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Abstract 

Most cellular solids are random materials, while practically all theoretical structure-property 
relations are tor periodic models. To generate theoretical results for random models the finite 
element method ( FEM)  was used to study the elastic properties of open-cell solids. We have com- 
puted the density ( I J )  and microstructure dependence of the Young's modulus ( E )  and Poisson's 
ratio ( v )  for four different isotropic random models. The models were based o n  Voronoi tessel- 
lations. level-cut Gaussian random fields, and nearest neighbour node-bond rules. These models 
were chosen to broadly represent the structure of foamed solids and other (non-foamed) cellular 
materials. A t  low densities. the Young's modulus can be described by the relation E x p". The 
exponent n and constant of proportionality depend on microstructure. We find 1.3 < n < 3, indi- 
cating a more complex dependence than indicated by periodic cell theories, which predict n =: 1 
or 2. The observed variance in the cxponent was found to be consistent with experimental data. 
A t  low densities we found that = 0.25 for three of the four models studied. In contrast, the 
Voronoi tessellation. which is a common model of foams. became approximately incompressible 
(1' =: 0.5 ). This behaviour is not commonly observed experimentally. Our studies showed the 
result was robust to polydispersity and that a relatively large number ( 1 5 O h )  of  the bonds must 
be broken to significantly reduce the low-density Poission's ratio to 1 ' 2  0.33. C 2001 Elsevier 
Science Ltd. All rights reserved. 
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I .  Introduction 

Manufactured cellular materials have been developed for a range of applications 
(Gibson and Ashby, 1988) (e.g. insulation, light-weight reinforcement. and filtration), 
and their natural counterparts (e.g. bone. sponge and wood) have a cellular structure 
that optimises performance in a particular setting. The useful properties of cellular 
solids depend on the material from which they are made. their relative density, and 
their internal geometrical structure. It is important to link the physical properties of 
cellular solids to their density and complex microstructure. in order to understand how 
such properties can be optimised for a given application. Many studies have focused 
on how local cell features, such as strut shape, affect the properties of periodic arrays 
of cells. Some theoretical results for such models are generalisable to real materials, 
but some are not. Equally important is the effect of disorder (e.g., isotropy), and the 
interaction between cells on a rnesoscopic scale, as most real cellular solids are not 
periodic. In this paper we study model isotropic cellular solids at scales ( z 100 cells) 
where these effects can be probed. Since no exact results exist for random porous 
materials, new large-scale computational methods for analysing random microstructure 
provide the only means of understanding their complex structure-property relationships. 
This type of study has not been previously undertaken for three-dimensional models, 
and is expected to yield new results. Our primary aim is to provide simple and accurate 
structure-property relations for realistic models of cellular solids. The results also allow 
us to test the validity of using simple (e.g. periodic) models to predict the properties 
of random porous materials. 

At low densities. experimental results indicate that Young's modulus ( E )  of cellular 
solids is related to their density ( p )  through the relation (Gibson and Ashby, 1988): 

where E, and ps are the Young's modulus and density of the solid skeleton and 
p = p i p ,  is the reduced density. The constants C and ri depend on the microstructure 
of the solid material. Similar relations hold for the bulk and shear moduli, with possi- 
bly different values of C and n. The value of n generally lies in the range 1 < n < 4, 
- giving a wide range of properties at a given density. Expcriinental evidence suggests 
that n = 2  for open cells. The Poisson's ratio has been thought to be independent of 
density (Gibson and Ashby. 1988 ). 

The complex dependence of C and n on microstructure I >  not well understood. and 
this remains a crucial problem in the ability to predict and optimise the elastic propenies 
of cellular solids. At the local or cellular scale. importanr variables include the cell 
character (e.g. open or closed), the geometrical arrangemeiir of the cell elements (e.g. 
angle of intersection), and the shape of the cell struts or walls ( e g  curvature. and 
cross-sectional shape and uniformity ). At a larger scale. tlic geometrical arrangement 
of the cells is also crucial. The values of both C and I I  n i l 1  depend on whether the 
material is periodic or disordered. 

Most theoretical attention has been focused on simple three-dimensional cell struc- 
tures with straight struts (o r  walls) arranged in periodic arrays at low densities. In 



this limit, explicit solution of the equations of elasticity can be avoided by using thin 
beam or plate theories. These results have elucidated some of‘ the basic mechanisms 
o f  deformation. and their influence on the overall properties. 

If a periodic open-cell solid has ’straight-through’ struts that traverse the extent of’ 
the sample. deforniation occurs along the strut axis, and the moduli baries in direct pro- 
portion to the density (Cent and Thomas, 1959: KO, 1965; Christensen. 1986) ( n  = 1 ). 

i f  the struts are finite. bending is activated at their intersection points and the Young’s 
modulus can be shown tu vary quadratically with the density (KO.  1965; Gibson and 
Ashby. 1982: Warren and Kraynik. 1997) ( n  = 2 )  in agreement with experiment. In ad- 
dition. the imponance of  strut twisting has also been considered (Warren et a].. 1997). 

The ‘tetrakaidecshedral’ foam model, in particular. has been the subject of many 
recent studies (Zhu et ai., 1997a; Warren and Kraynik. 1997: Grenestedt, 1999: Chris- 
tensen. 2000). The cells of the model uniformly partition space, and are defined by 
truncating the comers of a cube _giving cight hexagonal and six square faces. The foam 
has a relatively low anisotropy (Zhu et al.. 1997a) (the Young‘s modulus varies by less 
than 109h with direction of loading), and is thought to be a good model of isotropic 
foams. However, the model exhibits unusual behaviour that has not been confirmed 
in real materials. Specifically, the Young’s modulus varies quadratically with density 
but the bulk modulus only varies linearly with density (Zhu  et a].. 1997a; Warren 
and Kraynik, 1997). In the low-density limits this corresponds to a Poisson‘s ratio 
of v e 0.5 indicating nearly incompressible behaviour. In contrast, typical foams have 
0.1 < 1’ < 0.4 (Lakes, 1987). 

There have been scveral attempts to incorporate isotropy in simple models of cellular 
structures. Christensen ( 1986) treated the case of straight-through struts. which does 
not reproduce the quadratic density depcndence o f  either the bulk or Young’s modu- 
lus, while Warren and Kraynik ( 1988 ) examined the case of a rotationally averaged 
tetrahedral joint. The model predicts the same unusual linear dependence of the bulk 
modulus on density as the tetrakaidecahedral model. A s  barren and Kraynik (1997)  
note, regular tetrahedra do not pack t o  f i l l  space. and so the model cannot represent a 
reat foam. 

From the foregoing discussion i t  is clear that more complex random models are nec- 
essary to improve predictions for ccllular solids. since periodic models do not capture 
all the phenomcna obscwable in r c ~ l  ccllular solids. There are two main problems in 
studying random models. First. a suliiciently accurate model of the microstructure must 
be developed. Second. thc properil,:\ of the model must be accurately evaluated. W e  
emphasise that there are no cxact . j  nalylical calculations available for general random 
materials. so that numerical methods become necessary. 

Large-scale computational metht ( Garboczi and Dav. 1995; Poutet r‘t al.. I996 ) 
and suficient computational poc\t.i now exist for measuring the properties u t  complex 
digital microstrucfures with ;1 rtaso,iable & g e e  of complexity. One route for property 
prediction is to directly imagc the !>owus structure. and then use a numerical method 
to predicts its moduli (Uieh  et G I . .  1998). This method can tvork well for a particular 
microstructure. Howeber. it is also important to study ho \ \  changes in microstructure 
atTect properties (e.g.- to guide opuinisation 1. Statistical models. which allow Lariation 
of the density and structure. are ideally suited for this  purpose. 



There has been recent progress in this direction. Disorder and imperfections have 
been shown to play a significant role in degrading the stiffness and strength of two- 
dimensional structures (Silva et al., 1997; Chen et al., 1999). It is important to ex- 
tend these studies to three dimensions in order to make quantitative statements about 
isotropic materials. Finite element methods have been used to study the properties of 
three-dimensional random open-cell Voronoi tessellations (Van der Burg et ai., 1997). 
The similarities between the mathematical definition of the Voronoi tessellation and 
the physics of foam formation make the model a natural choice for cellular solids. 
A key question is whether the model can account for the properties of real cellular 
materials. As discussed above, the tetrakaidecahedral model, which is an example of 
the tessellation of a regular lattice, actually exhibits approximately incompressible be- 
haviour in the low-density limit. lt is interesting to see if this behaviour is due to 
the inherent nature of the tessellation. Two-dimensional studies of random tessellations 
do show near incompressibility (Silva et al., 1997), and it is therefore interesting to 
study the three-dimensional case. Since foaming is only one route to generating cellular 
solids (Gibson and Ashby, 1988), it is useful to investigate different types of cellular 
structures via alternate statistical models. 

In this paper we use a finite element method (FEM) (Garboczi and Day, 1995) to 
estimate the elastic properties of four model cellular solids over a range of densities. 
The models are generated using tessellation methods (Stoyan et ai., 1995), level-cut 
random field models (Berk, 1987), or by simply linking random nodes in space with 
struts. The models each have distinct microstructures, and are chosen to be broadly 
representative of the morphologies observed in real materials. The Young’s moduli of 
the models can be described in terms of simple two parameter relations [e.g. Eq. ( I )  
in the low-density limit]. The results demonstrate the effect of microstructure, isotropic 
disorder. and finite density on the properties of cellular solids, including both Young’s 
modulus and Poisson’s ratio. The results can be used to predict the properties of cellular 
solids if their structure is similar to one of the models, or be used to accurately interpret 
experimental data. 

2. Theoretical and semi-empirical models 

We first review a selection of results that are available for periodic cellular solids. 
The results illustrate the basic mechanisms of deformation, and provide benchmark 
tests for the FEM. These results, gathered from the literature, also provide useful 
comparisons with the FEM results for random models discussed in subsequent sections. 

First consider a simple cubic array of uniformly spaced intersecting aligned struts. 
From elementary considerations, the Young’s modulus is € / E ,  % i ( p / p s )  for uniaxial 
compression along a strut axis. The linear dependence of modulus on density is typ- 
ical of model foams that contain ‘straight-through’ struts that traverse the extent of 
the sample; longitudinal compression or tension being the only mode of deformation 
(Christensen, 1986; Warren and Kraynik, 1988; Zhu et ai.. 1997a). 

Since most foams do not contain straight-through struts, beam bending comes into 
play (KO, 1965; Gibson and Ashby. 1982; Warren and Kraynik, 1988; Zhu et al., 
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Fig. I .  Periodic models of open-cell solids. ( a )  The parameters used 10 define ;1 simple model. ( b )  A 3-D 
version of the simple model. ( c )  An open-cell foam considered by KO (19651. ( d )  A unit cell of the 
tetrakaidecahedral model. 

1997a). This is most easily seen in the unit  cell o f  the simple open-cell model shown 
in Fig. I (b) .  The cell is a modification of the model shown in Fig. 5.6 of Gibson and 
Ashby's ( 1988) book. since the original model could not be periodically extended. The 
solid fraction is 

where the approximation is for thin beams d < w, L. and the length scale parameters are 
shown in Fig. I (a) .  h o w  consider the deformation of the cell if it is compressed along 
the x-axis ( 100 axis) by ;1 force 1'. The Young's modulus is E = ( / ' . . L ' ) ; . ( i i L . L )  where 
Ol, is the total deformation. From thin beam theory (Landau and Lifshitz. 1959)- the 
deformation of a thin beam of half-length M' with clamped ends due to an applied force 
f i s  6 L  = ,f'n'' 24€,/,. Here I ,  is the principal moment of inertia. with /,,, = d4 12 for 
a square beam of width d .  The deformation is  halved because two beams intersect at 
the point of application. but as this occurs twice in the unit cell the total deformation 
is the same as that for a single beam. Thus in the thin-beam limit we have. 

The quadratic dependence of the modulus on density is typical of foams where beam 
bending is the principle mechanism of  detormation. Ko (1965) demonstrated this be- 
haviour for the model .;hewn in Fig. l ( ~ )  loaded in the  ( 1  l l ' direction. Note that 



the calculation leading to Eq. ( 3  ) js illustrative only. In reality, the beam ends are not 
clamped, so the pre-factor is only an approximation. 

Zhu et al. (1997a) and Warren and Kraynik ( 1997) derived analytic results for 
the open-cell tetrakaidecahedral model (Fig. I (  d ) )  packed in a body-centred cubic 
array. The results provide a useful check of the FEM (see Section 3). and demonstrate 
incompressible behaviour (11 --, 0.5) at low densities. The results of Zhu et al. for the 
Young's modulus and Poisson's ratio for strain parallel to the ( I  0 0 )  axis are, 

where C'L = 8 ~ ' ? 1 ; . 4 ~  depends on the cross-sectional area '4 and the second moment of 
the area 1. For equilateral triangles Cz = 1.09 (Zhu et al., 1997a). and for cylindrical 
beams Cz = 0.900. Note that the Poisson's ratio depends on orientation. The notation 
V I ?  corresponds to expansion measured in the (0 10) or t O O  I )  directions. As mentioned 
above, the foam is relatively stiff under uniform compression, with the bulk modulus 
given by KjE, = pip,.  

We now review semi-empirical and analytic results for random foams. The most 
commonly used result for open-cell foams is (Gibson and Ashby, 1988) 

where the pre-fdctor C z  1 and Poisson's ratio have been empirically determined. This 
semi-empirical formula broadly describes data obtained for many different types of 
foams. 

There have also been several methods proposed to derive analytic predictions for 
isotropic foams. A typical result, which performs an isotropic average of randomly 
placed long thin (i.e. straight-through) struts. has been derived by Christensen ( 1986). 

Christensen notes that the results are equivalent to those of Gent and Thomas (1959). 
In the low-density limit. the same results have been derived for a rotationally averaged 
simple cubic structure (Warren and Kraynik. 198s ). The absence of bending in these 
models is indicated by the linear dependence of thc Young's modulus on density. 

Warren and Kraynik ( 1988) have derived analytic results for the properties of a foam 
comprised of isotropically oriented tetrahedrally at-rLnged struts. The geometry can be 
visualised as a node located at the centre of a teri-ahedron with equilateral faces, the 
four struts (separated by an angle of 109.5':) connt.<:ing the central node to the vertices. 
There are eight nodes of this type adjacent to the cmtral node in Fig. I(c) .  The results 
are 

where p = p / p s  and CIA = 18/ ~'3/1'. For struts o t  equilateral triangular cross-section 
CW = 1.  while for a circular cross-section CM z 0.827 As expected from the definition 
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of the model, beam bending is the primary mode of deformation for uniaxial com- 
pression. However, Eqs. ( 7 )  imply K ES = $ p indicating that bending is not activated 
under pure compression. Like the tetrakaidecahedral model, the Poisson's ratio of the 
model therefore tends to 0.5 at low densities. 

u .  

( b )  / ( a )  

3. Elastic properties of model cellular solids 
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The finite element method uscs a variational fonnulation of the linear elastic equa- 
tions. and tincis the solution by minimising the elastic energy via a Fast conjugate 
gradient method. The digital image is assumed to ha\.e complete periodic boundary 
conditions. Details of the theory and copies of the actual programs used are reported 
in the papers of Garboczi and Day ( 1995) and Garboczi ( 1998). 

Given a digital microstnxture. the FEM provides a numerical solution of the elas- 
ticity equations. The accuracy is only limited by the finite number of pixels which can 
be used (around 10' in r t i i b  m d y , .  &'e consider continuum models with a fixed length 
scale, juch as cell size. c ~ n c f  measure the properties of a T :i T x T pm region. divided 
into At' cubic pixels. f i c i ~  P is rnuch greater than the cell size. If the foam were 
r e p l a r  and periodic. jus: )ne unit cell would be sufficient. In this section we discuss 
the sources of error and 

Discretisation errors c v ' w  in the FEM uhen there are insufficient pixels in a solid 
region to correctly model I ontmuum elasticity. To check the effect of resolution for the 
F E M  we measured the 'r ting's niodulus of the simple cell model shown in Fig. I ( b )  
(with L = 6. tt. = 2 and l i  1 pm 1 at finer and finer resolutions .1l = 7. 14 . .  . . .77. Here. 
and in subsequent caIcul.itions. \ye use E, = 1 GPa and a solid Poisson's ratio of 
19, = 0.2. The results x c  slionn in Fiy. ? ( a ) .  A n  empirical tit of the foam .EFF\, 2 E,,,,! - 
uI.lf - '  is used 10 detemiirie the 'exact' modulus: the linear nature of the graph 
(Fig.  : ( a ) )  tor .It > 21 conf i rms the ansatz. The error is less than I O " O  tor .W 3 28. 
Mhich corresponds to a btrut thickness of four piuels. A s  the square beams ha\e 

,\- they can be minimised. 

1x10-' 

1x10-* 
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Fig. 3. The properties of tetrakaidecahedral cell model shown in Fig. I (d)  as a function of density. ( a )  The 
Young's ( 0 ) .  bulk (0) and shear ( A )  modulus. The lines comespond to Eq. (4) with CZ -0.9. ( b )  The 
Poisson ratio V I :  (0) compared with theory (l ine) [Eq. ( 4 ) .  CL =0.0]. The results ('E) for the simple cell 
model shown in Fig. I (b)  are also plotted. 

stress concentrations at the comers, we expect the code will perform better for model 
foams with rounded edges. The extrapolated numerical value Eexac,/Es = 0.16 is 20% 
higher than the theoretical value Elm/€ ,  = 0.13 [Eq. (3)], the difference being attributed 
to the finite density of the model ( p / p ,  =0.14) and the assumption of clamped 
ends. 

To check the density dependence of Eq. (3)  we measured the Young's modulus and 
Poisson's ratio of the simple cell model. We used the parameters L = 60, n =20 pm 
and varied d over the range 1-15 pm at a resolution of 1 pm!'pixel (giving a density 
range of p/ps  =0.0024-0.24). The results for El00 are shown in Fig. Z(b) and confirm 
that Eq. (3 )  with C =  

We also measured the properties of the open-cell tetrakaidecahedral model 
(Fig. l ( d ) )  with cylindrical struts. We employed a unit-cell size of M = 80 pixels 
with side length T = 80 pm and vaned the cylinder radius in the range Y = 1-8 pm. 
The results, shown in Fig. 3(a),  approximately agree with the theoretical formulae 
[Eq. ( 4 )  with Cz = 0.91 in the low density limit. In Fig. 3(b) we show VI: as a func- 
tion of density, as well as for the simple cell model (Fig. I ( b ) ) ,  which does not 
exhibit incompressible behaviour. 

For random foams, we also need to consider finite size efTects. If there are too few 
cells in the computational cube. the estimates will not correspond to the properties of 
a macroscopic system (which may have many thousands of cells). Preliminary studies 
indicated that about 100 cells are necessary (roughly five cells in each direction) to keep 
the finite size errors of the same order as the discretisation errors. Finally, one has to 
determine the number of samples N ,  that need to be studied to ensure that the statistical 
variation of individual samples does not bias the results. For the sample size considered, 
we found five samples were sufficient. The resulting statistical errors were generally 
less than IO%, but at the lowest densities we measured, could increase to 2006. 

In this study we restrict attention to the case where the Poisson's ratio of the 
solid material is v s  = 0.2. For general porous three-dimensional materials we have 

is a reasonable approximation. 



recently shown (Roberts and Garbocn. 2001) that the Young's modulus I S  practically 
independent (to within 3%) of Y,. Moreo\er. at low densities. the Poisson ratio of the 
porous material also becomes independent of vs. 

3. I .  Viironoi tessellritions 

The most common models of cellular solids are generated by Voronoi tessellation 
of distributions of 'seed points' in space. Around each seed there is a region of space 
that is closer to that seed than any other. This region defines the cell of a Voronoi (or  
Dinchlet) tessellation (Stoyan et ai., 1995). Placing a solid wall at each face of these 
cells results in a closed-cell Voronoi tessellation. .4n open-cell Voronoi tessellation 
results if only the edges where two cell walls intersect are defined as solid. For several 
diKerent random (e.g. Poisson) distributions of seed-points. thc average number of faces 
per cell falls in the range 13.7-15.5 (Oger et al., 1996). 

The Voronoi tessellation can also be obtained (Stoyan et al.. 1995) by allowing 
spherical bubbles to grow with uniform velocity from each of the seed points. Where 
two bubbles touch, growth is halted at the contact point, but allowed to continue 
elsewhere. In this respect the tessellation is similar to the actual process of liquid 
foam formation (Van der Burg et al., 1997). Of course. physical constraints such as 
minimisation of surface energy will also play an important role. Depending on the 
properties of the liquid and the processing conditions. the resultant solid foam will be 
comprised of open and..'or closed cells. 

The amount of order in the Voronoi tessellation depends on the order in the seed 
points. If regular arrays are such. ordered anisotropic foams will result. Indeed the 
open-cell models used by Warren and Kraynik (1997). Zhu et al. ( 1997a) and KO 
(1965) turn out to be equivalent to Voronoi tessellations of the body-centered cubic 
(.BCC) (Fig. l (d)) .  face-centered cubic (Fig. I (  c ) ) ,  and hexagonal close-packed lattices. 
If a purely random (Poisson) distribution of points is used. highly irregular isotropic 
foams containing a wide size distribution of large and small cells will result. 

I t  is worth noting that the tessellation of the BCC array (the tetrakaidecahedral cell 
model discussed above) i s  a reasonable approximation to the foam introduced by Lord 
Kelvin (Mieaire and Fortes. 1994; Warren and Kraynik, 1997; Grenestedt. 1999). The 
cells of the Kelvin foam are uniformly shaped. f i l l  space. and satisfy Plateau's law of 
foam equilibrium (three faces meet at angles of 170'. and four struts join at 109.5 ).  

In order for this to be true. the faces and edses are slightly curved (U'eaire and Fortes. 
1994), unlike those of the tetrakaidecahedral cell model. 

In this study. we wish to examine foams that have a roughly uniform cell size. 
but which are still random and isotropic. .4 non-periodic. evenly spaced. and isotropic 
arrangement and seed points Is therefore necessary. Such a distribution is provided by 
the centre points of equi-sized hard spheres in thermal equilibrium (Torquato, 1991 ). 
If the spheres are quite closely packed the Voronoi cell size will be approximately 
equal to the sphere diameter do. The distributions were senerated usin? 3 Monte-Carlo 
algorithm. To move a sphere we chose a set o f  ( 70 )  random directions and jump 
distances. Of the allowable jumps { i.e. those which did not overlap another sphere ) we 
chose one at random. Each sphere was visited oncc during a blonte-Carlo step. and 



sebsral thousand steps were used to randomize the system. The initial conditions were 
defined by placing 122 spheres in a simple cubic array within a periodic cube of size 
175di. Periodic boundary conditions uere employed, as well as a coarse grid array, so 
that only a fraction of the spheres had to be checked for overlaps prior to each jump. 
K e  checked that the resultant random packing resulted in isotropic cellular solids (see 
be low ). 

A pixel in the digital model is defined as belonging to an edge if it is approximately 
equidistant from at least three sphere centres. The density of the model is changed by 
varying the thickness of the cell edges. An illustration of the open-cell model (with 
only 63 cells) is shown in Fig. 4(a) .  Since we are specifically interested in isotropic 
foams, we confirmed that the cell edges showed no orientational preference. This was 
done by measuring the probability distribution of the polar ( 4 )  and azimuthal (0 )  
angles of each edgc from a fixed direction. We found q3 was distributed with density 
p( 4 )  = sin (I> on [0, n )  and 0 was uniformly distributed on [0,2n) ,  which corresponds to 
an isotropic distribution. The maximum and average relative errors were, respectively, 
900 and 59’0. which we attribute to the sample sizes considered. The average strut 
length is 0.45d0, and for comparison with other models we show the entire strut-length 
probability distribution in Fig. 5(a). 

In the low-density limit, the Youns’s modulus of the open-cell tessellation can be fit- 
ted by Eq. ( 1 ) to within a maximum of 5% relative error with the parameters C = 0.930 
and n = 2.04 or 

2 04 
I’ for 0.04 < - < O S .  

E 
- = 0.930 (k)  
E, 1’. 

The FEM data and Eq. (8 )  (solid line) are shown in Fig. 6. This simple scaling 
relation cannot reproduce the high-density behaviour ( E  - E, as p - ps unless C is 
fortuitously equal to one). Rather than choosing a three- or four-parameter relation to 
describe the full density range, we instead use the equation 

which has been found useful for desci-ibing the properties at high densities. With 
rn = 3.12 and po = - 0.0056, the form:tlr: describes the FEM data to within 5% for 
0.04 > p p.; < I .  The fit is shown on tiz. 6 as a dashed line. Note that the fitting 
parameters p~ and m are not the con\cntional percolation threshold and exponent. 
However, since the actual percolation thi-eshold of the Voronoi tessellation is expected 
to be zero, it is interesting, but perhaps fortuitous, that the value of po is quite small. 

Interestingly, just like the periodic n?,Jdels. the bulk modulus shows a near linear 
decrease with density. The lou-density limit of the bulk modulus can be described by 
Eq. ( 1 ) with C = 0.209 and II = I .L!. For the shear modulus, C = 0.404 and n = 2.12. 
At the lowest density (pips = 0.05 ), the Poisson’s ratio is relatively high ( v  = 0.44) and 
the trend indicates that - 0.5 as 1’ p, -- 0. 



As mentionel! abot e. cellular solids are not necessarily derived from a liquid foam. 
For e.uarnple. niLrallic foams may be generated by burning out paniculate inclusions or 
infiltrating 3 p o ! ' ~  matrix which is later renioLed b> Ieachiny. Other cellular solids. 
such as bvrie '1i-J sponge. arc' generated by  complcx organic processes (tiibson and 
Ashby. 19x8 1. Since simulating the actual physics and chemistry of the cic.Lelopment of 
cellular material. Is beyond the scope of  [his paper. R,C instead consider three different 
statistical rnode!s that hat.e fraturrs resembling thohe obsw-ed  111 re31 cellular solid 
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Fig. 5 .  ( a )  Strut-length probability density of three models. Data for the open-cell tessellation has been 
magnified by a factor of five. ( b )  Probability that a node has a specified coordination number. The tessellation 
has a local coordination number of four by definition. Models: open-cell tessellation (E); node-bond models 
with ?=5.5 (0)  and ?Z 12 ( A ) .  
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Fig 6 The Young's to), bulk (0) and shear (A) modull of the open-cell Voronoi te\selldtionb The lines 
dre the empirical fits to the data pven in the text ( w e  Eqs. ( 8 )  and (9)) 

materials. In this section, we consider node-bond models with variable coordination 
number (i.e. the number of bonds connected to each node) generated from random 
seed points. 

There are several methods of generating open and closed-cell cellular models from 
seed points. An example is provided by the Delaunay (or Voronoi-dual) tessellation 
(Stoyan et al.. 1995). Starting from a Voronoi tessellation. the cell edges are now 
defined by a rod placed between two points in space which share a common face. 
Since the cells of a Voronoi tessellation have approximately 14 faces (Oger et nl., 
1996). the coordination number o f  an open-cell Delaunay tessellation will also be 
around Z >  14. 



I t  is possible to define a more general model, called in this paper a ‘node-bond’ 
model, by placing a bond between each seed (or node) and its nearest neighbours. 
The coordination number, average bond length, and bond-length distribution depend on 
the rules used for defining the ncarest neighbours of a given node. For example, the 
coordination number z can be fixed by connecting a node to its 1 nearest neighbours. 
The coordination number can also be allowed to tluctuate if nodes are only connected 
when node-node distance is smaller than sonic specified value. If the resulting average 
coordination number of the foam is around 14, we expect the model to be simiiar to 
an open-cell Delaunay tessellation. 

To be specific, we connected the centres of an equilibrium hard-sphere (diameter do ) 
distribution that were closer than the distance F‘do ( F  > 1 ). We employed the same 
five distributions of 121 points used for the Voronoi tessellation. To generate the mi- 
crostructure for the elastic computations we placed a cylinder of radius I’ between each 
pair of connected points. Hemi-spherical caps were added at tach end to avoid gaps 
occurring between cylinders that intersect at an angle. A n  illustration of the node-bond 
model is shown in Fig. 4(b) .  

We first chose F = 1.5, which yielded a high-coordination number foam of ,= 12.5 
with average bond length of d d o  = 1.16. This model is illustrated in Fig. 4( c). which is 
a digital model actually used in the elastic coniputations. To sinlulatc a low-coordination 
number foam we also studied the case F = 1 . 1 ,  which yielded ?= 5.5 with an average 
bond length of d.do = 1.04 (Fig. 3( b)).  Dangling branches in the model were avoided 
by deleting all nodes with less than tm’o ‘nearest’ ncighbours. The process was re- 
peated until all nodes has two or more nearest neighbours. For F = 1 . 1 .  only two or 
three nodes were deleted from each sample. In spring lattices. this iteratiLC removing 
of low-connectivity nodes has been called ‘trimming‘ (Feng et ai.. 1985 ). For compar- 
ison with other models. the probability density of bond lengths and local coordination 
numbers are shown in Fig. 5 .  

The Young’s modulus of rhe high-coordination number model can be described to 
within a 496 relative error by 

and to within 4 O / a  for 0.1 < p ,os < I by Eq. ( 9 )  with p , )  = - 0.198 and nt = 2.80. The 
Young‘s modulus of the low-coordination number model can be described to within a 
5’6 relative error by 

L 8 I  

( 1 1 )  

and by Eq. (9)  with po = - 0.445 and 171 = 4.27 for 0.25 < j) p ,  < 1. The F E M  data 
and Eqs. (10) and ( 1 1  ) are shown in Fig. 7. The behaviour of the Poisson’s ratio of 
this model will be discussed in Section 4. 

P for 0.026 < - < 0.35 
E 
- - 0.535 (:I 
E ,  p q  

Very different types of models can be generated usins the le\,ei-cut Gaussian random 
field ( G R F )  scheme. One starts with a GRF field j . ( r ) .  uhich assigns a (spatially 
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Fig. 7 .  The Young's modulus of the non-foam-like cellular models: high-coordination number node-bond 
model (g), low-coordination number node-bond ( 0 )  and Gaussian random held model (A) .  The lines are 
the empirical fits to the data given in the text. 

correlated) random number to each point in space. A two-phase solid-pore model (Berk, 
1987; Roberts and Knackstedt, 1996) can be defined by letting the region in space 
where - p  < y ( r )  < fl  be solid, while the remainder [/,v(r){ 2 83 corresponds to the 
pore space. Open-cell solids can be obtained from the model by forming the intersection 
sets of two statistically independent level cut GRF models (Roberts. 1997). An example 
is shown in Fig. 4(d). Details [or generating the models have been previously described 
( Roberts and Garboczi. 1999). 

The model (Fig. 4(d)) shows a highly irregular structure. with curved 'struts' of vari- 
able thickness. The morphology is reminiscent of the nickel and copper cellular solids 
in Fig. 2.4 of Gibson and Ashby (1988) and the sponges shown in Fig. 2.5 (Gibson 
and .4shby, 1988) and Fig. 3 1 of Weaire and Fortes (1994). The small-angle scattering 
intensities of the model have also been shown to be consistent with experimental data 
for organic aerogels (Roberts. 1997). At low densities, the Young's modulus can be 
described ( to within 12Ob) by 

Eq. ( 9 )  describes the higher dcnsity data ( p ; p s  > 0.2) with m = 2.15 and p o  = 0.029 
to within 4?/0 (and the low-denLity data to within 1206). The data and fitting formulae 
are shown in Fig. 7. 

The data show a small. bur persistent, curvature as the density decreases below 
0.2. This could be interpreted ,IS indicting a finite percolation threshold. However, by 
construction. the model actuall! remains connected at all solid fractions. indicating that 
the curnature is due to resolution mor s .  To see that the model always percolates, note 
that the underlying two level-cut GRF remains connected at all finite densities. This 
follows from the fact that thrrc must always be a thin surface separating the regions in 
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Fig. 8. Comparison of the FEkl data lor open-cell toarns (symbols)  with theory. The data shaun  is f o r  the 
high- { 2. ) and low- tr) coordination nuinher node-bond models. the open-cell Voronoi tessellation (0 ) and 
thc upen-cell Gaussian random held model (13 ). The theories are due to Christcnbcn ( 1980) ( .  . . ), Gibson 
and Ashby 1988) (-----), b a r r c n  and Kraynik ( 1988) ( - - -  - - )  and Zhu et 31. ( 1997a) ( - .  - ). 

space where J, > 0 and < 0. The struts of the intersection model correspond to the 
lines where the surfBces o f  two indepcndent two level-cut models intersect. Hence they 
will esjst at a11 densities. and the model does not have J finite percolation threshold. 

4. Comparison of FE31 results with existing theory 

The Young's modulus and Poisson's ratio of the open-cell foams are shown in 
Figs. 8 and 9 along bide four relevant theories. For low densities (0.04 < p p5 < 0.15), 
data. for the high-coordination number node-bond model (Fig. 3( c ) )  is reasonably well 
described by Christensen's results for isotropic foiims with straight-through struts, in- 
dicating that longitudinal compression dominates the deformation. The power law de- 
pendence ( I I  = l .3 ) is hisher than prcdicted ( n  = l ), because. being random. the model 
has no c.oinpletely straight-throuyh StmtS. This does not lead to sisniticant bcnding 
( indiciit:,! b? a quadratic decay) because there are sufficient struts emanating from 
each n(\.i,: t o  'lock' the rclativc node positions. and reduce the bending component 
of detot-;,iation. In contrast. data for the low-coordination number node-bond model 
(0.03 r~ , /), < 0.30) are well describcd b> the semi-empirical result given by Gibson 
and .Asii!-y ( 1988 ) { I I  2 1. This contirms the predominance of the beam-bending mech- 
anism t i ) ! -  deformation for this model. The Young's modulus of the open-cell Voronoi 
tessellaIi\ 111  also follows the conwntional quadratic decay with density, but as noted 
above 1-ig. h 1. the bulk modulus actually scales linearlq with density. In contrast to 
Van dcr Burg et a i .  ( 1997). w e  do not lind that the random tessellation i s  appreciably 
StitTer r h m  the tetrakaideoahedral model. This may be due to the tact that our results 
Bere obra ind  at a minimum density around trno-fold higher than  that ust.d by Van der 
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Fig. 9. Comparison of  the FEX1 d a ~ a  for open-cell foams (symbols) K i t h  thcory ( I i r w ) .  The samc nomen- 
clature 3s in Fig. 8 is used. 

Burg et al. Moreover, the relatively small increase ( 2  x IO- ' )  they observed would be 
quite hard to discern in our results. 

The modulus o f  the open-cell GRF model is considerably lower than any of the pre- 
dictions. In this case. the 'struts' o f  the network are themselves bent. therefore allowing 
c greater deformation. Morco\.er. the Struts have \;arying thicknesses. Since the stiffness 
of the struts is limited by their thinnest sections, thc mass in the thickest resions con- 
tributes little to the overall stiffness. This has the effect o f  reducing the moduli at a 
given density, compared to models having struts with a uniform cross-sectional area. 

Results for the Poisson's ratio of the open-cell foams shown in Fig. 9. Data for the 
high- and low-coordination number node-bond models and open-cell GRF model are 
approximately constant, showing a slight increase from the solid value of Y = 0.2 (the 
solid value) to 1 0  =. 0.22 -- 0.24 at low densities. We have recently shown (Roberts and 
Garboczi. 2001 ) that the Poisson's ratio of a wide range of three-dimensional porous 
materials converges ncarly linearly from the Poisson ratio of the solid material ( v s )  
at high densities to a rnicro.;tructure-jeperndent fixed point at low densities. Therefore, 
if the fixed point is clost' to \ I > .  as i t  is for the three models under discussion with 
vr =0.2. \ I  will be nearl! independent of density as observed in the data. The actual 
low-density limits are close to 0.25. uhich is predicted by numerous independent the- 
ories; see Eq. ( 6 )  for example. 

In contrast. the Poisson's ratio of the open-cell Voronoi tessellation shows a sharp 
increase towards 1' 2 0.5 ivith decreasing density. This is associated with the foam being 
much stiffer under uniform compression ( n  2 1 for the bulk modulus) than under shear 
or uniaxial compression ( I I  2 2 1. .A Poisson's ratio of 0.5 is the  highest attainable by an 
isotropic material and ph! sically means that if a cubic sample is uniaxially compressed. 
the decrease in volume in the direction of compression is exactly balanced by the 



lateral expansion ot' the material in the perpendicular directions. This 'incompressible' 
bchaiiour is observed in solid rubber and in liquids. but not generally in solid foams. 

The unusual density dcpcndcnce of  both the bulk modulus and Poisson's ratio is 
actually i w y  well described by the \Varren---Kraynik results [Eq. ( 7 ) ]  tor isotropically 
i1ieragCd tetrahedral joints. and qualitati\.ely similar to the results for the tetrakaideca- 
hedral foam [Eq.  ( 3 ) ] .  It is easy to understand the behaviour of the simple models. If 
the uni t  cell of the tetrakaidecahedral foam model ib  placed under uniform compression 
the .itruts are only subject to axial (not bending) deformation. and hence the bulk mod- 
ulus varies linearly \\,ith density. Altcmately. if equal forces are applied along each axis 
of the four struts of a 'perfect' tctrahcdral element. the central node is not displaced 
and the struts are only axially comprcsscd. This 'node-locking* will n o t  occur under 
shearing or uniaxial compression. therefore a l lon i n s  bending ot' the struts in each case. 

In general. four cells touch at each node of the Voronoi tessellation (Stoyan 
et a].. 1995 1, so that there arc four struts associated with each nude in the open-cell 
model. Therefore. approximating the behaviour o f  the model by tetrahedral elements 
would seem appropriate ( Warren and Kraynik. 1988 ). Hohwer.  one would cupcct the 
disorder in the random Voronoi tesscllations t o  allow significant bending of  the struts 
to occur under hydrostatic compression. Our results indicate that rhis is not the case, 
and it is interesting to investigate this behaviour in more detail. 

To check if '  the etfect was rcstricted to our choice of seed distributions. we mea- 
sured the Poisson's ratio of a low-density sample \+.here the points Rere uncorrelated 
(i.e.. a Poisson distribution). The Poisson's ratio was found to only decrease by IO?$ 
(from 0.44 to 0.4 ) at p ) p s  ~ 0 . 0 5 .  GiLen that h e  e u p e c ~  I- t o  increase from 0.4 :It 

still l o w r  densities (c'.g. t'ig. 9) .  this indicates that random L'uronoi tcssellations are 
nearly incompressible as p p, - 0 irrespective ot' the underlying seed distribution. 
One explanation might be that the local strut arrangement is always close to a perfect 
tetrahedron. To check this we measured the distribution of the six inter-strut angles I 

( five are independent ). For the hard-sphere seed points used in our moduli calculations 
we found 1 : ~ )  = 110. with standard deviation (7 = \, ,I:; - {;I)- = 23 . For Poisson dis- 
tributed seeds we found ( x )  = I 1 1 and cs = 36 . These results indicate that Lt'arren and 
Kraynick's assumption of tetrahedral elcnients w r k s  \.cry well for quite large angular 
dei-iations (from 109 between the struts. If the coordination number is not equal to 
four. one would not expect the assumption to prokide a good approximation (e .2 .  the 
node-bond models). h e  also measured the ctTect of deleting struts on the Poisson's 
rario of the models. For a 2 " ~  reduction in mass. the bulk modulus decreased by 22"o.  
while the Young's modulus only decreased by h " ~ .  .A 1 5 O 0  reduction in mass was 
required to reduce the Poisson's ratio to \~;=0.33.  

7 

, .  

5. Comparison of FEhI results with experiment 

To illustrate the utility of the FEM LSC compare the computed rewlts to 2uperimental 
data. Since real foams can ha\.e densities loner than those \Le are currently able to 
computationally ctudy. we use the formula E E,  = C(  p p ,  ) ' I  to extrapolate the results. 
This i s  justifjed by the fact t h a t  the lo\~-dt.nsity- FECI data appear to t i l l  on  a straight 



50 

l X l O 0  

1 x10-I 

W* - 1x10-2 
W 

0.01 0.1 0 1 .oo 
Reduced denstty 

Fig. 10. Young's modulus of open-cell foams. The data is for alumina (Ijagiwara and Green, 1987) 
(0.  E, = 380 CPa. p s  = 3970 kg,'cm3 ), rubber latex obtained by Lederman ( 197 I ) (0) and Gent and lhomas 
(1959) (A) ,  open-cell foams (Gibson and Ashby. 1982) ( V  ). and reticulated vitreous carbon (Christensen, 
1986) (0.~7, = 6.9 GPa). The lines corresponds to the four open-cell FEM theones derived in this paper; 
high ( -- . -- ) and low ( - ~ ~ ) coordination number foams, open-cell Voronoi tessellation (-) and the 
open-cell Gaussian random field model ( .  .). 

line when plotted against log-log axes. Accurate comparison of theoretical and exper- 
imental results is hindered by the imprecision involved in estimating the properties of 
the solid skeleton, E,  and ,us. We report E, and p s  when they have been given. but 
some data sets are reported only in terms o f  EIE, and p,'ps. Some of the data sets we 
have taken from the literature have been previously summarised (Gibson and Ashby, 
1988; Green, 1985). 

Data for open-cell foams are compared with the open-cell FEM derived theories in 
Fig. 10. The datit for rubber latex foam lies above the line E E,  = (/).i 'ps)' and agree 
reasonably well with the FEM result for high-coordination number node-bond mod- 
els. If the estimatcd value of E, is correct. this suggests that the coordination number 
of the foam is quite high. The single data point (0) obtained for a carbon foam 
(Christensen, 19W 1 falls on the same line. A micrograph in the reference indicates 
that the struts wen'  tetrahedrally coordinated. unlike the model. Note that the normal- 
isation constant k- 6.9 GPa used by Christensen seems low compared to the value 
K, = 24 GPa ( E ,  = ) adopted for carbonised aerogels (Pekala et ai., 1990). 
Indeed. if E,  = 24 (;Pa is assumed, the data points falls close to the line E; E, = ( p i p s ) ' .  

The data for p r o u s  alumina agree reasonably well with the predictions of the 
open-cell GRF mndul. However, micrographs of the structure indicate a structure closer 
to that of the opcn-cell Voronoi tessellation (with occasional closed faces). so the 
agreement seems fortuitous. Data for the open-cell materials considered by Gibson and 
Ashby ( 1982) is seen to agree well with the FEM results for the low-coordination 
number node-bond model and open-cell Voronoi tessellation. 

if v = 
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Fig. I 1  Bulk modulus of opsn-cell derogel foams. The data IS tor carbonized I-. K ,  = '4 GPa, 
p,  = 1500 L p  cm' I and uncarbonized organic Jerogels ( A. K ,  = 3 5 GPa. ,I\ = 1300 kg cm' ) (Pekala et al . 
1990). The c!rcles corresponds to data from Gross et al { 1997) for an uncarbonized organic aerogel pre- 
pared under different conditions The lines correspond\ to the operi-cell C.mman random held ( --J and 
the conventional :heory K K ,  = ( p  p,  I: ( - - - j 

In a prior paper (,Roberts. 199': ), it was suggested that open-cell GRF's provide use- 
hi models of organic aerogels. I t  was showx that the models could reproduce the scat- 
tering intensities and predict the contribution of the solid network to the overall thermal 
conductivity of these low-density materials. These prior results provide evidence that 
the model is reasonable. but i t  is also important to compare the elastic properties with 
experimental data. Data for the bulk modulus of open-cell organic xrogels is compared 
with the FEM results in Fig. 1 I .  We have assumed that K 'K ,  = E  :Es. which corresponds 
to the assumption that Poisson's ratio is constant with density [ \ f p p S )  = v,]. which we 
have shown to be approximately true at low density. The F E M  results over-estimate 
the data for 'polymeric' aerogels (Pekala et al.. 1990) by fac:ors of 2.3 and 1.5 for 
samples before and after carbonisation. respectively. However. thc decay of modulus 
with density IS reasonable. indicating that the basic structure of the model is correct, 
but that there is more elastically inefficient mass in the real materials (such as dan- 
gling ends. or struts of non-uniform width 1. The microstructure (and elastic propsrries) 
of ae rqe l s  are highly variable. and the data s h w n  is for the stiflest structures. For 
example. data is also shown for a 'collidal' aerogel in the figure. The struts of col- 
loidal aerogels tend to be granular. with the narrow inter-particle necks decreasing the 
overall stiffness. Note that the random-field model can be modified to mimic this type 
of structure by shifting the position o f  the level cuts ( Roberts. 1997). 

In Fig. 12. we compare measurements of Poisson's ratio for various foams with the 
FEM results. In general. i t  is difficult to measure Y. and there I S  significant scattcr in 
the data (Gibson and Ashby. 1988 j. For low uensities. 1' becomes practically inde- 
pendent of i t a  (Roberts and Garboczi. ZOO1 ). For sxiimple. the open-cell CRF model 
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Fig. I _ '  Poisson's ratio ot-open-cell foams. The data IS  lor various forms ofpolyurethanc (Gibson and Ashby. 
19x2) IT) .  (Zhu et at.. 1097b) (E). (El-Rata1 and 41aIlick. 1906) (0) .  rubber latex (Gent and Thomas. 
1959) (A), and an open-cell polymer foam (Lakes. 1987). The lines corresponds 10 the four open-cell FEM 
theories derived in this paper: high- ( - .  - ) and low- ( - - - ) coordination number foams. the open-cell 
Gausmn random held model ( .  . ) and the open-cell C'oronoi tessellation (- 1. The arrow represents the 
etfect of deleting I5% o f  the struts from the tessellation. 

has \ '  = 0.23 i 0.03 for y p ,  < 0.2 (the variation decreasing linearly with density). It is  
therefore meaningful to compare our computations and experiniental data at low density 
irrespective of Y,. The predictions of the node-bond models and open-cell GRF model 
( 1' 2 0.25) lie amongst the scattered data. but the open-cell tessellation has a lower 
compressibility (ix. Y is closer to 0.5 ) than any foam for which we have data. Since 
Voronoi tessellations are most commonly used to model foams. it is interesting to note 
that thc model appears to over estimate experimental Poisson's ratios. It may be that 
real foams contain broken struts. due to imperfections in the solidification process. We 
haw hhown that 1- decreases to 0.33 i t '  I Y i )  of the struts are removed. Alternatively. 
foams may have sutficiently curved struts to allow bending under uniform compression. 
We consider this possibility below. 

The struts of true surtdce-energy minimising foams. such as those shown in Figs. 
17 and 29 of Weaire and Fortes (1994), show very slight cunature (the maximum 
deviation 0 appears to be less than 5% of  the bond length I ) .  The uun'ature will only 
be significant ( ; .e .  allow bending) if the strut diameter d is  around the same size as 
the axial deviation ( 0  A I ) .  For the tetrakaidecahedral model. the struts have length 
I = T 2~ 2, and the reduced density i s  p ps = 3nd' d?T2. where T i s  the size of the 
unit ccll shown in Fig. I (d) .  Setting L i  = (j x I and t i  = 0.05 we find that curvature 
u i l l  only significantly alter the axial stiffness of the strut if p.p . ;  < 3 d  8v'2 = 0.002 I .  
Since most cellular solids ha\-e p .  y,  > 0.01. the proposed strut curbature should not be 
significant. hloreover. even if the struts are curved. both the Young's and bulk modulus 
will decrease (possibly leaving Poisson's ratio Y =  1 2 - E 6K unchanged). Indeed, 
Grenestedt ( 1998) has shown that the ratio E K is constant for a simple open-cell 

- 

- 



model M i t h  curved b e a m .  Hence. i t  seems unlikely that the natural mut curc~aturc of  
foams ~ w ~ l d  signi ticantly reduce Poiswn's ratio. 

6. Discussion and conclusion 

We h a w  used the tinite element niethod to cstimatt' the \r'oung'.; modulus of ti,ur 
rea I i s t i c random m ode I s o 1' i s o  t ro  p i c ce I I i i  I a r so I id s . T h e o pc n -cc I I l.c)ron o i tessc 1 1 a t  I on 5 

have a micn)s;lructure similar to t h a t  obxen ed in foams.  The iiode-bcwd and Ie\cl-cut 
Gaussian models M ere considered rcpresentati\c t o  cellular .;elids generated by oilier 
( non-foaming) processes. At low densities. the rcsuits could be described by the scaling 
relation .E E ,  :-z C'( 1 )  1 ) .  )". where C and I I  Lire gi\cn i n  the text. A t  rnoderatc to h i z h  
densities. the results could he described by Eq. ( 9  ) using the p;irameter\ reported in 
the text. The titting relations u e  h a b e  deri\ed can be uscd to prcdict the properties ot' 
cellular materials that have a microstructure similar to one of the model.;. :ind can be 
useful for interpreting experimental data. 

We havc compared the results to a number of  theories based on diH;:rcnt sirnpliik- 
ing assumptions about microstructure. The most widely used formula for the Young's 
modulus of open-cell materials i s  E' E, = ( p  p , ) ' .  w i t h  a Poisson's ratio of 1s = 0.33 
(independent of density and .;olid Poisson's ratio \ I ,  \. b ' h i l e  t h i b  result i s  broadl) 
applicable. w e   ha^^ .;hoc\ n that the properties of' open-cell m,iterinls ;ire inore corn- 
plex. The highly coordinated (!: 17.5 ) node-bond model has ;in exponent of H =- 1.3 
due to spatial 'locking' of the node,. w th:it [tic m a j o r  mechan ism of dcforni;ition is 
axial tension ( o r  conipresbion ) rather than bending. The open-cell rundorn ticld model. 
which i s  not  bdsed on m underlying pol>-ticdral structure. h d  a n  skponent of ir = 3.0. 
This \\;is attributed to enhanced dcformation in the struts. which ;ire c u n c d  and ha\-e 
non-uniform thickness. For three oi' the tbur open-cell model.;. the P o i s s o n ' F  ratio con- 
icrged to i -  = 0.25 at loci. densities. in ,igrccnient with .;t\erali indcpcncicnt rheorie\. Thc 
tact that the solid Poisson'~ ratio \ \as  taken to be 0.2 riie;lnt thar the ocerdll f ' c ) i x x ) l i ' j  

ra t io  \\.as nearly independent ot' dens i t ) .  It the solid Poi>soii', r a t io  \ \as much ditlcrent. 
the merall Poisson*b ratio \iould he ;I much stronger function of density. hecaii\c. ot' 
i t s  conLcrgcnce or ' f o w  diagram' beha\ iour ( Robens 2nd Garboczi. 7001 1. 

that isotropic open-ccll \.oronoi tevc!l:itionb 
were nearly incompressible I Poisson's ratio I' 2 9.5 Lit lo\\ d e n ~ i [ i t \ .  In hinti\iglii. h e  
resu It m I g h t be ant i c i pa IC' cl t ro  in t \i o-d i in cri s i  o n  a I htud i i' \ o I' ran do  in I ( )-d i ni  . , - i t ri ;I I 
tessellations for \\hich \ ' - I )  2: 0.94 I Sil\a c't di.. I q Y -  I .  The n e x  incomprcs~i~-" ot' 
the tessellations i s  rtlatcd to the fact that [tie \u-iicture is iiiuch jtitlcr under 
compression than axial  (o r  shc3r 1 deformation ii Y. / I  v, hile. E. ( i  I { I '  1. .It lob Cic'nsi- 

ties. the properties ot- the nioc1t.l tbarn arc x tual ly  L C ~ ) ;  \ \ .el l  predicted by \h JI.' -11 and 
Kraynik's theoretical result for an isotropically oriented tctrahedral io in t .  Thls r .  \ ) \  ides 
a n  explanation ot' the unusuul beha\iour. In ;I pert;'ct tetr:ihcdral Icliiit uncic-r :, ~ i fonn 
coinpres~ion.  the force> iirc balanced b o  that thc cciitr:ll n r d c  i l  !iickc.d i n  1-1 ),i t ion. 
'T'hcrcforc. the def~>rni;ition is oiil? along the stnit direction, ( 1.c. h ,' / j  ) .  E \  i.ii : tiuush 
the struts in the random motiel are not pcrfectl~ tetrahedral. \\e h a \ e  .;hu\xn : i ~ i i t  the 
same node locking occur4 on craze O u r  rcyults ind icJ te  thar hrc)l\c'n. rattic;. r h . i n  bent. 

One of rhc most surprising rcsults 



struts provide a more likely explanation of why such high values of the Poisson's ratio 
are not commonly observed. 

In this study. we have shown that i t  is absolutely necessary to consider large-scale 
(multi-cellular) models of random cellular solids in order to obtain realistic elastic 
properties. Our results are consistent with experimental data. and show a more com- 
plex density dependence than predicted by conventional theories based on periodic cell 
models. Our results focus on the global (e.g. connectivity and geometrical cell arrange- 
ment), rather than local characteristics (e.g. strut cross-sectional shape or curvature) 
of cellular materials. for the following reasons. First, it is dificult to simultaneously 
model the local and global variables with finite computational power, and second, study 
of single-cell models probably provides a more fruitful route to understanding the in- 
fluence of local cell character on the overall properties. We believe that the results of 
both approaches may be beneficially combined. 
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