £,oq are shown in Fig. 2(b) and confirm
that Eq. (3) with C = 3 IS a reasonable approximation.

We also measured the properties of the open-cell tetrakaidecahedral model
(Fig. 1(d)) with cylindrical struts. We employed a unit-cell size of A =80 pixels
with side length 7 =80 pum and vaned the cylinder radius in the range » =1-8 um.
The results, shown in Fig. 3(a), approximately agree with the theoretical formulae
[Eq. (4) with Cz =0.9] in the low density limit. In Fig. 3(b) we show v,» as a func-
tion of density, as well as v,» for the simple cell model (Fig. 1(b)), which does not
exhibit incompressible behaviour.

For random foams, we also need to consider finite size effects. If there are too few
cells in the computational cube. the estimates will not correspond to the properties of
a macroscopic system (which may have many thousands of cells). Preliminary studies
indicated that about 100 cells are necessary (roughly five cells in each direction) to keep
the finite size errors of the same order as the discretisation errors. Finally, one has to
determine the number of samples N, that need to be studied to ensure that the statistical
variation of individual samples does not bias the results. For the sample size considered,
we found five samples were sufficient. The resulting statistical errors were generally
less than 10%, but at the lowest densities we measured, could increase to 20%.

In this study we restrict attention to the case where the Poisson's ratio of the
solid material is v, =0.2. For general porous three-dimensional materials we have
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recently shown (Roberts and Garboczi. 2001) that the Young's modulus s practically
independent (to within 3%) of v,. Morcover, at low densities. the Poisson ratio of the
porous material also becomes independent of v;.

3.1. Voronoi tessellations

The most common models of cellular solids are generated by Voronoi tessellation
of distributions of 'seed points' in space. Around each seed there is a region of space
that is closer to that seed than any other. This region defines the cell of a Voronoi (or
Dinchlet) tessellation (Stoyan et al., 1995). Placing a solid wall at each face of these
cells results in a closed-cell Voronoi tessellation. An open-cell Voronoi tessellation
results if only the edges where two cell walls intersect are defined as solid. For several
different random (e.g. Poisson) distributions of seed-points. the average number of faces
per cell falls in the range 13.7-15.5 (Oger et al., 1996).

The Voronoi tessellation can also be obtained (Stoyan et al.. 1995) by allowing
spherical bubbles to grow with uniform velocity from each of the seed points. Where
two bubbles touch, growth is halted at the contact point, but allowed to continue
elsewhere. In this respect the tessellation is similar to the actual process of liquid
foam formation (Van der Burg et al.. 1997). Of course. physical constraints such as
minimisation of surface energy will also play an important role. Depending on the
properties of the liquid and the processing conditions. the resultant solid foam will be
comprised of open and’or closed cells.

The amount of order in the Voronoi tessellation depends on the order in the seed
points. If regular arrays are such. ordered amsotropic foams will result. Indeed the
open-cell models used by Warren and Kraynik (1997), Zhu et al. (1997a) and Ko
(1965) turn out to be equivalent to Voronoi tessellations of the body-centered cubic
(BCC) (Fig. 1(d)). face-centered cubic (Fig. l(c)), and hexagonal close-packed lattices.
If a purely random (Poisson) distribution of points is used. highly irregular isotropic
foams containing a wide size distribution of large and small cells will result.

It is worth noting that the tessellation of the BCC array (the tetrakaidecahedral cell
model discussed above) is a reasonable approximation to the foam introduced by Lord
Kelvin (Weaire and Fortes. 1994. Warren and Kraynik, 1997; Grenestedt. 1999). The
cells of the Kelvin foam are uniformly shaped. fill space. and satisfy Plateau's law of
foam equilibrium (three faces meet at angles of 120", and four struts join at 109.5 ).
In order for this to be true. the faces and edges are slightly curved (Weaire and Fortes.
1994, unlike those of the tetrakaidecahedral cell model.

In this study. we wish to examine foams that have a roughly uniform cell size.
but which are still random and isotropic. A non-periodic. evenly spaced. and isotropic
arrangement and seed points Is therefore necessary. Such a distribution is provided by
the centre points of equi-sized hard spheres in thermal equilibrium (Torquato, 1991).
If the spheres are quite closely packed the Voronoi cell size will be approximately
equal to the sphere diameter «,. The distributions were generated using a Monte-Carlo
algorithm. To move a sphere we chose a set of (20) random directions and jump
distances. Of the allowable jumps (i.e. those which did not overlap another sphere) we
chose one at random. Each sphere was visited once during a Monte-Carlo step. and
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several thousand steps were used to randomize the system. The initial conditions were
defined by placing 122 spheres in a simple cubic array within a periodic cube of size
125d4;. Periodic boundary conditions were employed, as well as a coarse grid array, so
that only a fraction of the spheres had to be checked for overlaps prior to each jump.
We checked that the resultant random packing resulted in isotropic cellular solids (see
below).

A pixel in the digital model is defined as belonging to an edge if it is approximately
equidistant from at least three sphere centres. The density of the model is changed by
varying the thickness of the cell edges. An illustration of the open-cell model (with
only 63 cells) is shown in Fig. 4(a). Since we are specifically interested in isotropic
foams, we confirmed that the cell edges showed no orientational preference. This was
done by measuring the probability distribution of the polar (¢) and azimuthal (&)
angles of each edge from a fixed direction. We found ¢ was distributed with density
p(p)=sin¢ on [0,m) and  was uniformly distributed on {0,2r), which corresponds to
an isotropic distribution. The maximum and average relative errors were, respectively,
9% and 5%, which we attribute to the sample sizes considered. The average strut
length is 0.45d,, and for comparison with other models we show the entire strut-length
probability distribution in Fig. S(a).

In the low-density limit, the Young's modulus of the open-cell tessellation can be fit-
ted by Eqg. (1) to within a maximum of 5% relative error with the parameters C =0.930
and n=2.04 or

E o 204 :
= 0.930( — for 0.04< - <0.5. (8)

S pS f)s

The FEM data and Eq. (8) (solid line) are shown in Fig. 6. This simple scaling
relation cannot reproduce the high-density behaviour (E — E, as p — p; unless C is
fortuitously equal to one). Rather than choosing a three- or four-parameter relation to
describe the full density range, we instead use the equation

: /p—p())m( p)
p—— = — . (9
E; (l‘pO P Ps )

which has been found useful for describing the properties at high densities. With
m =3.12 and p, = — 0.0056, the formuls describes the FEM data to within 5% for
0.04 > p p, < 1. The fit is shown on tig. 6 as a dashed line. Note that the fitting
parameters p, and m are not the conicntional percolation threshold and exponent.
However, since the actual percolation threshold of the Voronoi tessellation is expected
to be zero, it is interesting, but perhaps fortuitous, that the value of p, is quite small.

Interestingly, just like the periodic models. the bulk modulus shows a near linear
decrease with density. The low-density limit of the bulk modulus can be described by
Eq. (1) with ¢ =0.209 and »n =1.22. For the shear modulus, C =0.404 and n =2.12.
At the lowest density (p:ps =0.05), the Poisson’s ratio is relatively high (v =0.44) and
the trend indicates that v — 0.5 as p p. — 0.
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Fig. 4. Random muodeis of open-cell solids. (a) The open-cell Voronor tessellation with p p, =0.15. The
model shown has o cells. whereas the computations were performed on samples with 125 cells. (b)

The low-coordinatior number (2= 3.3) node-bond model with p p, =013 (¢) A digital model of the
high-coordination ramber toam (2= 12) with p p, = 9,073 d) The vpen-cell Gaussian random field model
with reduced densi o o0 =00

3.2 Node-hond maodels

As mentioned above. cellular solids are not necessarily derived from a liquid foam.
For example. muiallic foams may be generated by burning out paniculate inclusions or
infiltrating a po:ous matrix which is later removed by leaching. Other cellular solids.
such as bone ard sponge. arc' generated by complex organic processes (Gibson and
Ashby. 1988). Since simulating the actual physics and chemistry of the development of
cellular material. Is beyond the scope of this paper. we instead consider three different
statistical mode!s that have teatures resembling thosc observed in real cellular solid
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materials. In this section, we consider node-bond models with variable coordination
number (i.e. the number of bonds connected to each node) generated from random
seed points.

There are several methods of generating open and closed-cell cellular models from
seed points. An example is provided by the Delaunay (or Voronoi-dual) tessellation
(Stoyan et al.. 1995). Starting from a Voronoi tessellation. the cell edges are now
defined by a rod placed between two points in space which share a common face.
Since the cells of a Voronoi tessellation have approximately !4 faces (Oger et nl.,

1996). the coordination number of an open-cell Delaunay tessellation will also be
around === 14,
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It is possible to define a more general model, called in this paper a ‘node-bond’
model, by placing a bond between each seed (or node) and its nearest neighbours.
The coordination number, average bond length, and bond-length distribution depend on
the rules used for defining the ncarest neighbours of a given node. For example, the
coordination number - can be fixed by connecting a node to its = nearest neighbours.
The coordination number can also be allowed to fluctuate if nodes are only connected
when node-node distance is smaller than some specified value. If the resulting average
coordination number of the foam is around 14, we expect the model to be simiiar to
an open-cell Delaunay tessellation.

To be specific, we connected the centres of an equilibrium hard-sphere (diameterd,)
distribution that were closer than the distance Fdy (F> 1). We employed the same
five distributions of 122 points used for the Voronoi tessellation. To generate the mi-
crostructure for the elastic computations we placed a cylinder of radius r between each
pair of connected points. Hemi-spherical caps were added at cach end to avoid gaps
occurring between cylinders that intersect at an angle. An illustration of the node-bond
model is shown in Fig. 4(b).

We first chose F = 1.5, which yielded a high-coordination number foam of Z = 12.5
with average bond length of & dy =1.16. This model is illustrated in Fig. 4(c). which is
a digital model actually used in the elastic computations. To simulate a low-coordination
number foam we also studied the case F = 1.1, which yielded Z=5.5 with an average
bond length of 4 d, = 1.04 (Fig. 4(b)). Dangling branches in the model were avoided
by deleting all nodes with less than two ‘nearest’ neighbours. The process was re-
peated until all nodes has two or more nearest neighbours. For F =1.1. only two or
three nodes were deleted from each sample. In spring lattices. this iterative removing
of low-connectivity nodes has been calied ‘trimming‘ (Feng et al.. 1985). For compar-
ison with other models. the probability density of bond lengths and local coordination
numbers are shown in Fig. 5.

The Young’s modulus of the high-coordination number model can be described to
within a 4% relative error by

for 0.04 < £ < 0.25 (10)

and to within 4% for 0.1 < p py < | by Eq. (9)with py = — 0.198 and m =2.80. The
Young*‘s modulus of the low-coordination number model can be described to within a
5% relative error by

1.¥1
c |
—0.535<ﬁ> for 0.026 < ¥ <035 (11)
Es Ps Ps

and by Eq. (9) with pg = — 0445 and m ==4.27 for 0.25 < p p, € 1. The FEM data
and Eqgs. (10)and (11) are shown in Fig. 7. The behaviour of the Poisson’s ratio of
this model will be discussed in Section 4.

3.3. Cellular solids bused on Gaussian random fields

Very different types of models can be generated using the level-cut Gaussian random
field (GRF) scheme. One starts with a GRF field »(r). which assigns a (spatially
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correlated) random number to each point in space. A two-phase solid-pore model (Berk,
1987; Roberts and Knackstedt, 1996) can be defined by letting the region in space
where —f < v(r) < f be solid, while the remainder [|v(r)| = f] corresponds to the
pore space. Open-cell solids can be obtained from the model by forming the intersection
sets of two statistically independent level cut GRF models (Roberts. 1997). An example
is shown in Fig. 4(d). Details for generating the models have been previously described
(Roberts and Garboczi. 1999).

The model (Fig. 4(d)) shows a highly irregular structure. with curved 'struts' of vari-
able thickness. The morphology is reminiscent of the nickel and copper cellular solids
in Fig. 2.4 of Gibson and Ashby (1988) and the sponges shown in Fig. 2.5 (Gibson
and Ashby. 1988) and Fig. 31 of Weaire and Fortes (1994). The small-angle scattering
intensities of the model have also been shown to be consistent with experimental data
for organic aerogels (Roberts. 1997). At low densities, the Young's modulus can be
described (to within 12%%) by

=420 = for 105 < £ < 0.20. (12)
Eq \ps
Eq. (9) describes the higher density data (p:ps > 0.2) with m =2.15 and pg =0.029
to within 4% (and the low-den-1ty data to within 12%). The data and fitting formulae
are shown in Fig. 7.

The data show a small. bur persistent, curvature as the density decreases below
0.2. This could be interpreted us indicting a finite percolation threshold. However, by
construction. the model actually remains connected at all solid fractions. indicating that
the curvature is due to resolution crrors. To see that the model always percolates, note
that the underlying two level-cut GRF remains connected at all finite densities. This
follows from the fact that there must always be a thin surface separating the regions in
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space where v > 0 and v < 0. The struts of the intersection model correspond to the
lines where the surfaces of two independent two level-cut models intersect. Hence they
will exist at all densities. and the model does not have a finite percolation threshold.

4. Comparison of FEM results with existing theory

The Young's modulus and Poisson's ratio of the open-cell foams are shown in
Figs. 8 and 9 along side four relevant theories. For low densities (0.04 < p p, < 0.15),
data. for the high-coordination number node-bond model (Fig. 4(c)) is reasonably well
described by Christensen's results for isotropic foams with straight-through struts, in-
dicating that longitudinal compression dominates the deformation. The power law de-
pendence (1 =1.3) 1s higher than predicted (n = 1), because. being random. the model
has no completely straight-throuyh struts. This does not lead to significant bending
(tndicate.! by a quadratic decay) because there are sufficient struts emanating from
each nece 1o 'lock’ the relative node positions. and reduce the bending component
of detorimation. In contrast. data for the low-coordination number node-bond model
(0.03 <« , p, < .30} are well described by the semi-empirical result given by Gibson
and Ashby (1988) (n = 2). This confirms the predominance of the beam-bending mech-
anism tor deformation for this model. The Young's modulus of the open-cell Voronoi
tessellatin also follows the conventional quadratic decay with density, but as noted
above (Fig. 6). the bulk modulus actually scales linearly with density. In contrast to
Van der Burg et al. (1997). we do not find that the random tessellauon is appreciably
stiffer thun the tetrakaidecahedral model. This may be due to the tact that our results
were obtuined at @ minimum density around two-told higher than that used by Van der
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clature as in Fig. 8 is used.

Burg et al. Moreover, the relatively small increase (2 x 10~} they observed would be
quite hard to discern in our results.

The modulus of the open-cell GRF model is considerably lower than any of the pre-
dictions. In this case. the 'struts’ of the network are themselves bent. therefore allowing
greater deformation. Moreover. the struts have varying thicknesses. Since the stiffness
of the struts is limited by their thinnest sections, the mass in the thickest regions con-
tributes little to the overall stiffness. This has the effect of reducing the moduli at a
given density, compared to models having struts with a uniform cross-sectional area.

Results for the Poisson's ratio of the open-cell foams shown in Fig. 9. Data for the
high- and low-coordination number node-bond models and open-cell GRF model are
approximately constant, showing a slight increase from the solid value of v=0.2 (the
solid value) to v~ 0.22 ~ 0.24 at low densities. We have recently shown (Roberts and
Garboczi. 2001) that the Poisson's ratio of a wide range of three-dimensional porous
materials converges ncarly linearly from the Poisson ratio of the solid material (vs)
at high densities to a microstructure-dependent fixed point at low densities. Therefore,
if the fixed point is close to v,. as it is for the three models under discussion with
v =0.2. v will be nearlv independent of density as observed in the data. The actual
low-density limits are close to 0.25. uhich is predicted by numerous independent the-
ories; see Eq. (6)for example.

In contrast. the Poisson's ratio of the open-cell Voronoi tessellation shows a sharp
increase towards v = 0.5 with decreasing density. This is associated with the foam being
much stiffer under uniform compression (n =1 for the bulk modulus) than under shear
or uniaxial compression (n = 2). A Poisson's ratio of 0.5 is the highest attainable by an
isotropic material and physically means that if a cubic sample is uniaxially compressed.
the decrease in volume in the direction of compression is exactly balanced by the



AP Roberrs. EJ Garboczi £ 0 Mech., Phys, Solids 30 2002 33 353 49

lateral expansion ot the material in the perpendicular directions. This 'incompressible’
behaviour is observed in solid rubber and in liquids. but not generally in solid foams.

The unusual density dependence of both the bulk modulus and Poisson's ratio is
actually very well described by the Warren—Kraynik results [Eq. (7)] tor isotropically
averaged tetrahedral joints. and qualitatively similar to the results for the tetrakaideca-
hedral foam [Eq. (4)]. It iS easy to understand the behaviour of the simple models. If
the unit cell of the tetrakaidecahedral foam model is placed under uniform compression
the struts are only subject to axial (not bending) deformation. and hence the bulk mod-
ulus varies linearly with density. Alternately. if equal forces are applied along each axis
of the four struts of a 'perfect' tctrahedral element. the central node is not displaced
and the struts are only axially compressed. This 'node-locking® will not occur under
shearing or uniaxial compression. therefore allowing bending ot the struts in each case.

In general. four cells touch at each node of the Voronoi tessellation (Stovan
et al.. 1995), so that there arc four struts associated with each nude in the open-cell
model. Therefore. approximating the behaviour of the model by tetrahedral elements
would seem appropriate ( Warren and Kraynik. 1988). However. one would expect the
disorder in the random Voronoi tesscllations to allow significant bending of the struts
to occur under hydrostatic compression. Our results indicate that rhis is not the case,
and it is interesting to investigate this behaviour in more detail.

To check if' the ettect was restricted to our choice of seed distributions. we mea-
sured the Poisson's ratio of a low-density sample where the points were uncorrelated
(t.e.. a Poisson distribution). The Poisson's ratio was found to only decrease by 10°%
(from 0.44 to 0.4 ) at p,p, =0.05. Given that we expect v to increase from 0.4 at
still lower densities (¢.g. Fig. 9). this indicates that random Voronoi tessellations are
nearly incompressible as p p, — 0 irrespective ot the underlying seed distnibution.
One explanation might be that the local strut arrangement is always close to a perfect
tetrahedron. To check this we measured the distribution of the six inter-strut angles 1
(five are independent). For the hard-sphere seed points used in our moduli calculations
we found (x; =110 with standard deviation ¢ =\ x*; — {%)° =22 . For Poisson dis-
tributed seeds we found {x) =111 and o =36 . These results indicate that Warren and
Kraynick's assumption of tetrahedral elements works very well for quite large angular
deviations (from 109 ) between the struts. If the coordination number is not equal to
four. one would not expect the assumption to provide a good approximation (e.g. the
node-bond models). We also measured the cffect of deleting struts on the Poisson's
rario ot the models. For a 2% reduction in mass. the bulk modulus decreased by 22%.
while the Young's modulus only decreased by 6%. A 13% reduction in mass was
required to reduce the Poisson's ratio to v = 0.33.

5. Comparison of FENI results with experiment

To illustrate the utility of the FEM we compare the computed results to experimental
data. Since real foams can have densities lower than those we are currently able to
computationally siudy. we use the formula E E, =C(p p,)" t0 extrapolate the results.
This is justified by the fact that the low-density FECI data appear to tall on a straight
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Fig. 10. Young's modulus of open-cell foams. The data is for alumina (Hagiwara and Green, 1987)
(O.Es = 380GPa, p; =3970kg/cm?), rubber latex obtained by Lederman (197 1) (CJ) and Gent and Ihomas
(21959) (A),open-cell foams (Gibson and Ashby. 1982) (%), and reticulated vitreous carbon (Christensen,
1986) (O, Es =6.9GPa). The lines corresponds to the four open-cell FEM theores derived in this paper;
high (- .-) and low ( y coordination number foams, open-cell Voronoi tessellation (——) and the
open-cell Gaussian random field model (- - ).

line when plotted against log-log axes. Accurate comparison of theoretical and exper-
imental results is hindered by the imprecision involved in estimating the properties of
the solid skeleton, E, and p,. We report E, and p, when they have been given. but
some data sets are reported only in terms of £/E, and p/p,. Some of the data sets we
have taken from the literature have been previously summarised (Gibson and Ashby,
1988; Green, 1985).

Data for open-cell foams are compared with the open-cell FEM derived theories in
Fig. 10. The data for rubber latex foam lies above the line E E, =(p/p,)* and agree
reasonably well with the FEM result for high-coordination number node-bond mod-
els. If the estimated value of E, is correct. this suggests that the coordination number
of the foam is quite high. The single data point ({) obtained for a carbon foam
(Christensen, 198t falls on the same line. A micrograph in the reference indicates
that the struts were tetrahedrally coordinated. unlike the model. Note that the normal-
isation constant £ =6.9GPa used by Christensen seems low compared to the value
K, =24 GPa (E,=K, if v :§) adopted for carbonised aerogels (Pekala et al., 1990).
Indeed. if E, =24 (;Pa is assumed, the data points falls close to the line £.E, =(p/ps)*.

The data for porous alumina agree reasonably well with the predictions of the
open-cell GRF madel. However, micrographs of the structure indicate a structure closer
to that of the open-cell Voronoi tessellation (with occasional closed faces). so the
agreement seems fortuitous. Data for the open-cell materials considered by Gibson and
Ashby ( 1982) is seen to agree well with the FEM results for the low-coordination
number node-bond model and open-cell Voronoi tessellation.
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1990). The circles corresponds to data from Gross et al {1997) for an uncarbonized organic aerogel pre-
pared under different conditions The lines correspond\ to the open-cell CGaussian random field { ——) and
the conventional theory K K, =(p psI* (- - —)

In a prior paper (,Roberts.1997), it was suggested that open-cell GRF’s provide use-
fui models of organic aerogels. It was shown that the models could reproduce the scat-
tering intensities and predict the contribution of the solid network to the overall thermal
conductivity of these low-density materials. These prior results provide evidence that
the model is reasonable. but it is also important to compare the elastic properties with
experimental data. Data for the bulk modulus of open-cell organic aerogels is compared
with the FEM results in Fig. 11. We have assumed that K ‘K = E ‘E,. which corresponds
to the assumption that Poisson's ratio is constant with density [v(p/ps) =1;]. which we
have shown to be approximately true at low density. The FEM results over-estimate
the data for 'polymeric’ aerogels (Pekaia et al.. 1990) by factors of 2.4 and 1.5 for
samples before and after carbonisation. respectively. However. the decay of modulus
with density s reasonable. indicating that the basic structure of the model is correct,
but that there is more elastically inefficient mass in the real materials ({such as dan-
gling ends. or struts of non-uniform width). The microstructure (and elastic properties)
of aerogelfs are highly variable. and the data shown is for the stiffest structures. For
example. data is also shown for a ‘collidal™ aerogel in the figure. The struts of col-
loidal aerogels tend to be granular. with the narrow inter-particle necks decreasing the
overall stiffness. Note that the random-field model can be modified to mimic this type
of structure by shifting the position of the level cuts ( Roberts. 1997).

In Fig. 12. we compare measurements of Poisson's ratio for various foams with the
FEM results. In general. it is difficult to measure v. and there is significant scatter in
the data (Gibson and Ashby. 1988). For low densities. v becomes practically inde-
pendent of v, (Roberts and Garboczi. 2001). For example. the open-cell CRF model
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Fig. 12 Poisson's ratio ot  open-cell foams. The data ts lor various torms of polyurcthanc (Gibson and Ashby,
1982) 1X7). (Zhu et at.. 1997b) ([5). (El-Ratal and Mailick. 1996} (Q). rubber latex (Gent and Thomas.
{959) (L), and an open-cell polymer foam (Lakes. 1987). The lines corresponds to the four open-cell FEM
theories derived in this paper: high- (—--) and low- (- - —) coordination number foams. the open-cell
Gaussian random tield model (- .-) and the open-cell Voronoi tessellation (——. The arrow represents the
effect of deleting 15% of the struts from the tessellation.

has v =0.23+ 0.03 for p p, < 0.2 (the variation decreasing linearly with density). It is
therefore meaningful to compare our computations and experimental data at low density
irrespective of v,. The predictions of the node-bond models and open-cell GRF model
(vx=0.25) lie amongst the scattered data. but the open-cell tessellation has a lower
compressibility (i.e. v is closer to 0.5) than any foam for which we have data. Since
Voronoi tessellations are most commonly used to model foams. it is interesting to note
that the model appears to over estimate experimental Poisson's ratios. It may be that
real foams contain broken struts. due to imperfections in the solidification process. We
haw shown that v decreases to 0.33 it' 15% of the struts are removed. Alternatively.
foams may have suthiciently curved struts to allow bending under uniform compression.
We consider this possibility below.

The struts of true surtace-energy minimising foams. such as those shown in Figs.
27 and 29 of Weaire and Fortes (1994), show very slight curvature (the maximum
deviation o appears to be less than 5% of the bond length 1). The curvature will only
be significant (i.e. allow bending) if the strut diameter ¢ is around the same size as
the axial deviation (¢ x /). For the tetrakaidecahedral model. the struts have length
| =7 2y 2. and the reduced density is p ps =3nd> V272, where T is the size of the
unit cell shown in Fig. 1(d). Setting &« =0 x [/ and «i=0.05 we find that curvature
will only significantly alter the axial stiffness of the strut if p p. < 370" 8v2 =0.0021,
Since most cellular solids have p p; > 0.01. the proposed strut curvature should not be
significant. Moreover. even if the struts are curved. both the Young's and bulk modulus
will decrease (possibly leaving Poisson's ratio v=1 2 — E 6K unchanged). Indeed,
Grenestedt ( 1998) has shown that the ratio E K is constant for a simple open-cell
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model with curved beams. Hence. it scems unlikely that the natural strut curvature of
foams would signiticantly reduce Poisson’s ratio.

6. Discussion and conclusion

We haw used the tinite element method to estimate the Young's modulus ot tour
realistic random models of isotropic cellular solids. The open-cell Voronor tesscllations
have a microstructure similar to that observed in foams. The node-bond and level-cut
Gaussian models mere considered representative to cellular sohids generated by other
{non-foaming ) processes. At low densities. the resuits could be described by the scaling
relation £ E, = Cip p.)'. where C and » are given in the text. At moderate to high
densities. the results could he described by Eq. (9) using the parameters reported in
the text. The fitting relations we have derived can be used to predict the properties of
cellular materials that have a microstructure similar to one of the model.;. and can be
useful for interpreting experimental data.

We have compared the results to a number of theories based on different simplity-
ing assumptions about microstructure. The most widely used tormula for the Young's
modulus of open-cell materials is £ E,=(p p, )°. with a Poisson's ratio of v=0.33
(independent ot density and solid Poisson's ratio v.). While this result is broadly
applicable. we have shown that the properties of' open-cell matenals are more com-
plex. The highly coordinated:  12.5) node-bond model has an exponent of » = 1.3
due to spatial 'locking" of the nodes. so that the major mechanism of deformation is
axial tension (or compression) rather than bending. The open-cell random ficld model.
which is not based on an underlying polvhedral structure. had an exponent ot # = 3.0.
This was attributed to enhanced detormation in the struts. which are curved and have
non-uniform thickness. For three of the four open-cell model.;. the Poisson’s ratio con-
verged to - =0.25 at low densities. in agreement with several independent theories. The
tact that the solid Poisson’s ratio was taken to be 0.2 meant thar the overail Poisson’s
ratio was nearly independent ot' density. Itthe solid Poisson’s ratio was much different.
the overall Poisson’s ratio would he a much stronger function of density. because ot
its convergence or “flow diagram' behaviour (Roberts and Garboczi, 2001).

One of the most surprising results was that isotropic open-cell Voronor tessellations
were nearly incompressible | Poisson's ratio v = 0.3} at low densities. In hindsizhi. the
result might be anticipated trom two-dimensional studies of random two-dim. ~ional
tessellations for which v-p == 0.94 1Silva et al.. 19971 The near ncompressi: v ot
the tessellations is related to the fact that [tie structure 1s much stfler under nform
compression than axial (or shear) deformation (A v while. £.¢ 7 71 At lov densi-
ties. the properties ot the model toam are actualiv very well predicted by War on and
Krayvnik's theoretical result for an isotropically oriented tetrahedral joint. This provides
an explanation ot the unusual behaviour. In a pertect tetrahedral joint under o oitorm
compression. the torces are balanced so that the cenual node is locked in position.
Theretfore. the deformation is only along the strut direcuons tie. h oy Even though
the struts in the random model are not pertectly tetrahedral. we have shown that the
same node locking occurs on avcraze Our results mdicate thar broken. rather than bent,
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struts provide a more likely explanation of why such high values of the Poisson's ratio
are not commonly observed.

In this study. we have shown that it is absolutely necessary to consider large-scale
(multi-cellular) models of random cellular solids in order to obtain realistic elastic
properties. Our results are consistent with experimental data. and show a more com-
plex density dependence than predicted by conventional theories based on periodic cell
models. Our results focus on the global (e.g. connectivity and geometrical cell arrange-
ment), rather than local characteristics (e.g. strut cross-sectional shape or curvature)
of cellular materials. for the following reasons. First, it is difficult to simultaneously
model the local and global variables with finite computational power, and second, study
of single-cell models probably provides a more fruitful route to understanding the in-
fluence of local cell character on the overall properties. We believe that the results of
both approaches may be beneficially combined.
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