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Abstract. This paper reports on a new laboratory methodology for the determination of
the structure of pores, a method for the analysis of the data to obtain the statistics of the
pore structure distribution, simulation of porous media with statistics consistent with those
in the specimens, numerical simulation of fluid flow in images of porous media, and the
determination of permeabilities from the numerical experiments and comparison with the
results of laboratory experiments. The computed flow fields show that flow in porous
media is restricted to preferential paths depending on the size and connectivity of pores.
Whole areas of the pore structure are relatively isolated from the flow because of
bottlenecks. The distribution of the isolated regions depends on the angularity of the
grains and the porosity of the medium. The more angular the grains are the greater is the
possibility for the presence of isolated regions. For grains with the same angularity a
decrease in the porosity leads to concentration of flow along preferential flow paths. The
permeability tensor coefficients are derived from the flow fields of the two-dimensional
images as well as the three-dimensional computer-simulated images of soil microstructure.
The numerical values of permeability and permeability anisotropy ratio compare well with

laboratory experimental data.

1. Introduction

The description of the continuous voids or pores is necessary
to study the transport of fluids through cohesionless soil de-
posits. The pores are, however, disordered; that is, their size,
cross-sectional shape, and orientation are highly variable from
point to point. The physical characterization of the disorder of
the system of pores in a porous medium is complex and re-
mains formidable for a comprehensive solution. Attempts in
the past have included characterization by grain size distribu-
tion and simulation by various types of models with equivalent
hydrodynamic characteristics, such as bundles of straight tubes
of constant cross section or tubes with varying sectional area
and alignment but with an equivalent hydraulic radius. These,
in turn, have been used in the development of pecrmeability
relations [e.g., Kozeny, 1927; Childs and Collis-George, 1950;
Carman, 1956; Bear, 1972; Dullien, 1979; Koplic et al., 1984;
Berryman and Blair, 1986].

Recent advances in digital image processing have opened up
new avenues to quantify and simulate the porous medium
microstructure [Adler et al., 1990; Martys et al., 1994; Masad
and Muhunthan, 2000]. The main focus of this paper is to
present a full description of the steady flow of water in a
two-dimensional (2-D) porous microstructure captured in a
computer using image-processing techniques. [t also presents a
procedure for the simulation of the soil microstructure based
on measurements of the statistics of the anisotropic pore space
distribution. Measurements are obtained using image process-
ing of soil microstructure.

This paper is organized as follows. Section 2 summarizes the
preparation procedure of soil specimens for image analysis. It
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describes the resin-impregnation technique used to obtain
plane sections of cohesionless soil specimens for microstruc-
tural observations.

Section 3 deals with the reconstruction of the three-
dimensional (3-D) anisotropic cohesionless soil microstructure
in a computer. The technique utilizes two statistical properties,
namely, the mean porosity and the directional autocorrelation
function of the soil specimen. These concepts and simulation
of the statistics of the pore space are described herein.

Section 4 is devoted to the flow problem. The Navier-Stokes
equations are discretized on a microscopic image by means of
a finite difference scheme and solved under prescribed mac-
roscopic pressure gradients. The global permeability of the soil
medium is obtained by integration of the flow field. The nu-
merical values of average permeability and permeability an-
isotropy ratio arc compared with experimental data.

2. Image Analysis of Soil Specimens

Glass beads 1 mm in diameter, Ottawa 30-40 sand, and silica
30-40 sand, representing diffcrent grain shapes, were used in
the study. The shape of the grains was detcrmined by the
average axial ratio A, defined as the ratio of the apparent
longest axis L, to the apparent shortest axis L, of two-
dimensional projections of particles:

N
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where N s the number of particles. The average values of axial
ratio of glass beads, Ottawa sand, and silica sand were esti-
mated based on measurements made on 100 particles of cach
material using image analysis software [National Institutes of
Health (NI11), 1992] and were found to be 1.00, 1.25, and 1.50.
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Figure 1. (a) Resin impregnation experimental sctup. (b) Impregnation chamber.

respectively. It can be seen that the glass beads arc spherical,
Ottawa sand is composed mainly of subrounded grains, and
sihica sand 1s composed mainly of clongated grains.

Resin is often used as an impregnation material 1o facilitate
hardening of sand and clay for preparation of scctions for
microscopic obscrvations [Kuo and Frost, 1995, Ibrahim and
Kagawa, 1991; Smart and Tovey, 1982} Many ol the impregna-
tion techniques that are extant, however, provide little control
over specimen confinement and time of impregnation.

Masaed and Muhunthan [2000] have presented a detailed
description of a new resin-impregnation apparatus which min-

imizes the resin-impregnation time and provides controlled
confincment to the specimen to minimize the microstructure
disturbance. 1t consists of three main components: a control
pancl, an interface chamber, and an impregnation chamber
(Figure la). The control panel is used o regulate the applicd
pressure during resin impregnation. The interface chamber has
two compartments separated by & membrane. The upper com-
partment is fitled with water and is connected to the control
puncl. The fower compartment s filled with resin and is con-
nected to the impregnation chamber. This feature enables the
manitoring ol the amount of resin impregnated into the spec-
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imen since it is equal to the amount of water forced from the
control panel burettes into the upper compartment of the
interface chamber. In addition, it restricts resin from making
contact with the control panel. This setup was used in this study
to prepare sand specimens for microstructural analysis.

Two specimens from Ottawa 30-40 sand, one specimen from
silica 30-40 sand, and one specimen from glass beads were
prepared at porosity values of (.42, 0.40, 0.45, and 0.36, re-
spectively. The specimens were constructed inside the impreg-
nation chamber (Figure 1b) using the dry pluviation technique
[Miura and Toki, 1982]. This technique involves the uniform
raining of sand from a constant height (5 cm) above the center
of the specimen through a funnel with a predetermined open-
ing size (4 mm).

Epo-thin resin manufactured by Buehler Ltd., Lake Bluff,
linois, was used in this study. The resin was mixed with Epo-
thin hardener manufactured by the same company and acetone
as thinner to facilitate the impregnation process. The optimum
mix proportion by weight of resin, hardener, and acetone was
determined to be 100:40:8. This proportion was determined to
allow the mixture to harden at room temperature and to ade-
quately reduce the viscosity of the mixture. Reduction of the
mixture viscosity minimizes specimen disturbance during im-
pregnation. Negligible, if any, volume changes were recorded
in specimens prepared using this mixture, indicating the min-
imum disturbance to the structure.

The completed specimens were cut into sections using an
electric diamond saw following the pattern shown on Figure 2.
The cut face of each section was polished using a diamond-
lapping wheel. An ethanol-based fast green stain was applied
to the polished faces to provide contrast between the solids and
voids.

Image capturing was performed using an optical microscope
linked to an image analyzer. Three images were obtained from
the top of sections A, C, and E and from cach of the four cut
faces of sections B and D. That is, a total of 33 images were
captured from cach specimen. Image thresholding was per-
formed to convert the gray-scale images to black (solids) and
white (voids). Each image was square in shape and had a width
ft of 70 pixels in cach direction.

The representative elementary volume reduces to the rep-

Section A

Section B

Section C

Section D

Scction E

Figure 2. Cutting pattern of granular specimens.
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Figure 3. The coordinate system used in the analysis.

resentative elementary area (REA) in 2-D analysis. The image
area of sand that satisfied the REA criterion was found to be
S mm X 5 mm, and the corresponding area was 10 mm X 10
mm for glass beads. Each image contained about 100-150
particles. The representative image length or width was equiv-
alent to approximately 10 times the average grain diameter
[(Masad and Muhunthan, 2000].

3. Reconstruction of Soil Microstructure

The reconstruction of the 3-D image of the anisotropic soil
microstructure in the computer is accomplished by simulating
an artificial medium with nearly identical statistical character-
istics to the soil microstructure. The simulation can be done for
both 2-D and 3-D images of soil microstructure.

The statistical properties used in the simulation are the
average porosity and the directional autocorrelation function
(DACF) [Masad and Muhunthan, 2000]. Both properties are
measured from three orthogonal images captured on the resin-
impregnated soil specimens. The average porosity is directly
calculated using the image analysis system as the arca of voids
relative to the total arca of an image [NfH, 1992].

The DACEF is a function of the vector that scparates any two
points of the soil medium. The vector magnitude is denoted by
r, while its direction is defined by the unit vector 1 (I = sin 8
sin ¢, {, = cos 0, and {, = sin 0 cos $) (Figure 3). In order to
capture the directional distribution of microstructure ¢le-
ments, the DACF is expressed by the spherical harmonic series
in the Cartesian coordinate limited to the sccond order. The
DACF at vector length v, £ (1), is given by

FA0 =00+ 000, {2)

where (f,,), is the average (1sotropic) autocorrelanion function
atvector lengthr and (1, is a component of the second-order
deviatoric teasor. This tensor describes the deviation of the
DACF from the average value in the dircction of the unit
veetor 1. The experimental procedure for obtaining ( f,), and
2, for 2-D and 3-D cases is given by Masad and Muhunthan
[ 1998)].
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Figure 4. Three-dimensional section of the simulated structure of image set 2. The size is 50 X 50 x S0

voxels (3.5 mm X 3.5 mm X 3.5 mm).

The simulation procedure starts by creating a 3-D image of
Guassian distributed noise [Law and Kelton, 1982; Press and
Teukolsky, 1992]. Then, the noise image is filtered (or con-
volved) with the DACF f,(1) (equation (2)) to obtain another
image that exhibits the anisotropy of the actual soil microstruc-
ture {Masad and Muhunthan, 1998]. This image is converted to
a binary (0 (pore) or 1 (solid)) image using a threshold oper-
ation. The threshold value is determined such that the result-
ing 3-D image has the same porosity as the images captured on
specimens. The total size of the reconstructed microstructure
is 70 % 70 X 70 voxels (5 mm X 5 mm X 5 mm for sand and
10 mm X 10 mm X 10 mm for glass beads). An example of the
reconstructed microstructure is given in Figure 4.

4. Simulation of Fluid Flow and Permeability

The incompressible fluid flow is governed by the following
set of equations [Bird et al., 1960]:

Continuity cquation

dpu  dpv  dpw

— 3
ax ay iz 0. ()

Navier-Stokes (momentum) equations in the ¢, v, and z dirce-
tions, respectively,
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where u, v, and w are the velocity in the x, y, and z directions,
respectively, p is the fluid viscosity, and p is the fluid density.

Several finite difference and finite element formulations
have been developed in the past to provide solutions to these
cquations at the material microstructural level [ddler et al.,
1990; Martys et al., 1994]. Most of them, however, were devel-
oped for isotropic distribution of the pores and make a priori
assumptions about the significance of the viscous or convection
(incrtial} components of the Navier-Stokes equations depend-
ing on the problem under consideration.

The simulation of two-dimensional fluid flow in a saturated
anisotropic soil medium is performed in this study by imple-
menting a numerical solution to the complete sct of Navier-
Stokes cquations at the soil microstructural level. The numer-
ical solution does not make any a priori assumptions about the
significance of the viscous or convection components. There-
fore the program can be used to simulate fluid flow for a wide
range of applications.

For 2-D incompressible flow the governing fluid flow equa-
tions reduce to
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where w and ¢ are the velocity in v and vy directions, respec-
tively. Although the 2-D Navier-Stokes equations can be fur-
ther simplified, the form presented in (8) and (9) facilitates
their finite difference formulation and numerical solution. The
staggered grid arrangement of the velocity and pressure nodes
was uscd to discretize the fluid flow differential equations over

narrow
neck at B

wide
neck at C
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the grid of two-dimensional images and develop the finite
difference formulations of the governing cquations at the soil
microstructural level. The equations were solved numerically
by using the genera! formulation known in computational fluid
dynamics as semi-implicit method for pressure linked equa-
tions (SIMPLE) [Patankar and Spalding, 1970]. The complete
derivation of the finite difference formulations for the micro-
scopic images of soil specimens is given in the appendix, and a
listing of the fluid flow simulation program is given by Masad
[1998].

The flow equations were solved for actual images captured
on the resin-impregnated soil specimens. A typical image of
glass beads used in the analysis is shown in Figure 5. Velocity
ficlds within an image are driven by a pressure difference Ap =
P> — p, maintained between the inlet and the outlet of an
image (Figure 5). The boundary conditions of velocity compo-
nents arc

wu(x =0) =u(x =h) (10)
vix = 0) = v(x = h) (1)
u(y =0) =uly = h) (12)
oy =0) = v(y = h) (13)
and at the solid phase (“no slip” condition)
u=uv=0, (14)

where A is the width of an image in pixels. Equations (10)~(13)
represent periodic boundary conditions.

5. Flow Analysis Results

The flow field in a 2-D image of Ottawa sand is shown in
Figure 6. The length of a vector at any point is the magnitude
of velocity at that point. Notice that the fluid is forced to flow
from left to right. In general, it can be seen that water flows in
parallel lines within local regions. Tt is noted, however, that
flow is highly irregular and not evenly distributed throughout
the image. The tlow path direction and shape depend on the

3

o1

Figure 6. Simulation of two-dimensional (2-D) Aow in an image of Outawa sand. Size of an image is 50 x

50 X 30 pixels cqual to 3.3 mm % 3.5 mm X 3.5 mm.
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Figure 7. Flow fields in 2-D images of Ottawa sand at different porosity values: (a) 0.354, (b) 0.396, and (c)

0.460.

size of the voids and void connectivity. Figure 6 illustrates the
effect of narrow necks that connect pores on water flow. In
Figure 6, water enters from point A, and it has two paths to
reach point D. The first path is through the narrow neck at
point B, and the second one is through the wide neck at point
C. The narrow neck at point B, however, controls the flow,
such that water seeps through the wide neck at C following the
A-C-D path. Consequently, very small velocities are observed
in the A-B-D path represented by the shaded area (Figure 6).
It is of interest to note that though relatively large sizes of
pores are present in the shaded area, they do not contribute to
fluid flow through the porous medium.,

Figure 7 shows comparison of flow fields in Ottawa sand
images at different porosities. It can be seen that as the po-
rosity decreases, the flow becomes more concentrated along
preferential paths. In addition, the flow field becomes more
tortuous (follows longer paths) with decrease in porosity. It
appears that as the percent of solids increases within an image,
the particle contact increases, and the flow ficld picks out paths
connected by large voids.

Figure 8 is a comparison of flow ficlds in three images
captured from Ofttawa sand, glass beads, and silica sand spec-

imens. The images are chosen such that their porosity values
are nearly identical (Figure 8). The flow, however, is more
uniformly distributed in the glass bead image than in the Ot-
tawa sand and silica sand images. Only one or two main paths
carry the flow in silica sand. The silica sand image has more
stagnant areas for fluid flow than Ottawa sand and glass beads.
This is to be expected as silica sand has a much rougher surface
and, consequently, higher specific surface area than the other
two materials. As the surface area: increases, solid particles
become interlocked, and narrower necks are formed increasing
resistance to flow. Water chooses the path with the least resis-
tance to flow. Therefore the number of flow paths decreases
with an increase in specific surface area.

5.1.
The fluid permeability is defined via Darcy’s law:

Permeability Coefficient

1
K- Vp,
M P

P
i
|

(15)

where ¥ is average velocity vector within a sample, u is the
viscosity coefficient, Vp is a prescribed pressure gradient, and
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Figure 8. Flow fields in 2-D images of (a) silica sand (porosity of 0.405), (b) Ottawa sand (porosity of 0.396),

and (¢) glass beads (porosity of 0.393).

K is the symmetric positive definite permeability coefficient
tensor. For 2-D analysis of images, (15) can be written as

[a B 1 [Ku K,,] Ap,
)l wllan)
where & and v are the average velocity in an image in the x and
y directions, respectively. Velocity is measured by an image
unit length per second (pixel/second). Here 4 is the dimension
of an image in pixels. The components of the permeability
tensor are calculated in two steps. In the first step a pressurce
difference is applied in the x direction Ap,, while Ap, = 0,
and K, and K, are calculated as follows:

(16)

(ph) X i

Kum =g (17)
(ph) X v

KVA - 7_“’:\}7, (18)

In the second step a pressure difference is applied in the y
direction Ap,, while Ap, = 0, and the remaining coefficients
of the tensor are calculated as follows:

.
K, = - S (19)
,o - (20)

It is noted that the boundary conditions in (10)~(14) are used
to solve for fluid flow and calculate the tensor coefficients. The
average permeability K is the first invariant of the perme-
ability tensor:

8

KLX + KVV
T I

21

It should be noted that the absolute permeability K has the
units of (pixels)®. It is multiplied by a pixe! actual spatial arca
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Table 1. Comparison of Average Permeability Among Numerical Models and Experimental Values

Ottawa Sand

Silica Glass

Source Specimen 1 Specimen 2 Sand Beads Comments
[Laboratory 92 80 120 200 falling head test
Current study (2-D) 50 37 91 using 2-D images of soil microstructure
Current study (3-D) 113 106 122 244 using 3-D simulated soil microstructure
Carman {1946] 20-175 tabulated data (loose beds of sand)
Terzaghi and Peck [1967] 10-100 tabulated data (medium-size clean sands)
Holiz and Kovacs [1981] 1-1000 tabulated data (medium to large-size clean sands)
Kozeny [1927] 202 431 614

Carman [1936]

Al units are in 107* cm/s.

(AxAy) to convert it to the units of square meters. The abso-
lute permeability tensor coetficients K are related to Darcy
permeability tensor coefficients & with the units of m/s by the
following relationship:

k=K'

T

(22)

where ¥ = 9.81 kN/m" is the fluid (water in this study) unit
weight and w is viscosity and is equal to 107 kg/(m X s) for
water. The permeability coefficients are calculated in the pro-
gram using the unit of (m/s).

The permeability tensor coefficients and average permeabil-
ity (equations (17)—(21)) were calculated for images captured
on the resin-impregnated specimens. A total of 33 images werc
analyzed for each of the four specimens of Ottawa sand, silica
sand, and glass beads. The average permeability coefficient
k... 1s reported in Table 1. Since the permeability tensor is
symmetric, the values of &, and k| were checked for equality.
To verifv that a symmetric tensor is positive definite, it is
sufficient to show that its principal values arc positive [Agnew
and Knapp, 1989]. The principal values of the permeability
tensor were calculated using eigenvector analysis and found to
be positive. In addition, the directions of major and minor
principal values were found to be close to the horizontal and
vertical directions, respectively.

Falling head permeability tests were conducted on five rep-
licates of each of the specimens uscd in the microstructural
analysis. That is a total of 20 tests. The average experimental
values are reported in Table 1. These values were within a
factor of 2.2 of those of the 2-I) analysis. The difference of the
numerically calculated values from measurcments is attributed
to two factors. The first one is the limitation of the 2-D analysis
in capturing the 3-D pore connectivity. In 3-D media the flow
has more paths than the 2-D one. The other factor is the
difference in specific surface arca between an actual medium
and a digital image of that medium. The limited number of
pixels on an image alters the specific surface area of smooth
particles such as Ottawa sand and glass beads and makes them
appear to have rougher surfuces. Increasing the number of
pixcls in an image can reducc this limitation of using digital
images. It would be, however. at the expense of the computa-
tional time to calculate the permeability. However, silica sand
by nature is composed of rough surface particles, and image
digitization woultd not alter its specific surface arca as it docs
for smooth surface particles. Thus the best agreement between
numerically calculated and measured permeability values was
found for the silica sand (Table 1),

The program developed by Marrys et af. [1994] was usced to

calculate the 3-D permeability values for the simulated soil
microstructure presented in section 3. The average permeabil-
ity values were within a factor of 1.3 of thc mcasured oncs
(Table 1). This agreement is a further validation of the simu-
lation process of soil microstructure presented in section 3.

Permeability values obtained from tabulated data and em-
pirical relationships for granular materials with porosity and
particle size similar to the ones investigated in this study are
given in Table 1. It can be seen that the 2-D and 3-D models
were within the limits of these values. It is noted, however, that
the permeability calculated using the Kozeny-Carman equa-
tion [Kozeny, 1927; Carman, 1956] differed significantly from
measured values. The closest prediction by Kozeny-Carman
equation yielded a value that varied by about 3.5 times the
measured one.

5.2. Permeability Anisotropy Ratio

Permeability anisotropy is measured by the ratio of the hor-
izontal permeability coefficient &, to the vertical permeability
cocfficient &, (r, = k,/k ). The anisotropy ratio r, was de-
termined based on 2-D permeability calculations on 33 images
captured on each test specimen, Horizontal permeability was
calculated as the average of values measured on horizontal
images and in the horizontal direction of vertical images. Ver-
tical permeability was measured on the vertical direction of
images. The ratio for the 3-D analysis was calculated by taking
the average permeability of the two horizontal directions and
dividing by the permeability in the vertical direction. Table 2
shows that the anisotropy ratio was the highest for silica sand.
This is expected since silica sand is composed of clongated
particles, while Ottawa sand is composed of subrounded par-
ticles and glass beads are completely spherical.

The permeability anisotropy for glass beads was higher than
unity (Table 2). This was not surprising since pcrmeability
anisotropy is controlled by the air void distribution, and several
researchers measured a difference in void size between the
horizontal and vertical directions of glass bead specimens
[Kallstenius and Bergau. 1961; Oda, 1972; Masad and Mubhant-
han, 2000}.

Most of the availuble measurements of the permeability
anisotropy ratio r, are for cohesive soils and rocks that can be
cut and tested in different directions [Chapuis et al.. 1989]. Few
reliable results are available for cohesionless soils. Chapuis e
al. [1989] presented laboratory results on the cffect of densi
fication methods on the permeability of a cohesionless soil.
Results were given for two compaction methods. The perme
ability anisotropy ratio was lower than 1 (0.87-1.00) for dy-
namically compacted samples, whereas it was in the 1.33-1.83
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Table 2. Values of Permeability Anisotropy Ratio From Numerical Models and Laboratory and Field Tests

Source Specimens

Permeability Anisotropy

Ratio r, = k,/k, Comments

Current study (2-D analysis) glass beads

Ottawa sand (specimen 1)

1.10
LI5S

2-D images of soil microstructure

Ottawa sand (specimen 2) 1.10
silica sand 1.30
Current study (3-D simulation) glass beads 1.27 3-D simulated soil microstructure .
Ottawa sand (specimen 1) 1.32
Ottawa sand (specimen 2) 110
silica sand 1.67
Mansur and Dietrich {1965] granular soil 1.4-4.1 (average = 2.0) pumping test in the field
Chapuis et al. {1989} sand 0.87-1.0 dynamically compacted specimens
sand 1.33-1.83 statically compacted specimens
range for statical compaction. Mansur and Dietrich [1965) re- Appendix

ported the ratio of horizontal to vertical permeability to vary in
the range of 1.4-4.1 with an average of 2.0 based on field
pumping tests.

6. Conclusions

A new experimental setup that controls the resin-impregna-
tion time and specimen confinement was used to prepare sand
specimens for microstructural analysis. The setup was found to
cause very little disturbance to the sand microstructure.

Images of soil microstructure were captured from resin-
inpregnated specimens with the aid of an optical microscope
and an image analysis system. The average porosity and direc-
tional autocorrelation function of soil specimens were used to
simulate the anisotropic three-dimensional microstructure of
sand.

A program was developed for the solution of the two-
dimensional Navier-Stokes equations within actual images of
soils without a priori assumptions on the significance of viscous
or convection (inertial) terms of these equations. Therefore
the solution can be used for a wide range of fluid flow appli-
Cations. The flow equations were solved for materials that
differ in porosity, particle size, and specific surface area.

Flow fields were found to be restricted to certain flow paths
within an image depending on the size of pores and their
connectivity. The number of flow paths decreased with the
increase in specific surface area and the decrease in porosity.
Flow was found to be more uniformly distributed in glass beads
than Ottawa sand and silica sand.

For the test materials the permeability measured in the
laboratory was within a factor of 2.2 of the two-dimensional
numerically calculated permeability. The model permeability
predictions can be further improved by increasing the resolu-
tion of images to capture the actual specific surface area of the
materials. The numerical 3-D permeability values were within
a factor of 1.3 of the measured values.

The permeability anisotropy was found to be correlated with
particle elongation. In addition, the permeability anisotropy
ratio was in the same range as laboratory and field measure-
ments. These improvements in permeability predictions in
comparison with other analytical models are attributed to in-
corporating the effects of soil microstructure on water flow
directly into the solution through boundary conditions. There
were no assumptions imposed on the shape of the pore structure.

Al. Governing Equations

The finite difference formulations of the governing equa-
tions for two-dimensional incompressible flow will be devel-
oped by integrating the fundamental differential equations
over a contro! volume using the staggered grid arrangement for
the velocity and pressure nodes. The equations will be solved
numerically by following the general formulation known as
semi-implicit method for pressure linked equations (SIMPLE)
[Patankar and Spalding, 1970].

ALl Continuity equation. Consider a grid system shown
in Figure Ala. The continuity cell is centered at the grid point
with its sides lying on lines midway between the grid lines. The
continuity equation is

dpu  dpvu
PV+P

3 ey = (. (A1)
Integrating this equation over the control volume gives
pudy — pu Ay + pu,Ax — pr,Ax =0 (A2)
or
G, -G, +G,-G,=0, (A3)

where n, s, e, and w refer to the north, south, east, and west
faces, respectively, of the continuity cell and G, is the mass flux
across the ith face. This is simply the control formulation of the
continuity equation for an incompressible flow; the net efflux
of mass is zero.

AL2. Navier-Stokes equations. The momentum equa-
tions for incompressible, constant viscosity fluid flow are given
by the Navier-Stokes equations. The control volume used for
the momentum equation in x direction is shown as the pat-
terned area in Figure Alb. The control volume lies between
then' — s'andthew' — ¢’ grid lines. The u velocity node lies
at the center of the x-momentum cell. The pressure nodes lie at
the gnd nodes. This constitutes the staggered grid arrangement.

The momentum equation for a steady, incompressible flow
in the x direction is

d ( ou ] ou
et _ —— + —— — —
ax AP T RG] Ty P T R

ap d du d du
= Tt [T Bl B T I8
dx  dx dx ay dx

(Ad)
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Pw

(b)

(c)

Figure Al. Arrangement of the continuity and momentum cells on the staggered grid: {a) continuity cell, (b)
momentum cell in x direction, and (¢) momentum cell in y direction.

Integrating this cquation over the volume of the momentum
cell results in

( au) A ( au)
lpuu TH ! ¥ puu — u ax Ay

e N n

(’ Hu) A ( ('lu)
+ - - - - - - .
‘puv “w v/ X ‘pu [T iy, ‘A_x
(o du du \
f(p,~/)t,)Ay+(;,L_; Mmoo );\y
JX X

e "

‘)Ax.

du Jdu AS
dx (AS)

{, — —
( » ® ax

N .

This first term of (A35) is the momentum flux in the x direction
on the cast face of the momentum cell. This term is denoted
M?., and it can be written in terms of the mass fux on the east
face (G,.) as

agu!

M. =G.u—-p Ay. (A6)

axl
Approximating the partial derivative with a total derivative and
integrating this equation yields

M\'
e
where C is the constant of integration. Consider the x compo-
nent of velocities in the neighborhood of the cast face of the

It + (“cl(-,xH,A_\u

(A7)

¢
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momentum cell shown in Figure Alb. Atx = 0 the velocity is
equal to the velocity at the center of the momentum cell,
namely, u,. At a distance Ax from the cell center is the velocity
at the center of the adjacent cell or the east velocity uj.
Applying these boundary conditions and solving for the mo-
mentum flux on the east face results in

ug — uPeRt(

M:=G, (A8)

The exponent of the exponential term is the cell Reynolds
number Re. = (G, x)/(pAy). The momentum flux in the x
direction across the east face (equation (A8)) can be expressed
as

M: = Ge'[fc’uE + (1 —ft')up]7 (Ag)
where for [Re_| > 1,f,. = 0ifG,. =z 0orf,. = 1ifG, <
0, and for |Re | < 1, f,. = % ~ [w/(pu, Ax)].

Similar equations can be written for the x-momentum flux
across the other faces. Combining all the momentum fluxes
into the finite difference equation, (AS), results in the follow-
ing equation:

G, - G, + Gn' - G!')up + (‘—.ft'Gt' ~ﬁ|'Gﬂ' +f-v'Gw' +f!'GI')uP
+ fe'uEGt' + fn'uNGn' - fw'uWGw’ - fx'uSG:‘

= (Pp - PE)Ay + svism (AIO)
where 8, is the term that appears because the viscosity is not
uniform [Masad, 1998). For uniform viscosity and incompress-
ible flow this term is zero. Further, the first term in (A10) is
zero because of the continuity equation. Defining the coeffi-
cients of the velocities as

a,=f.G. (Al1)
a, =f,G. (A12)
a, = f,G, (A13)
ay = folpy, (Al4)

the momentum equation (A10) can be written in a compact
from:

up z a; = 2

r=nesw
1=NESW

aiu;+ (p, = pe)dy + S, (A15)

remesw

At this point, another term S,u,, is added to (A15) which is a
function of the boundary conditions as will be shown later in
this appendix. Hence (A15) becomes

—~
}4 a:'ul
t=nesw

J=NESW
W, ="

- A Swsc
P + (pp PF) ,Y + -
a

- L (Al6)

P P

P

wherea, = 2, . . a. — S,
Foliowing the above steps for the momentum equation in
the y direction (Figure Alc), the momentum equation in y

direction becomes

—pnAx S
— 4+ (Pf—_._p_iv)ﬁ_, + . 3
a a

(A17)

P »

A2. Pressure Formulation of Continuity Equation

The finite difference equation for the velocity on the east
face of the continuity cell (Figure Ala) can be expressed using
the x-momentum equation as

2 au,

= imesw Py - pe)ly g_:s

e e pe

(A18)

where a,, . is the coefficient for the velocity on the east face of
the continuity cell and the center of the momentum cell. the
change in the velocity due to a change in pressure can be
approximated through the first terms of a Taylor series expan-
sion:
—uz+ 22 (ap) + 2 (apy) (A19)
U, = u, app pp apE Pl
where Ap, = p, — p, is the pressure change, and u? and p,
are the velocity and pressure values from the previous itera-
tion, respectively. Substituting for the partial derivatives of i,
in (A19) from (A18) gives
By Ay
u,=ul+ ——(Ap,) ~ — (Ape). (A20)
pe Apr
Similar equations can be written for the three remaining faces.

Substituting these equations into the continuity equation (A2)
results in the following equation for the pressure change:

aAp,= > adp.— o G, (A21)
i=NSEW i=nsew
where
a =pA2(_+-)+pr2(-~~+J—) (A22)
? Y Ape pw pn Qps
A 2
g, =2 (A23)
Qpr
phy?
ay = (A24)
ap‘,,
pAx?
Gy = (A25)
a,,
sz
ds= Pa . (A26)

A3. Boundary Conditions

The flow equations are solved for actual images of the soil
microstructure. Velocity fields within an image arc driven by a
pressure difference Ap = p, — p, maintained between the
inlet and the outlet of an image (Figure 7). The boundary
conditions of velocity components are

u(x =0) = u(x = h) (A27)
v(x = 0) = o(x = h) (A28)
uly = 0) = u(y = h) (A29)
ily = 0) = w(y = h) (A30)

and at the solid phase (“no slip” condition)

u=rv=40, {A31)
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(8

(h)

@ [mage pixel represents the solid phase
[J Momentum cell

Figure A2. The effect of “no slip” boundary condition on the momentum equation coefficients.

where « and v are the velocity components at any point of an
image in the x and y directions, respectively, and A is the width
of an image in pixels. Equations (A27)-(A31) represent peri-
odic boundary conditions. The momentum coefficients in
(Al11)—~(Al4) are calculated to conform with the “no slip”
boundary condition in (A31). Figure A2 shows possibie contact
configurations between a momentum cell and solid cells, and
Table Al lists the correspondent values of momentum coeffi-
cients [Masad, 1998].

As mentioned earlier in this appendix, S, value is also a
function of the boundary conditions of a momentum cell. Ta-
ble Al presents the S, valucs as they relate to the contact
configurations with solid cells. It should be noticed that when
the velocity at the center of the momentum cell coincides with
the solid wall (Figures A2a, A2b, A2e, and A2f), the velocity

value at the wall should be equal to zero. In order to comply
with this condition, a,, coefficient in (A16) should be equal to

a very large value, and hence a very large value is assigned to
S

P

Ad. Solution Scheme

The solution scheme for the finite difference formulations
consists of the following steps: (1) Assume velocity and pres-
sure field within an image. (2) Solve the momentum equations
for the velocitics at the intcrnal nodes. (3) Using these veloc-
ities, evaluate the source term for the pressure formulation of
the continuity equation (A21). If the continuity residuals sat-
isfy the convergence criterion, terminate the calculations. The
criterion used for convergence is usually
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Table Al. Momentum Equations Coefficients at Different Boundary Conditions

Contact
Configuration a, a,. a,. a,: S,
. . 1 Ay 1 Ay ] Ar 1 Ax
No contact with solid cells o Ay 4 1 ) , s . ot 7ero
5Py +op g Py e va,Ax+uAy zpvnAXMLAy
. 1 Ay Ay i 1 Ax 1 1 :

Figure A2a = ooy o = . gy - . . o very large
& zl’uzA)’*#Ax MAX 4P"1Ax+2ﬂAy 4pUnAX+2“'Ay y &
. Ay 1 Ay 1 1 Ax 1

Figure A2b -2 - ) pd . gy e i } o — very large
g e zpuwAy+pAX 4pv,Ax+2p.Ay 4pu,,Ax+2y.Ay Ty larg
- 1 1 Ay 1 1 Ax 1 Ay

Figure A2¢ — oy ad , , hd ) ~ _ ) - gyt
& 5Py + § Py + g 3 PusAx + oy 4pv~Ar+2uAy 2P Ax
. 1 Ay 1 I Ar 1 Ax 1 Ay

Figure A2d . 4 / =4 ) ¥ -y — _ ) gy
g 7Py + o s P Ay + g Pu bt sy zpv,.Ar+uAy 5 M Ay
. 1 1 Ay 1 / i Ax Ax

Figure A2e i oy L y - — ay. = " very large
g 4pu(A)+2pr 4puwAy+2pr 2pv,Ax+p.Ay ”Ay ry larg
. 1 1 Ay 1 Ay Ax i Ax

Figure A2f - A Ay oo — - very large
8! 4P“‘A)+2”Ax 4puwA) +2pAX “'Ay 2pu,,Ax+p,Ay Ty larg
. 1 Ay y 1 Ax 1 Ar

Figure A2 - . gy y =l : U, el I
g g G+ 5 5 P Ay + o va,AxﬂLAy 2pv,.Ax+uAy M Ay

1 Ax 1 A

Figure A2h . = ) oy Lo o Ax — g

8 7 Pucly + 5o Ay top zpv;Ax+;LAy zpv..Ax+uAy 27y
z Gl =e (A32) Acknowledgment. The study presented in this paper was sponsored

where the summation is performed over all the computational
cells. (4) Solve the pressure equation for the pressure change.
(5) Correct the velocities and pressures with the calculated
pressure change (for example, by using (A20) for the east face
and similar equations for velocities in other faces and by add-
ing the pressure change to the previous pressure). (6) Update
the velocities at the external nodes using the periodic boundary
condition. (7) Return to step 2 and continue until convergence
mn step 3 is achieved. The tridiagonal matrix algorithm is used
to solve the sets of equations in steps 2 and 4. When solving for
the velocity components in momentum equations and pressure
changes in the continuity equation, the solution of an iteration
may sometimes experience convergence problems in terms of
slow convergence or divergence. This problem can be solved by
incorporating a relaxation factor in the original equation
[Masad, 1998).

Notation

f.(I) the spherical harmonics series formulation of the
directional autocorrelation function (ACF).
h image width in pixels.
k Darcy’s permeability coefficient.
K absolute permeability coefficient.
I unit vector.
n average axial ratio.
r vector length used in the directional ACF analysis.
i« average velocity in x direction.
v average velocity in z direction.
v average fluid velocity vector.
Vp pressure gradient.
p fluid density.
pu fluid viscosity.
v fluid unit weight.
{1 ACF tensor.
Q ACF tensor component.

ma
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